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Abstract

We consider the situation in which a user has
collected a small set of documents on a cohe-
sive topic, and they want to retrieve additional
documents on this topic from a large collec-
tion. Information Retrieval (IR) solutions treat
the document set as a query, and look for sim-
ilar documents in the collection. We propose
to extend the IR approach by treating the prob-
lem as an instance of positive-unlabeled (PU)
learning—i.e., learning binary classifiers from
only positive (the query documents) and unla-
beled (the results of the IR engine) data. Uti-
lizing PU learning for text with big neural net-
works is a largely unexplored field. We dis-
cuss various challenges in applying PU learn-
ing to the setting, showing that the standard im-
plementations of state-of-the-art PU solutions
fail. We propose solutions for each of the chal-
lenges and empirically validate them with ab-
lation tests. We demonstrate the effectiveness
of the new method using a series of experi-
ments of retrieving PubMed abstracts adhering
to fine-grained topics, showing improvements
over the common IR solution and other base-
lines.

1 Introduction

We are interested in the task of focused document
set expansion, in which a user has identified a set
of documents on a focused and cohesive topic, and
they wish to find more documents about the same
topic in a large collection. This problem is also
known as a “More Like This” (MLT) query in
web retrieval. A common way of modeling this
problem is to consider the set of documents as a
long query, with which Information Retrieval (IR)
techniques can rank documents. IR literature on
document similarity and ranking is vast (Faloutsos
and Oard, 1995; Mitra and Chaudhuri, 2000, inter

∗ Most of the work done during internship at RIKEN.

alia)—beyond the scope of this work, and largely
orthogonal to it, as will be explained later.

Current methods in document set expansion for
very large collections are based on word-frequency
or bag-of-words document similarity metrics such
as Term Frequency-Inverse Document Frequency
(TF-IDF) and Okapi BM25 and its variants (Robert-
son and Zaragoza, 2009; Zaragoza et al., 2004),
considered strong due to their robustness to ex-
treme class imbalance, corpus variance and vari-
able length inputs, as well as their scalability and
efficiency (Mitra and Craswell, 2017). However,
the performance of such solutions is limited, as the
models cannot capture local or global relationships
between words.

We examine methods to improve document set
expansion by leveraging non-linear (neural) models
under the setting of imbalanced binary text classifi-
cation. To this end, we look to positive-unlabeled
(PU) learning (Du Plessis et al., 2015): a binary
classification setting where a classifier is trained
based on only positive and unlabeled data. In the
standard document expansion setting, we indeed
only possess positive (the document set) and unla-
beled (the very large collection) data.

PU learning has originally been employed for
text classification by Liu et al. (2002); Li and Liu
(2005); Li and Liu (2003) by using techniques such
as EM and SVM. Since then, the setting has been
well studied theoretically (Elkan and Noto, 2008;
Du Plessis et al., 2015; Niu et al., 2016), and re-
cently objective functions have been developed to
facilitate training of flexible neural networks from
PU data (Kiryo et al., 2017). We discuss the PU
learning setting in more detail in Section 2, and
relevant work on PU learning for text in Section 8.

We are, however, not interested in replacing tra-
ditional (term-frequency-based) IR solutions, but
rather improve upon their results by further clas-
sifying the outputs of those models. There are
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two reasons for this approach: (1) Traditional IR
engines are based on word frequencies, and as a
result, cannot capture features based on word or-
der; (2) Classification by the use of neural networks
does not scale well to “extreme” imbalance1.

Following these observations, we see traditional
IR engines and neural models as complementary
to each other. Our proposed solution is a two-step
process: First, a BM25-based, MLT IR engine re-
trieves relevant candidates; Then, a non-linear PU
learning model is trained based on the subset of
candidates. In this way, each method relieves the
weakness of the other.

As already discussed above, PU learning has
recently become viable for deep neural network
models. As a result, we are able to leverage it to
train models that are able to capture higher order
features between words. However, PU learning
literature focused on theoretical analysis and ex-
periments on small models and simple—notably,
class-balanced—benchmarks such as MNIST, CI-
FAR10 and 20News (Kato et al., 2019; Hsieh et al.,
2018; Xu et al., 2019). PU learning has not been
extensively tested for imbalanced datasets. Scaling
PU solutions to high-dimensional, ambiguous and
complex data is a significant challenge. One reason
for this is that PU data is, by definition, difficult
or sometimes impossible to be fully labeled for
exhaustive, large-scale evaluation.

For the purpose of document set expansion, and
in particular for fine-grained topics, gathering fully-
labeled data for an accurate benchmark is also a
challenge. For this reason, we propose to simulate
the scenario synthetically but realistically by using
the PubMed collection of bio-medical academic pa-
pers. PubMed entries are manually assigned multi-
ple terms from Medical Subject Headings (MeSH),
a large ontology of medical terms and topics. We
can treat a set of MeSH terms as defining a fine-
grained topic, and use the MeSH labels for deriving
fully-labeled tasks (see examples of MeSH topic
conjunctions in Table 1). This results in an eval-
uation setup which is extensive, allowing for a
large variety of different datasets based on differ-
ent bio-medical topics; flexible, with the ability to
simulate different biases in the data gathering to

1In practice, an IR task may involve positive documents in
the order of hundreds or thousands, and negative documents
in the order of dozens of millions. Literature dealing with
imbalanced classification traditionally discuss typical ratios
of 1:50 and 1:100 (Huang et al., 2018; Dong et al., 2018). To
our knowledge, the setting of extreme imbalance has not been
discussed in literature.

account for many possible practical settings; and
accurate, with a fully labeled test set.

The contributions of this work are thus:2

1. We propose a procedure for generating DSE
tasks based on PubMed by using conjunctions
of MeSH terms for labels. This serves as a
new large-scale benchmark for evaluating (1)
PU learning solutions, and (2) DSE solutions,
both of which currently suffer from lack of
difficult and large-scale evaluation.

2. We expand the PubMed DSE task formulation
with a variant that includes biased or unbiased
negative data.

3. We apply state-of-the-art PU solutions, previ-
ously only evaluated on simple benchmarks
for small neural networks, to the PubMed
DSE tasks, and report that they perform poorly
due to various challenges: no knowledge of
class prior, batch size restrictions, extremely
imbalanced data (small class prior), and very
limited labeled data.

4. We propose methods to deal with the above
challenges, and empirically evaluate the new
PU solution (which incorporates our solution)
on the PubMed DSE tasks, noting a signif-
icant improvement over currently available
methods.

2 Background: Positive-Unlabeled
Learning

PU learning refers to learning a binary classifier
from positive and unlabeled data. In this section
we briefly describe notation and relevant literature.

Notation. We refer to the positive set as P, the la-
beled positive set as LP, the unlabeled set as U, and
the negative set as N. Empirical approximations of
expectations and priors are denoted ·̂ .

2.1 Setting
Let x ∈ Rd and y ∈ {+1,−1} be random vari-
ables jointly distributed by p(x, y) where p+(x) :=
p(x | y = +1) and p−(x) := p(x | y = −1) are
the class marginals (i.e., the positive and negative
class-conditional densities), and let g : Rd → R
and ` : R × {±1} → R+ be an arbitrary binary

2Our code and data are available online at
https://github.com/alonjacovi/

document-set-expansion-pu.

https://github.com/alonjacovi/document-set-expansion-pu
https://github.com/alonjacovi/document-set-expansion-pu
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|LP | Topic BM25+nnPU BM25 Rand+nnPU BM25+COPK Naive All + Upperbound

20

Animals + Brain + Rats 48.97 32.25 ± 11.6 40.21 30.47 1.49 44.6 68.17

Adult + Middle Aged + HIV Infections 42.38 26.75 ± 7.22 40.22 33.59 6.88 30.98 55.61

Renal Dialysis + Chronic Kidney Failure + Middle Aged 49.16 41.23 ± 8.95 46.58 25.4 0.00 28.40 58.18

Average of 10† topics 33.26 26.69 ± 7.18 30.9 25.47 2.16 26.46 50.46

50

Animals + Brain + Rats 60.56 32.8 ± 10.9 45.13 30.47 5.41 45.86 70.23

Adult + Middle Aged + HIV Infections 42.77 31.85 ± 10.7 50.52 33.59 12.28 40.53 58.10

Renal Dialysis + Chronic Kidney Failure + Middle Aged 50.09 35.78 ± 9.13 45.37 25.43 0.00 31.81 57.58

Average of 10† topics 37.36 29.07 ± 7.75 37.01 26.51 3.01 30.41 51.09

Average of 15‡ topics 33.82 27.55 ± 6.20 31.08 25.93 2.12 29.02 47.41

Table 1: Experiment F1 results against the baselines of average performance across topics, as well as three example
topics. See Section 6 for details. † denotes the same collection of topics. The average of 15 topics ‡ includes †.
The nnPU experiments include BER optimization and proportional batching, but without pre-trained embeddings.
All experiments use a |U | size of 20,000.

decision function and a loss function of (g(x), y)
respectively. For the purpose of this work, we
will use the common sigmoid loss, `sig(t, y) =

1
1+exp(ty) , as we have observed the best empirical
performance with this loss. We denote π+ :=
p(y = +1) and π− := p(y = −1) as the class
prior probabilities, such that π+ + π− = 1. The
methods described in this section all assume the
proportion π+ to be known.

Binary classification aims to minimize the risk:

R(g) := E(x,y)∼p(x,y)[`(g(x), y)].

In supervised (positive and negative: PN) learn-
ing, both positive P := {xPi }n+ ∼ p+(x) and
negative N := {xNi }n− ∼ p−(x) samples are
available. The supervised classification risk can
be expressed as the partial class-specific risks:

R(g) = π+Ex∼p+(x)[`(g(x),+1)]

+ π−Ex∼p−(x)[`(g(x),−1)]. (1)

Notice that under the zero-one loss (`01), the risk
R(g) refers to π+ FN

FN+TP + π− FP
TN+FP . When

training, we use `sig which can be regarded as a
soft approximation of this formulation for back-
propagation. In practice, the expectations are ex-
pressed as the average of losses and optimized in
batched gradient-descent or similar methods.

2.2 Unbiased PU Learning (uPU)
We utilize the case-control variant of PU learn-
ing3 (Ward et al., 2009). Formally, unlabeled data
U := {xUi }nu ∼ p(x) is available instead of N , in
addition to P = {xPi }n+ ∼ p+(x) as before.

3In case-control PU learning, the positive and unlabeled
data are collected separately. There are other variants which
assume different distributions on the data.

In order to train a binary classifier from PU data,
we could naively train a classifier to separate pos-
itive from unlabeled samples. This approach will
result, of course, in a sub-optimal biased solution
since the unlabeled dataset contains both positive
and negative data. Du Plessis et al. (2015) pro-
posed the following unbiased risk estimator to train
a binary classifier from PU data.

Since

π−Ex∼p−(x)[f(x)] =

Ex∼p(x)[f(x)]− π+Ex∼p+(x)[f(x)],

we can substitute the negative-class expectation in
Equation (1):

RPU (g) := E(x,y)∼p(x,y)[`(g(x), y)] =

π+Ex∼p+(x)[`(g(x),+1)]

+ Ex∼p(x)[`(g(x),−1)]

− π+Ex∼p+(x)[`(g(x),−1)]. (2)

By empirically approximating this risk as an aver-
age of losses over our available dataset, we arrive
at an unbiased risk estimator that can be trained on
PU data, referred to as the uPU empirical risk.

Non-negative PU (nnPU). If the loss ` is always
positive, so should be the risk. However, Kiryo et al.
(2017) noted that by using stochastic batched opti-
mization, and specifically via very flexible models
(such as neural networks), the negative portion of
the uPU loss can eventually cause the loss to go
negative during training. To mitigate this overfit-
ting phenomenon, they proposed to encourage the
loss to stay positive by using gradient-ascent on
the negative portion (which replaces the negative-
class risk of the classification risk) when it becomes
negative. This method is referred to as nnPU.
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3 The PubMed Set Expansion Task

In this section we discuss the method of generating
an extensive benchmark for evaluating solutions of
MLT document set expansion.

We are inspired by the following scenario: A
user has a set of documents which all pertain to
a latent topic, and is interested in retrieving more
documents about that topic from a large collec-
tion. While traditional term-frequency-based IR
solutions scale well to extremely large collections
of documents, they are imprecise, and contain a
significant amount of noise. Therefore, an addi-
tional step based on PU learning can be utilized to
classify the output of the IR model, and improve
the results.

We are interested in gathering a task for evalu-
ation of the second step. In other words, given an
existing black-box IR solution, we would like to
use it to produce a dataset for training and evalu-
ation of models which should improve upon the
black-box IR solution’s performance.

Due to the varied nature of the setting, it is im-
practical to acquire full supervision for a large num-
ber of topics. Therefore, we propose to generate
synthetic tasks inspired by the real use-case appli-
cation.

3.1 Task Generation Method

We generate the document-set expansion tasks by
leveraging the expansive PubMed Database: A col-
lection of 29 million bio-medical academic papers.
Each document is labeled with MeSH tags, denot-
ing the subject of the document. A conjunction of
MeSH terms defines a fine-grained topic, which we
use to simulate a user’s information intent (example
conjunctions in Table 1).

The method of generating one task is then:

1. Input: T ← set of MeSH terms (the retrieval
topic); n+ ← number of labeled positive data;
IR, θT ← a black-box MLT IR engine, along
with query parameters.

2. LP ← n+ randomly selected papers that are
labeled with T .

3. U ← IR(LP; θT ).

For the tasks generated and utilized in this pa-
per, we have chosen MeSH sets manually, and
n+ ∈ {20, 50} (for the training set). For the MLT

IR engine we have used the Elasticsearch4 imple-
mentation of BM25. The top-{10000, 20000} scor-
ing documents are retrieved. We make use of the
abstracts of the PubMed papers only. See Appendix
A for exact details of our method, as well as a
comparison to an alternative method for generating
censoring PU (explained in the appendix) tasks.5.

We note that although in essence document set
expansion involves using U for both training and
evaluation (transductive case), we are interested in
the case where the PU model is able to generalize to
unseen data (inductive case). As a result, we split
the dataset [LP ;U ] into training, validation, and
test sets, where we use the validation set for hyper-
parameter tuning and early-stopping, and evaluate
on the test set using the true labels. In other words,
we assume a separate (from training) small PU set
is available for validation. In our experiments, the
size of the validation set is half of the size of the
training set. In a deployment setting, the PU model
can be used to label the training U data.

4 Experiment Details

The rest of this work will reference experiment
results. Unless otherwise noted, our base architec-
ture is a single-layer CNN (Kim, 2014). The choice
of CNN, over other recurrent-based or attention-
based models, is due to this architecture achieving
the best performance in our experiments. Test-set
performance is reported as an average over multiple
MeSH topics (as many as our resources allowed).
Except for the experiments that use pretrained mod-
els, the inputs are tokenized by words, and word
embeddings are randomly initialized and trained
with the model. More details are available in Ap-
pendix B. We stress that our intent in this work
is not to report the very best scores possible, but
rather to perform controlled experiments to test
hypotheses. To this end, many orthogonally bene-
ficial “tricks” in NLP literature were not utilized.
Additionally, nnPU-trained models generally re-
quired more diligent hyperparameter tuning due to
an additional two hyperparameters.

4https://www.elastic.co/
5The code for generating the tasks, and the data of our

generated tasks are available online at the aforementioned
repository. The uploaded dataset contains the paper abstracts.
The PubMed identifiers are also available in cases where addi-
tional information about each paper, such as the full text, can
be retrieved from PubMed if desired.



585

|LP | Prior Accuracy F1

20 π+ 84.27 0.0

20 0.5 62.09 33.26

50 π+ 81.71 0.0

50 0.5 59.92 37.36

Table 2: Experiments for the PU model, trained with
the nnPU loss with either the true class prior (optimiz-
ing for accuracy surrogate) or a prior of 0.5 (optimizing
for BER surrogate). Reported average across 10† top-
ics.

5 PU Learning for Document Set
Expansion

In PU classification literature, traditionally small
(and in many cases, linear) models have been used
on relatively simple tasks, such as CIFAR-10 and
20News. However, performance of existing meth-
ods does not scale well to very high-dimensional
inputs and state-of-the-art neural models for text
classification; applying the PU learning methods
described in Section 2 to a more practical setting
results in several critical challenges that must be
overcome—for example, PU learning methods of-
ten assume a known class prior, yet estimation of
the class prior, particularly for text, is hard and
inaccurate. In this section we discuss various chal-
lenges we have encountered in applying PU learn-
ing to the PubMed Set Expansion task, along with
proposed, empirically validated solutions.

5.1 Class Imbalance and Unknown Prior
(BER Optimization)

Due to the class imbalance (very small class prior),
the classification risk encourages the model to be
biased towards negative-class prediction (by prior-
itizing accuracy) in lieu of a model that achieves
worse accuracy but better F1. Thus, optimizing for
a metric that is similar to F1 or AUC is preferable.

Under a known class prior π+ assumption, Sakai
et al. (2018) derived a PU risk estimator for op-
timizing AUC directly. However, π+ cannot be
assumed to be known in practice. Furthermore, the
high dimensionality and lack of cluster assumption
in the input of our task makes estimation difficult
and noisy (Menon et al., 2015; Ramaswamy et al.,
2016; Jain et al., 2016; du Plessis et al., 2017).

Following this line of thought, we propose a sim-
ple solution to both problems: by assuming a prior
of π̂+ = 0.5 in the uPU loss regardless of the value

of the true prior, we are able to optimize a surrogate
loss for the Balanced Error (BER) metric6 (Broder-
sen et al., 2010). Effectively, the uPU loss we are
optimizing is:

RPU (g) =

1

2
Ex∼p+(x)[`(g(x),+1)− `(g(x),−1)]

+ Ex∼p(x)[`(g(x),−1)]. (3)

When using the zero-one loss (`01), the binary
classification risk is equivalent to BER, while BER
minimization is equivalent to AUC maximization:
AUC = 3

2 − 2BER (Menon et al., 2015). Since
back-propagation requires a surrogate loss in place
of `01, such as `sig, the BER and AUC metrics are
not inversely equivalent; However, we’ve found
BER optimization to perform well in practice.

Results. Table 2 shows a performance compari-
son in which the models trained using a prior of 0.5
achieved stronger F1 performance despite weaker
accuracy.

5.2 Small Batch Size (Proportional Batching)
The large memory requirements of state of the art
neural models such as Transformer (Vaswani et al.,
2017) and BERT (Devlin et al., 2018), as discussed
in the next subsection, coupled with the need to run
on GPU, restrict the batch sizes that can be used.

This presents a challenge: When the loss func-
tion is composed of losses for multiple classes,
when using stochastic batched optimization, each
batch should contain a proportionate amount of
data of each class relative to the entire dataset.
When the classes are greatly imbalanced, this im-
poses a lower-bound on the batch size when the
batch contains one positive example or more. For
example, for a dataset which contains 50 positive
and 10,000 unlabeled samples, each batch which
contains a positive sample must have 200 unlabeled
samples. In practice, we were limited to the vicin-
ity of 20 samples per batch when training large
Transformer models.

Using a smaller batch-size than the lower-bound
(in the case of the example, 20 as opposed to 201)

6Given a decision function g:

BER(g) =
1

2
(

FP

TN + FP
+

FN

FN + TP
)

R(g; `01) = π− FP

TN + FP
+ π+ FN

FN + TP
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implies that the vast majority of batches will not
have labeled positive samples. This result damages
performance in multiple ways. First, the model
may overfit to the unlabeled data: Since unlabeled
examples are treated as discounted negative exam-
ples by the uPU loss, the model will be encouraged
to predict the negative class due to an abundance
of batches that contain only the “negative” (in truth
unlabeled) class. Additionally, early-stopping may
be compromised due to the significantly smaller
loss in batches that contain only unlabeled data.

To solve these problems, we propose to increase
the sampling frequency of the positive class in-
versely to its frequency in the dataset. In practice,
this solution simply enforces each batch to have a
rounded-up proportion of its samples for each class.
In the example above, every batch with 20 samples
will have 1 positive and 19 unlabeled samples. As
we “run out” of positive samples before unlabeled
samples, we define an epoch as the a single loop
through the positive set.

The implication of increasing the sampling fre-
quency is essentially that the positive component
of the uPU loss receives a stronger weight. In our
running example, the sampling frequency was in-
creased ×10. For a sampling frequency increase
by an order of α, the uPU loss becomes:

R̀PU (g) =

απ+Ex∼p+(x)[`(g(x),+1)− `(g(x),−1)]

+ Ex∼p(x)[`(g(x),−1)]. (4)

This, intuitively, counter-acts the overfitting prob-
lem caused the abundance of stochastic update
steps of entirely unlabeled-class batches. The issue
of unstable validation uPU loss is solved as well,
since every batch must contain both positive and
unlabeled samples, by a ratio that is consistent be-
tween the training and validation sets (and thus the
validation uPU loss remains a reliable validation
metric).

The issue of overfitting in this case is derived
from a more general problem: Overfitting to the
“bigger” class in stochastic optimization of ex-
tremely imbalanced data, when the loss can be
decomposed into multiple components for each of
the classes (as is the case for cross-entropy loss,
as well). For this reason, our solution improves
ordinary imbalanced classification under batch size
restrictions, as well.

Results. Table 3 shows the effect of the increased
sampling frequency method in ordinary imbalanced

Setting Class Ratio Batch Size Proportional Batching F1

PN (P:N) 15:85
512 32.55

16 5.55

16 X 41.61

PU (LP:U) 2:100
512 22.77

16 0.0

16 X 22.35

Table 3: Evaluation for the sampling frequency in-
crease method for mitigating overfitting to the bigger
class in imbalanced classification with small batch size.
Results show that proportional batching dramatically
improves results under batch size constraints for both
ordinary supervision (PN) and PU settings.

binary classification, as well as in nnPU training.
In the small batch size experiments, the method
causes an increase in recall, showing that the model
is less inclined towards the “bigger” (in our case,
the negative) class. The results apply in both the
PN and PU settings, showing that proportional
batching can be beneficial to any imbalanced clas-
sification task under batch size restrictions.

5.3 Limited Data

A defining challenge of document set expansion
tasks, when observed through the lens of imbal-
anced classification, is the very small class prior
and small amount of labeled positive data. Al-
though BER optimization mitigates the issue of the
class imbalance, the issue of very little labeled data
remains. To this end, we investigate pretraining as
a solution.

We utilize SciBERT (Beltagy et al., 2019) for
pretrained contextual embeddings in the PubMed
domain. For PubMed abstracts that go above the
512 word-piece limit of SciBERT, we utilize a
sliding-window approach that averages all embed-
dings for a word-piece that appeared in multiple
windows.

Results. Utilizing SciBERT embeddings has
yielded an increase of F1 performance from 25.75
to 29.96 as an average of five topics.

6 Effectiveness of PU Learning

In this section we evaluate the viability of our pro-
posed solution. All experiments in this section use
BER optimization and proportional batching (Sec-
tion 5), but no pre-trained embeddings. We refer to
our proposed method as BM25+nnPU where the
IR solution BM25 selects the unlabeled dataset for
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the PU solution, a CNN model with the nnPU loss.
As an anchor for comparison, we use the follow-

ing reference: Upper-bound: An identical model,
trained on the same training data with full super-
vision using the true labels. This reference can be
regarded as the upper-bound performance in the
ideal case.

We directly compare against the current
commonly-used and best-performing solution as
IR (BM25)7: The top-k documents of the IR en-
gine’s output, for k ∈ {i}5000i=|LP |, are selected as
positive documents, while the rest are treated as
negative. F1 mean and standard deviation are re-
ported across k. This strong baseline serves as a
reference to the state-of-the-art.

We additionally compare against standard DSE
baselines All + (all positive): Classifying all sam-
ples as the positive class; and Naive: Supervised
learning between the labeled positive set (as P) and
the unlabeled set (as N).

Finally, we compare against two additional base-
lines with the aim of validating the beneficial syn-
ergy between the IR step and the PU step. In the
Rand+PU baseline, we replace the IR step with a
random selection of U data. In the BM25+COPK
baseline, we replace the PU step with a Constrained
K-means Clustering (Wagstaff et al., 2001) solu-
tion, where we perform k-means clustering, k = 2,
under the constraint that all LP examples must be
in the same cluster. To represent examples in em-
bedding space for k-means, we encode the text with
SciBERT. Additional details of constrained cluster-
ing as a replacement to PU learning are discussed
in Appendix C.

The IR baseline is the main alternative to our
approach. The all-positive and naive baselines are
very simplistic “lower-bound” models to be com-
pared against, while the other two-step baselines
evaluate the IR or PU steps separately, providing
further justification to using the IR and PU solu-
tions together.

Experiments in Table 1 show a significant in-
crease in F1 performance as an average across
many topics, against all baselines.

An interesting experiment in Figure 1 shows the
performance of the IR and PU models normalized
by the performance of the upper-bound, as a func-
tion of the amount of labeled data. The reported

7We note that the comparison here should be made to the
specific IR engine which resulted in the dataset of the PU
model, as the PU model benefits greatly from better perfor-
mance in the IR engine.

0 500 1000 1500 2000
# of labeled samples

0.1

0.2

0.3

F1
 d

ist
an

ce

PU vs PN, IR vs PN performance by |LP|

vs PU
vs IR

Figure 1: The F1 absolute difference, normalized by
the sum of the two F1 scores, between the upper-bound
and nnPU as a function of the amount of labeled posi-
tive samples, as well as between the IR top-k baseline
(mean and standard deviation) and the upper-bound.
Numbers are the average of five topics.

values are the distance of F1 scores between each
respective model with the upper-bound, normal-
ized by the sum of scores. The figure shows that
as more labeled data is added, the PU model (in
truth IR+PU) increases in performance at a rate
that is higher than the performance increase of the
upper-bound. In comparison, the IR model im-
provement stays relatively constant beyond 300
labeled samples, while the upper-bound continues
to increase, causing the disparity between them
to grow. This experiment shows that the IR+PU
system scales well with increase in LP data, in-
creasing performance at a stronger pace than
the fully-supervised reference, while the IR solu-
tion scales poorly.

7 Using Negative Data

The document set expansion scenario may allow
for cases where a limited amount of negative data
can be collected. For example, the user may pos-
sess some number of relevant negative documents
which were acquired alongside the positive docu-
ments, prior to training; alternatively, the user may
label some documents from the model’s output as
they appear. Therefore, it is of interest to augment
the task with biased labeled negative data—i.e.,
negative documents which were not sampled from
the true negative distribution, but were selected
with some bias, such as their length, popularity (for
example, the number of citations), or their place-
ment within the IR engine’s rankings. We consider
a bias from document character length, randomly
sampling abstracts that are below a certain amount
of characters. Alternative bias methods are dis-
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Setting Precision Recall F1

PU 29.35 71.83 40.78

PN (unbiased N) 33.83 70.40 42.14

PN (biased N) 19.34 90.62 31.29

Table 4: Experiments for five topics. All experiments
used |LP | = 50, |N | = 50 for training and |LP | = 25,
|N | = 25 for validation (as well asU in the PU setting).

Setting Model (a) Unbiased N F1 (b) Biased N F1

PNU Ensemble (PN+PU 1+1) 42.31 37.63

PNU Multi-task 41.50 41.48

PU Ensemble (3) 41.25

Table 5: Average performance of the same five topics as
in Table 4. All experiments used |LP | = 50, |N | = 50
for training and |LP | = 25, |N | = 25 for validation
(as well as U ). Bias selection for N was performed by
character length. “Multi-task” refers to Equation (5).

cussed in Appendix A.

PNU Learning. When it is possible to obtain
negative data in limited capacity, it can be incorpo-
rated in training. When the negative data is sampled
simply from p−(x), i.e., it is unbiased negative
data, it is possible to use PNU classification (Sakai
et al., 2017), which is a linear combination of R(g)
and RPU (g):

RPNU (g) := γR(g) + (1− γ)RPU (g). (5)

We note that to our knowledge, PNU learning
has not yet been successfully applied to deep mod-
els prior to this work. We apply the same solution
to the case of biased negative samples. Our PNU
experiments include Proportional Batching to over-
come the extreme class imbalance.

Results. Tables 4 and 5 summarize the results of
PNU learning for the biased and unbiased settings.
We observe that performance improves with unbi-
ased negative samples, but does not improve with
negative documents selected with bias to shorter
documents. In the unbiased case, a simple ensem-
ble of PN and PU models out-performs PNU learn-
ing, and we verify that the ensembling is not the
sole cause of the performance increase by noting
that the PN and PU ensemble out-performs a 3-
model PU ensemble. In the biased case, the perfor-
mance of the PN model is severely lower than the
PU model, and in this case indeed the PNU model
slightly out-performs the PN and PU ensemble.

8 Related Work

Linear PU models have been extensively used for
text classification (Liu et al., 2004; Yu et al., 2005;
Cong et al., 2004; Li and Liu, 2005) by using EM
and SVM algorithms. Particularly, the 20News cor-
pus has been often leveraged to build PU tasks for
evaluation of those models (Lee and Liu, 2003; Li
et al., 2007). Li et al. (2010b) have evaluated EM-
based PU models against distributional similarity
for entity set expansion. Li et al. (2010a) proposed
that PU learning may out-perform PN when only
the negative data’s distribution significantly differs
between training and deployment.

du Plessis et al. (2017); Kato et al. (2018) de-
scribe methods of estimating the class prior from
PU data under some distributional assumptions.
Hsieh et al. (2018) introduced PUbN as another
PU-based loss for learning with biased negatives.
PUbN involves two steps, where the marginal prob-
ability of a sample to be labeled (positive/negative)
is estimated using a neural model, and then used.
In our experiments, PUbN has consistently over-
fit to the majority baseline. We suspect that this
is a result from noisy estimation of the labeling
probability due to the difficulty of the task.

9 Conclusion

We propose a two-stage solution to document set
expansion—the task of retrieving documents from
a large collection based on a small set of docu-
ments pertaining to a latent fine-grained topic—as
a method of improving and expanding upon current
IR solutions, by training a PU model on the output
of a black-box IR engine. In order to accurately
evaluate this method, we synthetically generated
tasks by leveraging PubMed MeSH term conjunc-
tions to denote latent topics. Finally, we discuss
challenges in applying PU learning to this task,
namely an unknown class prior, extremely imbal-
anced data and batch size restrictions, propose so-
lutions (one of which—“Proportional Batching”—
applies in the general scope of PN imbalanced
classification, as we empirically validate), and pro-
vide empirical evaluation against multiple baselines
which showcase the effectiveness of the approach.

Future Work. Stronger class prior estimation,
through additional task assumptions, may facilitate
direct AUC optimization. Additionally, methods
of increasing precision may be considered (such as
data augmentation or adversarial training).
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A PubMed Set Expansion Task
Generation

In this section we discuss details of the PubMed
Set Expansion task generation process.

Parameters. For this work, we have indexed the
January 2019 version of PubMed in an Elastic-
search ver-6.5.4 index. We discard all papers in
PubMed that do not have MeSH terms or abstracts
(of which there are few). The title and abstract of
each paper are tokenized using the Elasticsearch
English tokenizer, with term vectors. The title re-
ceives a 2.0 score boost during retrieval. For re-
trieval, we use the Elasticsearch “More Like This”
query with the default implementation of BM25,
and a “minimum should match” parameter of 20%,
indicating that papers that do not share a 20% over-
lap of terms with the query are dropped. This pa-
rameter was controlled in the interest of efficiency,
as the query is otherwise very slow.

Table 6 contains statistics about sample topics.

Topic |LP | |U | Precision Recall

Liver + Rats, Inbred Strains + Rats
20 10,000 17.45 15.59
50 10,000 16.55 14.82

Adult + Middle-Aged + HIV Infections
20 20,000 18.33 20.06
50 20,000 25.42 27.85

Table 6: Dataset sizes for two example PubMed Set Ex-
pansion tasks based on the given topics, each composed
of three MeSH terms. The reported sizes are for the
training set. Precision denotes the proportion of P sam-
ples in U, and recall denotes the proportion of retrieved
P samples from all positive documents in PubMed.

Censoring PU learning. An alternative, easier,
scenario for the Document Set Expansion task in-
volves the case where the LP data was sampled and
labeled from the U distribution, termed censoring
PU learning. To model this case, the task can be
generated in the following way:

1. Input: T ← set of MeSH terms (the retrieval
topic); n+ ← number of labeled positive data;
IR, θT ← a black-box MLT IR engine, along
with query parameters.

2. P ← All papers that are labeled with T .

3. N ← IR(P ; θT )

4. LP ← n+ randomly selected papers in P.

5. U ← [P − LP ;N ]

Figure 2: Two histograms of U positive and negative
documents respectively by their BM25 score. The hor-
izontal axis denotes buckets of BM25 scores, and the
vertical axis is the amount of samples in that bucket.

Experimentally, the F1 performance of all the mod-
els (PU and PN) was greatly increased for this
setting, in comparison to the case-control tasks de-
scribed in the main work. All methods discussed
in this work apply to the censoring setting, as it is
a special case of case-control.

Bias. It is possible to simulate bias in the sam-
pling of documents according to many heuristics
and assumptions. For example, it may be assumed
that the user is more likely to label documents that
are shorter, or documents that are more famous (as
indicated by amount of citations in PubMed). Ad-
ditional possible conditions include the ranking of
the IR engine in two possible ways: 1. The user
may submit labels after the IR query while viewing
the results. In this case, the user is more likely to la-
bel documents that are ranked higher; 2. In the case
of an IR engine modeled by bag-of-words (such as
BM25), documents that rank lower can be assumed
to possess less relevant vocabulary overlap with the
positive class, such that they may be easier to label
at a glance. Figure 2 shows a typical distribution of
class according to the rank of BM25 for a sample
task of PubMed Set Expansion.

B Experiment Details

The experiments were implemented in PyTorch
version 1.0.1.post2, AllenNLP version 0.8.3-
unreleased. The neural models used a CNN en-
coder with max-pooling, with 100 filters for the
title and 200 filters for the abstract, split evenly
between window sizes of 3 and 5. The choice
of CNN (over other recurrent-based or attention-
based models) is due to this architecture achieving
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the best performance in practice. For the SciBERT
contextual embeddings, SciBERT-base was used.
The learning rate for the model with no pretrain-
ing used is 0.001, while the learning rate for the
SciBERT model is 0.00005. The nnPU parameters
β, γ were set to 0 and tuned over the validation
set loss, respectively. In all cases of nnPU training
we used the biggest batch-size possible, which was
1000 for the CNN model with no pretraining, and
between 16 to 25 for the SciBERT model. In the
case of the SciBERT model, we’ve ignored training
and validation samples longer than 600 words, tok-
enized by the AllenNLP default implementation of
WordTokenizer, to avoid long outliers which
greatly limit the batch size. This was not performed
on the test set to maintain an unbiased comparison.

B.1 Experiment Topics
The topics were chosen by a policy of related
triplets, such that they could conceivably (though
loosely) be relevant searches in practice, by sam-
pling and filtering from MeSH triplets that they
occur together in PubMed on an order of hundreds,
thousands or tens of thousands. The topics were
chosen without knowledge of any experiment re-
sults related to them, such that they were not picked
to achieve a particular outcome.

(†)

1. Animals + Brain + Rats.

2. Adult + Middle Aged + HIV Infections.

3. Lymphatic Metastasis + Middle Aged + Neo-
plasm Staging.

4. Base Sequence + Molecular Sequence Data +
Promoter Regions, Genetic.

5. Renal Dialysis + Kidney Failure, Chronic +
Middle Aged.

6. Aged + Middle Aged + Laparoscopy.

7. Apoptosis + Cell Line, Tumor + Cell Prolifer-
ation.

8. Disease Models, Animal + Rats, Sprague-
Dawley + Rats.

9. Liver + Rats, Inbred Strains + Rats.

10. Dose-Response Relationship, Drug + Rats,
Sprague-Dawley + Rats.

(‡)

1. Female + Infant, Newborn + Pregnancy.

2. Molecular Sequence Data + Phylogeny + Se-
quence Alignment.

3. Cells, Cultured + Mice, Inbred C57BL +
Mice.

4. Dose-Response Relationship, Drug + Rats,
Sprague-Dawley + Rats.

5. Brain + Magnetic Resonance Imaging + Mid-
dle Aged.

C Constrained Clustering for PU
Learning

Unfortunately, we are not aware of many compet-
itive alternative solutions to nnPU that interface
with only positive and unlabeled data. One such
a solution is constrained clustering, or clustering
under constraints of prior knowledge on which ex-
amples should belong in the same cluster, or which
examples should not belong in the same cluster.

Constrained clustering can be reduced to a PU
problem in the following way: Given LP and U
data, we perform clustering under constraints that
all of the examples in LP must belong in the same
cluster. If N data is available, we may constrain
all N data to be in the same cluster, as well, and
that LP and N examples may not be in the same
cluster. If the algorithm allows a parameterization
of the number of clusters, such as COP-Kmeans
(Wagstaff et al., 2001), we may specify this number
to be 2. Otherwise, all clusters that do not contain
the LP examples can be selected as clusters of N ,
and the cluster that contains the LP examples shall
be selected as P .

In this way, we achieve a reduction from the con-
strained clustering problem to a PU problem, al-
lowing it to serve as a replacement to nnPU. While
we are not aware of other work which made this
reduction or comparison between constrained clus-
tering and PU learning, in our experiments we note
that nnPU has achieved stronger performance and
scalability in large data.


