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Abstract

The advent of neural-networks in NLP brought
with it substantial improvements in supervised
relation extraction. However, obtaining a suffi-
cient quantity of training data remains a key
challenge. In this work we propose a pro-
cess for bootstrapping training datasets which
can be performed quickly by non-NLP-experts.
We take advantage of search engines over
syntactic-graphs (Such as Shlain et al. (2020))
which expose a friendly by-example syntax.
We use these to obtain positive examples by
searching for sentences that are syntactically
similar to user input examples. We apply this
technique to relations from TACRED and Do-
cRED and show that the resulting models are
competitive with models trained on manually
annotated data and on data obtained from dis-
tant supervision. The models also outperform
models trained using NLG data augmentation
techniques. Extending the search-based ap-
proach with the NLG method further improves
the results.

1 Introduction

The goal of Relation Extraction (RE) is to find
and classify instances of certain relations in raw
text. We denote a binary relation instance, i.e. a
relation instance with two arguments, with a tu-
ple x = (s, e1, e2, r), where s = [w0 · · ·wn] is a
sequence of sentence tokens, e1, e2 are entity men-
tions within s corresponding to the first and second
relation argument, respectively, and r ∈ R ∪ {∅}
is a relation label from a set of predefined relations
of interest, or an indication of ‘no-relation’. In bi-
nary classification our goal is to classify whether,
according to s, the entity mentions, e1 and e2, sat-
isfy r, the relation label. For such classification we
require a training dataset X , comprised of Xp, a
set of positive examples, representing the relation
of interest, and Xn, a set of negatives examples.

The success of recent papers (Soares et al., 2019;
Murty et al., 2020) in supervised RE is fueled by ad-
vances in deep learning, but also, crucially, by the
availability of a large training set such as TACRED
(Zhang et al., 2017), containing tens of thousands
of training examples. For most relations of interest,
such training data is not available.

In this work we examine methods to inexpen-
sively construct Xp and Xn, in cases where a
training set is not available. We are especially
interested in constructing the positive set, Xp.

In contrast to common NLP tasks like POS tag-
ging, entity extraction and dependency parsing, the
task of relation extraction exhibits a much larger
degree of label sparsity. For some relations, even
when considering only sentences with entities of
the relevant types, the ratio between positive and
negative examples is highly skewed toward the lat-
ter and obtaining a modest amount of positive ex-
amples will require a laborious annotation effort
(see §3). While manual annotation of large datasets
is a viable approach, it typically requires contract-
ing a team of professional annotators (Doddington
et al., 2004; Ellis et al., 2015) or crowd workers
(Zhang et al., 2017; Yao et al., 2019) and is not well
suited for smaller projects or for ad-hoc extraction
tasks.

Our main contribution in this paper is a new
methodology built on top of Shlain et al. (2020)
for cheaply obtaining large datasets (§6). Shlain
et al. (2020) proposed a syntactic search engine
that given a lightly annotated example sentence,
retrieves new sentences with a similar syntactic
structure from a pre-annotated dataset. Our syntac-
tic search bootstrapping method requires a small
number of manually curated positive example sen-
tences. Then the search engine matches are used
as training data for ML models. We evaluate this
approach comparing to human annotated data of
varying sizes.
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While this method shows promising results with
very few user input examples, we also test the im-
pact on performance when more examples are used.
One technique for obtaining an abundance of ex-
amples uses recent Natural Language Generation
(NLG) models (§7.1). It has been shown in recent
papers (Wei and Zou, 2019; Anaby-Tavor et al.,
2019; Kumar et al., 2020; Amin-Nejad et al., 2020;
Russo et al., 2020) that generating abundance of
training examples can improve classifier perfor-
mance. We aim to check whether this can improve
our syntactic search method as well.

We evaluate the proposed methodologies by
training DL classifiers on the obtained data.

We show that: (1) Syntactic patterns are com-
petitive at bootstrapping training data for ML, even
with as little as 3 patterns;
(2) Training DL models over the output of syntac-
tic patterns can significantly improve both recall
and F1 over a rule based approach which uses the
patterns directly;
(3) Training ML models over the output of syntac-
tic patterns performs better than training models
over recently popular NLG data augmentation tech-
niques;
(4) Augmenting the output of syntactic patterns us-
ing NLG techniques is often helpful;
(5) Different relations benefit from different strate-
gies.

The code for all our experiments alongside the
generation outputs is publicly available1.

2 Related Work

Distant Supervision. Since its introduction, Dis-
tant Supervision (Mintz et al., 2009) has established
itself as a viable alternative to manual annotation.
Distant Supervision assumes the availability of a
knowledge base (KB) of 〈e1, r, e2〉 triplets where
e1, e2 are entities known to satisfy relation r. To ob-
tain training examples for a relation r, we sample
sentences from a large background corpus: sen-
tences which include entity pairs listed in the KB
as satisfying r are labeled positive, the remaining
sentences are labeled negative (potentially after sat-
isfying additional constraints). While effective in
some cases, the reliance on large pre-existing KBs
is a significant limitation. Such KBs are not usually
available and the cost of constructing them is high.
Bootstrapping from Rules, Snorkel. To elimi-

1github.com/mataney/BootstrappingRelationExtractors

nate the reliance on external KBs, Angeli et al.
(2015) used the predictions of a rule based extrac-
tor on a large corpus to train a first iteration of a
statistical extractor. They then continued to refine
the extractor through self-training.

Another system which can optionally utilize
rules instead of external KBs is Snorkel (Ratner
et al., 2017). Snorkel is implementing the data-
programming paradigm (Ratner et al., 2016) where
ML models are trained in three stages: (i) users
write labeling functions that weakly label data
points using arbitrary heuristics (e.g. extraction
rules); (ii) the system learns a re-weighted combi-
nation of the labeling functions by explicitly model-
ing the actual distribution of each class. The results
are often precise but low-recall; and (iii) The sys-
tem uses discriminative models to increase recall
while preserving precision.

The techniques used by Angeli et al. (2015) and
Snorkel can be effective in increasing the accu-
racy of the initial labeling rules, but coming up
with “good enough" initial rules remains a major
challenge. In this sense, the search-based meth-
ods suggested in this work for bootstrapping RE
datasets are complimentary and can be plugged in
as a first step in these multi-step solutions.

Only few papers can be directly compared to our
paper and use matches as training-data for ML clas-
sifiers. One paper similar in that sense is Angeli
et al. (2013) which claims that training a classi-
fier using search-based examples works better than
traditional bootstrapping methods. See §6.2 for
further compression with Angeli et al. (2013).
Augmentation Through Generation. Similarly
to our Example Generation approach, recent pa-
pers (Anaby-Tavor et al., 2019; Kumar et al., 2020)
suggest using pre-trained language models for data
augmentation. In both these papers, the authors
suggest prepending class labels to generative mod-
els in order to augment the number of instances
for classes with a small number of examples. In
contrast to these papers we use language models in
a zero-shot context, and rather than requiring exist-
ing labeled examples of the relevant relation, we
propose to manually label the generated samples.

3 The data annotation challenge

In contrast to linguistic annotation tasks such as
parts-of-speech, syntactic-trees or semantic roles,
annotating data for relation-extraction does not re-
quire special expertise. Annotation can be easily

https://www.github.com/mataney/BootstrappingRelationExtractors
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performed by a motivated native speaker of the
language (in case of "every-day" relations such as
those available in TACRED and DocRED) or by
a domain expert (in case of "specialized" relations
such as in biomedicine or law). Annotating a given
sentence for a given relation takes roughly the time
it takes to read and understand the sentence. So
what stops us from obtaining large amounts of an-
notated data for ML?

The annotation challenge lies in relation sparsity
in the wild. In an attempt to get a perspective on
this issue, let’s consider the founded-by relation
between a PERSON and an ORG, as attested in
the TACRED corpus. Assuming we consider only
sentences that contain both a person mention and
an organization mention, how many sentences do
we have to annotate before we reach, for exam-
ple, 10 positive examples? The TACRED training
set has 124 founded-by instances, as well as 6947
"negative" instances with matching entity types
("negative" examples are either other relations, or
no-relation). This 1-out-of-57 ratio indicates that
we will likely sample 56 "negative" sentences be-
fore hitting a positive instance.2 This ratio is overly
optimistic, as the annotations in the TACRED cor-
pus are already very skewed in favor of positive
examples. Even under this very optimistic scenario,
we will need to annotate 570 sentences to recover
10 positive examples. The cost of annotation, then,
is not in annotating each individual positive sen-
tence, but in finding the sentences to annotate in the
first place. Therefore, we should seek for methods
that point towards probable positive instances.

In this paper, we present two methods, the first
returns close to 1-out-of-1 positive ratio, although
with low syntactic diversity, and a second method
with roughly 1-out-of-3 positive ratio.

4 Problem Statement and Setup

We are interested in the problem of obtaining a
relation classifier for a binary relation, when no
a-priori annotated training data for this relation is
available. We seek a methodology that will allow
to create an effective extractor, using a minimal
amount of data annotation effort.

We compare four approaches – manual anno-
tation, syntactic-search, manual annotation over
generated examples, and a combination of the last
two – to be described in later sections. Here, we

2See Appendix A for similar distributions over all rela-
tions.

discuss setup which is shared to all experiments.
In order to evaluate the methodology on multiple

datasets with similar relations, we chose a set of re-
lations that appear in both the TACRED (Zhang
et al., 2017) and DocRED (Yao et al., 2019)
datasets with at least 50 development examples3.

To quantify the performance of our methodology
we assess it comparing to varying amounts of man-
ually annotated data. In our settings, large amounts
of supervised examples represent upper bound for
our bootstrapping methods and are not expected.

While relation extraction is often considered as
a multi-class classification problem (“find the oc-
currences of any of these possible relations”), we
instead treat the relations separately, training a bi-
nary classifier for each one. We believe this is more
representative of a user who wishes to target a low
number of relations, who is likely to conduct data
collection and evaluation for one relation at a time.

Obtaining Negative Examples When training a
binary classifier, it is required to include a set of
negative examples alongside the list of positive ex-
amples. In all our experiments we obtain negative
examples by looking for sentences that contain en-
tity types that are compatible with the relation (i.e,
for the founded-by relation we sample sentences
that include both a PERSON and an ORG). In our
syntactic based methods we sample from the same
domain as our positive examples (Wikipedia) and
then filter this list by removing sentences in which
the entities are connected by a syntactic pattern
which is attested by the positive examples. For the
supervised baselines of various sizes, we obtain
negative examples by sampling them from the an-
notated training set, without replacement.4

Datasets We used two datasets to explore our dif-
ferent methods. TACRED (Zhang et al., 2017), a
large-scale multi-class relation extraction dataset
built over newswire and web text. And Do-
cRED (Yao et al., 2019), a dataset for document
level RE, and similarly designed for multi-class
prediction. Per our setup above, we changed the
setting of both datasets to per relation binary classi-

3org:country of headquarters, org:founded by,
per:children, per:city of death, per:date of death, per:origin,
per:religion, per:spouse for TACRED, and similarly head-
quarters location, founded by, child, place of death, date of
death, country of origin, religion, spouse for DocRED.

4The positive to negative ratio in training data has an
effect on the resulting model’s quality. We experimented with
positive-to-negative ratios of 1, 5, 10 and 20, as well as with
a “match the dev-set” ratio. We found a ratio of 10 negative
examples for each positive sentence to performs well.
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fication. As our main goal in this paper is to evalu-
ate different bootstrapping methods, and not novel
methods for document-level relation extraction, we
chose to include only instances with single sup-
porting sentence in DocRED (i.e. sentence level
relations). As DocRED’s labelled test set is not
publicly available, we used the development set as
our test set and used 20% of the train set as devel-
opment set.

Models Our classifiers throughout the following
experiments are based on the Entity Markers ar-
chitecture (Soares et al., 2019). In the paper, the
authors proposed wrapping the relation arguments
with marker tokens (e.g. [E1start] John [E1end]
was born in [E2start] 1948 [E2end]). The altered
text is then passed as input to a BERT model (De-
vlin et al., 2018) where the relation between the
two entities is represented by the concatenation of
the final hidden states corresponding to their re-
spective start tokens. Finally, this representation
is fed into a classification head and the model is
fine-tuned for relation classification. cf. (Soares
et al., 2019) for more details. We use a similar
model with the exception that we use a more recent
pretrained language model, RoBERTa (Liu et al.,
2019), and perform binary, rather than multi-class,
classification.

In all of the following experiments we trained
our model with 3 different random seeds to lower
variance introduced to the model with different ini-
tializations, and report the average score. At infer-
ence time we set the prediction threshold value for
the test set to be the cut-off value that maximized
F1 over the development set.

5 Manual Annotation Baseline

Setup. Our comparison point throughout the paper
is a model trained on traditionally-collected anno-
tated data. We sample increasing-sized annotated
sets from TACRED and DocRED, containing 55,
110, 220, 550, and 1100 examples. These corre-
spond to 5, 10, 20, 50, 100 positive examples with
50, 100, 200, 500, 1,000 negatives examples. Ad-
ditionally, we measure the performance on these
datasets when using all available positive examples
for each relation.
Results Listed in the top rows of Table 1, averaged
over all relations. Unsurprisingly, increasing the
number of examples increases performance, with
the exception of DocRED on which using all posi-
tive labels performs slightly worse than using 100
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e1:[e=PER]Paul $founded e2:[e=ORG]Microsoft in 1975 

Figure 1: Flow of the Syntactic Search by Exam-
ple method. For details, see §6.

sampled positive examples for each relation, we at-
tribute this to sampling noise. DocRED scores are
generally lower than TACRED scores. This is be-
cause of the way we constructed the development
and test sets: while in TACRED’s development set
each sentence includes a single entity pair with a
single relation, in DocRED, we pass all possible
sentences with entity pairs of the same type as the
evaluated relation as possible candidates. This dra-
matically increases the number of candidates, and
by that of possible type I errors. Moreover, as we
included only examples with exactly one support-
ing sentence, the number of positive examples is
low for some of the relations. All of this effects Do-
cRED classification scores comparing to TACRED.

Importantly, in all these experiments, the number
of annotated examples used is significantly higher
than the number used in our Syntactic Search ex-
periments (3 examples in total).

6 Syntactic Search by Example

We consider this section to be the main contribution
of the work. We show that:
(i) with modern DL modeling, effective relation
extractors can be trained using sentences derived
from less than a handful of syntactic patterns; and
(ii) through the use of by-example syntactic search
engines, one can construct these patterns very
quickly, without needing to understand syntax.

To explain the suggested workflow, let’s con-
sider a user who wants to train a relation extrac-
tion binary classifier for the founded by relation,
and has a single example sentence, “Paul founded
Microsoft in April 1975”. Patterns over syntactic
structures and entity types are very effective for
deriving high-precision extraction templates. For
example, searching for sentences containing the
word “founded” with an nsubj dependency of type
PERSON and dobj dependency of type ORG, will
return many matches for the founded-by relations.
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Method TACRED DocRED
Annotated 5+50 0.097 0.140
Annotated 10+100 0.136 0.215
Annotated 20+200 0.266 0.271
Annotated 50+500 0.458 0.311
Annotated 100+1000 0.516 0.321
Annotated All 0.569 0.306
Pattern Based RE (3 qrs) 0.128 -
Synt. Search (3 queries) 0.443 0.266
Example Generation 0.439 0.109
Search + Generation 0.491 0.277

Table 1: Average test F1 score over all relations. Pat-
tern Based RE was given 3 positive patterns. Synt.
Search is trained on data created from same 3 patterns.
The Annotated experiments are denoted by the number
of positive examples + negative examples.

There are two issues with this approach (1) while
high-precision, the recall of the patterns is low; and
(2) syntactic patterns require both linguistic and
computational expertise to specify and execute.

The premise of this paper is that the low recall
can be offset by machine learning. The sentences
resulting from syntactic search over a few patterns
are diverse enough that an ML model trained over
them manages to generalize from the specific syn-
tactic pattern and identify a broader range of cases,
increasing recall substantially. We show this is
indeed the case.

To overcome the need for linguistic expertise we
propose using a by-example syntactic search en-
gine (Shlain et al., 2020)5 which allows users to ex-
ecute syntactic queries based on example sentences:
the user enters a sentence satisfying the relation of
interest and annotates it with light markup indi-
cating the arguments and the trigger words. The
system then automatically translates the markup
into a syntactic pattern, matches it against a large
pre-annotated corpus (e.g. all Wikipedia sentences),
and returns results. The user does not need to be fa-
miliar with syntactic formalisms or with advanced
NLP.

6.1 By-example Patterns for Collecting
Training Data

Fig. 1 demonstrates the user process. Starting with
the sentence Paul founded Microsoft in April 1975,
the user marks Paul as e1 (e1:) with an entity-type
restriction of PERSON ([e=PER]), Microsoft as
e2 (e2:) with an entity-type ORG ([e=ORG]),
and founded as a trigger word ($founded). The

5https://spike.apps.allenai.org

SPIKE system translates the query into a syntactic
graph, which is then matched against Wikipedia,
returning 11,345 sentences matching the pattern
(note that the word ‘founded’ is matched lexically,
while Paul and Microsoft become place holders for
any person and any organization that adhere to the
syntactic configuration). A subset of the returned
sentences is then used as positive examples for
model training.

While 11,345 cases make an impressive training
set, these sentences share the same core syntac-
tic configuration, and classifiers, trained on these
matches, will not necessarily generalize well. The
matches will also share the exact same lexical pred-
icate (“founded”). The lack of lexical diversity
of the predicate can be expanded by the user by
supplying alternative words, perhaps aided by dis-
tributional similarity methods such as word2vec,
or by querying a bi-LM such as BERT (Devlin
et al., 2018) (§6.2.1). To counter the lack of struc-
tural diversity the user can supply additional pat-
terns, derived from example sentences. For ex-
ample, the user may supply also ‘[e2Microsoft]’s
founder [e1Paul]’ (possessive construction) and
‘[e2Microsoft] was founded by [e1Paul]’ (passive)
as additional patterns (§6.2).

6.2 Experiments and Results

Setup For each relation, we select 3 representative
sentences and annotate them based on the process
described above6. We do not perform any lexical
expansion of trigger words beyond the initial pat-
tern at this point. The queries are processed by
SPIKE (Shlain et al., 2020) and the results are used
as positive instances in the generated training set.
A full list of the SPIKE queries we used can be
found in appendix D, Table 5.

We also compare the TACRED classifier to a rule
based extractor which uses the syntactic queries di-
rectly. Each syntactic query is added as a syntactic
pattern to this extractor: any sentence which sat-
isfies one of the syntactic patterns is labeled as a
positive instance; sentences which do not satisfy
any of the patterns are labeled negative.
Results Listed in the Synt. Search and Pattern

6In this experiment, the selection of representative sen-
tences is based on a heuristic process: we intuitively conceive
of basic sentences exemplifying the relation, construct the cor-
responding Spike queries and briefly validate the number and
quality of the returned results. We limit the number of seed
examples to 3 since we believe coming up with 3 examples
should be simple even for non-experts. In §7.1 we show that
using more seed examples can further improve performance.

https://spike.apps.allenai.org
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Dataset Predicates 100 500 1000

TACRED
One Trig. 0.487 0.459 0.461
Trig. List 0.517 0.490 0.478

DocRED
One Trig. 0.290 0.336 0.338
Trig. List 0.316 0.338 0.337

Table 2: F1 scores for founded by, child, place of death
and date of death and spouse when expanding the trig-
gers list for the Syntactic Search “by Example" method.

Based RE rows of Table 17, Pattern Based RE, us-
ing just the 3 patterns per relation, achieves a very
low F-score of 12.8%, due to low recall. How-
ever, this is already competitive with training a
classifier on 5-10 positive examples per relation.
Training a classifier on the extracted relations in-
creases the scores significantly, to 44.3F1 on TA-
CRED and 26.6F1 on DocRED, approaching su-
pervised training on 50+500 annotations (for TA-
CRED) or 20+200 annotations (for DocRED). This
result demonstrates that training an ML model over
the output of a rule based model can significantly
improve performance, echoing similar conclusions
in Angeli et al. (2013). Interestingly, Angeli et al.
(2013) used a total of 4,697 patterns across 41 rela-
tions, an average of 114 patterns per relation. We
demonstrate that by applying syntactic patterns to
a large corpus and using modern DL classifiers, re-
sults competitive with manual annotation baselines
can be reached with as few as 3 syntactic rules.

6.2.1 Syntactic Search with Trigger
Expansion

Setup Constructing queries from 3 seed sentences
produces retrieved sentences with low lexical diver-
sity. e.g. if all the seed sentences for founded-by
use the word “founded” to express the relation,
then all retrieved sentences will likewise include
the word “founded”, and exclude alternatives like
“established”, “formed”, “started”, etc.

In this experiment we generalize the seed queries
to allow a list of trigger words rather than a single
word. We consider only relations which include
a lexical trigger in their seed patterns8. Alterna-
tive triggers are selected by reviewing the closest
words to the original triggers in word2vec’s em-
bedding space (Mikolov et al., 2013). Appendix

7Results correspond to 100+1,000 (TACRED) and
1,000+10,000 (DocRED) examples, for results and discus-
sions of different dataset sizes, see Appendix B.

8per:children, per:date of death, org:founded by, per:city
of death and per:spouse, and DocRED’s child, date of death,
founded by, place of death and spouse

C includes the lists of alternative lexical triggers
used. We train classifiers on 100+1000, 500+5,000
and 1,000+10,000 examples obtained from these
expanded-trigger queries.
Results As illustrated in Table 2, adding alternative
triggers improves results across all sample sizes for
TACRED and for the 100+1000 size in DocRED.

7 Augmenting Syntactic patterns with
Natural Language Generation

We showed how the Syntactic Search by Exam-
ple method works with only a few human anno-
tated examples. In this section we would like to
pursue NLG based methods to expand the num-
ber of exemplary patterns. Generative language
models, compared to other methods for data aug-
mentation (e.g. Iterative bootstrapping and distant
supervision) are highly accessible and require low
technical expertise (sometimes passing a prompt is
enough). Moreover, recent papers (Wei and Zou,
2019; Anaby-Tavor et al., 2019; Kumar et al., 2020;
Amin-Nejad et al., 2020; Russo et al., 2020) report
high impact of such models for the closely related
Data Augmentation task. We therefore present nu-
merous methods that take advantage of such mod-
els for RE bootstrapping.

First we show how a user can produce a high
number of generated sentences using GPT2 (Rad-
ford et al., 2019). Then we demonstrate how the
generated sentences can be integrated in the Syn-
tactic Search by Example method (§7.1). Finally,
in order to validate the necessity of the syntactic
search in this flow we compare it to feeding the raw
generations as inputs to a classifier (§7.2).

Generating Examples LM

The user-flow Depicted in Fig. 2: The user en-
ters a relation prompt (“Paul founded Microsoft”),
to which the system responds by returning sen-
tences that express the same relation. While not
all returned sentences express the relation, many
of them do. To filter out out-of-relation sentences
the user goes through the list until she identifies
a predefined number of positive examples (Here
we used 100 sentences). In our experiments we
encountered 1 positive example for every 3 exam-
ples annotated. This 1-out-of-3 ratio is significantly
better than blindly sampling from a corpus (1-out-
of-57, see §3), and by that can considerably save
annotation time. For each example, the user marks
the relevant entities, and optionally also the trig-
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Paul founded Microsoft in April 1975.

Generation Model 

Paul, the Microsoft co-founder who is now the company's chairman...
Paul, co-founder and chairman of Microsoft…

Paul works at Microsoft.
Paul was a founder and chairman of both Microsoft and...

...

Using annotated sentences as 
exemplary patterns.

Sentence

Sample

Sampled 
Sentences

Syntactic 
Search

Annotated 
Sentences

Paul, the Microsoft co-founder who is now the company's chairman...
Paul, co-founder and chairman of Microsoft…

Paul works at Microsoft.
Paul was a founder and chairman of both Microsoft and...

...

Use as positive labeled examplesTrain

Figure 2: Flow of sampling examples from conditional
language model. The “Syntactic Search" step corre-
sponds to §7.1, while skipping this step, corresponds
to §7.2.

ger word (the main word indicating the relation).
These examples are then used as additional input
examples to the syntactic search engine (§7.1) or
as train datasets for ML models (§7.2).

Technical details We begin with a large pre-
trained LM (we use GPT2-medium (Radford et al.,
2019)), and fine-tune it to the generation task.
The method assumes the availability of relation-
annotated data, though its relations do not need to
overlap with the ones we are attempting to extract
(in our case, we ensured the groups are distinct).
The approach can be considered as an instance of
transfer-learning, where we attempt to transfer the
example-generation knowledge from the training
relations to novel relations. Given the annotated RE
dataset, we consider positive examples of the form
(s, e1, e2, r), where r ∈ R. We transform each in-
stance to a conditioned LM training example, in
which the LM sees a prefix (prompt) and should
complete it. In our case the prompt is derived from
(e1, e2, r), followed by a special symbol, and we
train the LM to produce the corresponding sentence
s. To derive the prefix we apply a pre-defined tem-
plate associated with each relation r9. The template
has two slots to be filled with the entities e1 and
e2. For example, a template for the founded-by
relation can take the form [e2] founded [e1]. We
then fine-tune GPT2 on these training examples. At
inference time, the user provides a single prompt
based on their desired relation.

Given the user prompt, we generate 1000 sen-

9In our experiments, we use on average 3 different tem-
plates for each relation type, so a single annotated relation
example will result in 3 (on average) different fine-tuning
examples for the LM, each with a different prompt.

tences with nucleus sampling (Holtzman et al.,
2019) of 0.99 and length of up to 50 tokens. We
annotate the generated sentences until reaching
100 positive instances (usually requiring 200-300
sentences), this takes up to 1.5 hours per relation.
These generated sentences are annotated and used
as inputs to the syntactic search method (§7.1) or
directly as positive examples to a classifier (§7.2).

7.1 Enhancing Syntactic Search with
Example Generation

We integrate the generation outputs in the Syntactic
Search by Example method by taking the positive
annotated examples (on which we mark the entities
as part of the annotation process) and automatically
transforming them into SPIKE queries. This step
has the potential to add substantial syntactic and
lexical diversity to the pattern set, resulting in both
larger and more diverse sets of positive examples.
This combines the best of both worlds: the genera-
tive model is used to provide structural and lexical
diversity, while the syntactic search system is used
to provide a large selection of naturally occurring
corpus sentences adhering to these patterns.

Experiments and Results
Setup To reduce noise, we exclude queries where
more than 1 out of 5 sampled results does not ex-
press the relation of interest. On average, we in-
creased the number of syntactic patterns to 9.25,
ranging from 6 to 14 after filtering.
Results As listed in the Search + Generation row
of Table 1, this method achieved best performance
for both TACRED and DocRED with overall scores
corresponding to 550/1100 and 220/550 annotated
examples respectively. Using the generation out-
puts as examples doesn’t only help in suggesting
more sentences satisfying the relation but also in
augmenting the number of predicates used. We
looked on the number of predicates used for the TA-
CRED relations which include lexical triggers (sim-
ilarly to §6.2.1), the generation phase suggested
7.4 predicates on average, more than the 2.8 predi-
cates per relation of our original patterns, and less
than the trigger expansion method we suggested
in §6.2.1, where we tried to find all the possible
predicates, with 18.2 triggers on average. We con-
clude that while the Syntactic Search by Exam-
ple method performs well with only a few example
patterns, this can be even improved with more in-
put examples. While we report Syntactic Search by
Example enjoys such generation-based pattern aug-
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mentation, a similar boost with different, non-NLG,
methods is of course possible. We leave further
probing for other pattern augmentation methods as
future work.

7.2 Directly Training Classifiers using
Generation Outputs

It is possible that generative models produce di-
verse enough training examples that will suggest
our syntactic search superfluous. We validate the
necessity of taking the annotated generations (An-
notated similarly to §7.1) through the Syntactic
Search by Example method, by comparing it to
simply passing the annotated generations as classi-
fier inputs, as depicted in the RHS of Fig. 2.

Experiments and Results
Setup Many of the samples include the entities
from the prompt verbatim. Before using them as
the model inputs, we replace the entities with a
random Wikipedia entity of the same type.
Results As can be seen in the Example Generation
row in Table 1, on TACRED, this method produces
F1 scores on par with Syntactic Search by Example.
However, evaluating on DocRED, the method does
not produce competitive results10. On both datasets
it produce worse than Search + Generation. We
conclude that it is more beneficial to use outputs
of generative models as syntactic search queries,
and by that find syntactically similar sentences,
comparing to simply use generations as the train
set. We deduce models are likely to generalize
better on “real world" examples.

8 Additional Experiments

8.1 Results across relations
Analyzing the results we highlight some interest-
ing trends (Fig. 3). First, we note that the behavior
is not consistent between relations, nor datasets:
different relations behave differently, showing dif-
ferent trade-offs between different methods.

Classifiers for relations like “Religion"11, “City
10The language model used to generate examples was fine-

tuned on a version of TACRED which excludes the relations
we evaluate on. Still, for TACRED, the language model is fine-
tuned and evaluated on data from the same domain (newswire).
The DocRED data on the other hand, is taken from Wikipedia,
so the evaluation is essentially out of domain. We therefore
conclude that used independently, this approach is applicable
only in cases where a background RE dataset is of the same
domain as the target corpus from which we want to extract
relations.

11TACRED’s “religion" relation plateaus as it has a low
number of train instances.
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Figure 3: F1 scores of TACRED (right), and Do-
cRED (left) by relation.

of Death" and “Date of Death" seem to plateau at
around 50-100 manually annotated examples. For
these relations, annotating more data is not neces-
sarily useful. The syntactic search approach works
especially well for these relations: applying syn-
tactic search over 3 seed queries is sufficient to
yield results on par or slightly higher than all avail-
able manually annotated data. We hypothesize that
these findings might be the result of low diversity
in the ways these relations are typically expressed.

While the combined Search + Generation ap-
proach is overall useful, the effect is not consistent
across relations: performance improves for some
relations and deteriorates for others. In §7.1 we
described the techniques we use to reduce the noise
coming from additional queries. These techniques
however are rather basic and these results indicate
that more advanced techniques of the type used in
Angeli et al. (2015) and Ratner et al. (2017), are
likely to yield more consistent improvements.

8.2 Distant Supervision
Setup Distant supervision (Mintz et al., 2009) sug-
gests a method to construct a training dataset based
on a large external KB of relation triplets. Yao et al.
(2019) offered a machine annotated version of Do-
cRED constructed by aligning Wikipedia pages
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with Wikidata. The authors took great care in
creating this resource: a high-quality NER model
trained on in-domain manually annotated data was
used to automatically annotate possible relation ar-
guments; a named entity linker was used to merge
entities with similar KB ID; and finally, Wikidata
was queried in order to label pairs of linked entities.

We trained a classifier using the released
data, sampling increasing number of examples:
(100+1,000, 500+5,000, 1,000+10,000). We report
best score of 0.312F1 (500+5,000 split).
Results This Distant Supervision dataset, created
by Yao et al. (2019), appears to be of very high
quality and the results are on par with the full set
of manually annotated data. These results indicate
that given a large KB of relation triplets, a high-
quality in-domain NER, and a high quality linking
solution, distant-supervision is a very promising
technique. It should be noted however, that the
availability of all these external resources is very
rare in practice and is not required by the methods
proposed in this work.

9 Applicability to other languages

We explored only English in this work. However,
we argue that our main method – example-based
syntactic search followed by DL-training – is not
strongly tied to English, and we encourage other
researchers to experiment with it in their languages
of interest. We provide details of what is needed to
adapt the system to a different language.

The Syntactic Search by Example method re-
quires (1) An automatically dependency-parsed
corpora in the language. These can be readily
produced by the many syntactic parsers that are
available for many languages (Manning et al.,
2014; Honnibal and Montani, 2017; Qi et al.,
2020). (2) An indexing engine that supports ef-
ficient queries over parse trees. Shlain et al. (2020)
uses the open-source Odinson engine (Valenzuela-
Escárcega et al., 2015) for this purpose. (3) A
component that translates a query in spike’s “by
example" syntax to the indexing engine’s query
syntax. This requires finding the minimal (in terms
of number of nodes) sub-graph that connects all re-
lation arguments (and predicates if available), then
search for sentences with similar sub-graphs in the
index. With these three components, a syntactic-
search system can be readily implemented. The
rest of the components are straightforward applica-
tion of DL methods. Indeed, we suspect the major

obstacle in application to a new language will be
the availability of evaluation data.

10 Conclusion

We show that with modern DL classifiers and a
dataset bootstrapped using syntactic search with
as few as 3 seed patterns can be as effective as
a dataset with hundreds of manually annotated
samples. Using LMs help to further diversify the
dataset and improve results. Overall, our results
are positively optimistic for bootstrapping methods.
However, this work is only an initial step in explor-
ing methods for bootstrapping relation extractors
using minimal user effort, supported by strong pre-
trained neural LMs. We hope to encourage further
work in this direction.
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Relation Pos/Neg Ratio
org:country_of_hq 1/7
org:founded_by 1/56
per:children 1/64
per:city_of_death 1/31
per:date_of_death 1/26
per:origin 1/10
per:religion 1/2
per:spouse 1/52

Table 3: Pos/Neg ratio in TACRED, rounded to the clos-
est fraction.

B Syntactic Search by Example with
varying dataset sizes

We experimented with varying the number of sam-
pled examples, using the same 3 seed syntactic
patterns. The results are reported in Table 4. While
DocRED’s F1 scores increase with increasing num-
ber of sampled examples, the trend is opposite in
TACRED. We believe this is due to different ini-
tializations and inductive noise in both the positive
and negative samples introduced by sampling from
semi-noisy data.

Method TACRED DocRED
Synt. Search - 100 0.443 0.250
Synt. Search - 500 0.434 0.259
Synt. Search - 1000 0.427 0.266

Table 4: Syntactic Search by Example with different
training sizes

C Trigger List Expansion

For the majority of patterns used in the Syntactic
Search by Example experiments we used a single
trigger word (see Appendix D). To experiment with
using trigger lists, we modified the patterns in Ap-
pendix D in the following way:

We changed the triggers in all child\children pat-
terns to include any of the following possibilities:

baby, child, children, daughter, daughters, son,
sons, step-daughter, step-son, step-child, step-
children, stepchildren, stepdaughter, stepson

For founded-by relations we change the
“founder" trigger to be any of these triggers:

founder, co-founder, cofounder, creator

and changed “founded" to be any trigger from the
following list:

create, creates, created, creating, creation, co-
founded, co-found, debut, emerge, emerges,
emerged, emerging, establish, established, es-
tablishing, establishes, establishment, forge,
forges, forged, forging, forms, formed,
forming, founds, found, founded, found-
ing, launched, launches, launching, opened,
opens, opening, shapes, shaped, shaping, start,
started, starting, starts

In spouse relations we expanded the “hus-
band\wife" trigger to be any of:

ex-husband, ex-wife, husband, widow, widower,
wife, sweetheart, bride

and the “marry" trigger to:

divorce, divorced, married, marry, wed, divorcing

For the “date of death" and “place\city of death"
we changed the “died" trigger to any of:

died, executed, killed, dies, perished, succumbed,
passed, murdered, suicide
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D Examples used for Syntactic Search by Example

child
<>e1:[e=PER]John ’s t:[w={triggers}]daughter , <>e2:[e=PER]Tim, likes swimming.

<>e1:[e=PER]Mary did something to her t:[w={triggers}]son, <>e2:[e=PER]John in 1992.

<>e1:[e=PER]Mary was survived by her 4 t:[w={triggers}]sons, John, John, <>e2:[e=PER]John and
John.
triggers = son | daughter | child | children | daughters | sons
founded by
<>e1:[e=ORG]Microsoft t:[w]founder <>e2:[e=PER]Mary likes running.

<>e2:[e=PER]Mary t:[w]founded <>e1:[e=ORG]Microsoft.

<>e1:[e=ORG]Microsoft was t:[w]founded $by <>e2:[e=PER]Mary.
headquarters location
John Doe, a professor at the <>e1:[e=ORG]Oxford <>in:[t=IN]in <>e2:[e=LOC]England likes running.

<>e1:[e=ORG]Oxford, a leading <>t:[t=NN]company <>in:[t=IN]in <>e2:[e=LOC]England.

<>e2:[e=LOC]England pos:[t=POS]’s largest university is <>e1:[e=ORG]Oxford.
religion
<>e1:[e=PER]John is a e2:[w={triggers}]Jewish„

e2:[w={triggers}]Jewish <>e1:[e=PER]John is walking down the street.

<>e1:[e=PER]John is a e2:[w={triggers}]Methodist Person.

triggers = Methodist | Episcopal | separatist | Jew | Christian | Sunni | evangelical | atheism | Islamic |
secular | fundamentalist | Christianist | Jewish | Anglican | Catholic | orthodox | Scientology | Islamist |
Islam | Muslim | Shia
spouse
<>e1:[e=PER]John ’s t:[w=wife | husband]wife, <>e2:[e=PER]Mary , died in 1991.
<>e1:[e=PER]John t:[l]married <>e2:[e=PER]Mary„
<>e1:[e=PER]John is t:[w]married to <>e2:[e=PER]Mary,
origin
<>e2:[e=MISC]Scottish <>e1:[e=PER]Mary is high.
<>e1:[e=PER]Mary is a <>e2:[e=MISC]Scottish professor.
<>e1:[e=PER]Mary, the <>e2:[e=LOC]US professor.
date of death
<>e1:[e=PER]John was announced t:[w]dead in <>e2:[e=DATE]1943.
<>e1:[e=PER]John t:[w]died in <>e2:[e=DATE]1943.
<>e1:[e=PER]John, an NLP scientist, t:[w]died <>e2:[e=DATE]1943.
place of death
<>e1:[e=PER]John t:[w]died in <>e2:[e=LOC]London, <>country:e=LOC England in 1997.
<>e1:[e=PER]John t:[w]died in <>e2:[e=LOC]London in 1997.
<>e1:[e=PER]John $-LRB- t:[w]died in <>e2:[e=LOC]London $-RRB-.
DocRED’s founded by
<>e1:[e=ORG]MISC Microsoft t:[w]founder <>e2:[e=PER]Mary likes running.
<>e2:[e=PER]Mary t:[w]founded <>e1:[e=ORG]MISC Microsoft.
<>e1:[e=ORG]MISC Microsoft was t:[w]founded $by <>e2:[e=PER]Mary.
DocRED’s origin
<>e2:[e=MISC]Scottish company, <>e1:[e=ORG]Microsoft is successful.
<>e1:[e=ORG]MISC Microsoft is a <>e2:[e=MISC]Scottish Company.

Continued on next page
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<>e1:[e=ORG]MISC Microsoft is a <>t:[t=NN]song $by <>e2:[e=MISC]Scottish musician.
DocRED’s date of death
<>e1:[e=PER]John $-LRB-
<>e1:[e=PER]John t:[w]died in <>e2:[e=DATE]1943.
<>e1:[e=PER]John, an NLP scientist, t:[w]died <>e2:[e=DATE]1943.
DocRED’s place of death
<>e1:[e=PER]John t:[w]died in <>e2:[e=LOC]London, <>country:e=LOC England in 1997.
<>e1:[e=PER]John t:[w]died in <>e2:[e=LOC]London in 1997.
<>e1:[e=PER]John $-LRB- $[e=DATE]1997, $[e=LOC]London $- $[e=DATE]1997
<>e2:[e=LOC]London $-RRB-.
DocRED’s headquarters location
<>e1:[e=ORG]Microsoft, a leading <>t:[t=NN] company <>in:[t=IN]in <>e2:[e=LOC]Redmond.
<>e1:[e=ORG]Microsoft is t:[l=base | headquarter]based in <>e2:[e=LOC]England.
<>e1:[e=ORG]Microsoft, a leading <>t:[t=NN] company based <>in:[t=IN]in <>e2:[e=LOC]Redmond.

Table 5: SPIKE search patterns for TACRED and DocRED relations.


