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Introduction

Welcome to the Workshop on Cognitive Modeling and Computational Linguistics (CMCL)!!

We reached the 11th edition of CMCL, the workshop of reference for the research at the intersection
between Computational Linguistics and Cognitive Science. This is the 2nd edition in a row that will
be held entirely online because of the COVID-19 pandemic. Although we won’t have the possibility
of meeting in person in charming Mexico City, the program of CMCL 2021 is one of the richest and
most interesting in the recent history of the workshop. We received 26 regular paper submissions and
17 were accepted for publication, for a total acceptance rate of 65.3%. We also received 4 non-archival
submissions (extended abstracts or cross-submissions), 2 of which were accepted for presentation.

This year’s accepted papers spanned a highly diverse range of questions centering on language, cognition,
and computation. Several papers unified computational methods with neurobehavioral data, including
EEG, MEG, and fMRI. Many of the papers leveraged state-of-the-art, transformer-based language
models to distinguish between two competing theories of sentence processing. Still others probed
the differences between language comprehension and language production, and whether it is feasible
to treat them similarly for the purposes of explaining language use. Outside of sentence processing,
accepted papers also probed the relationship between language and emotion; the graph structure of
phonology; and lexical comprehension. Accepted papers spanned several grammatical formalisms,
including Combinatory Categorial Grammar, Construction Grammar, and dependency grammars, in
addition to statistical approaches. These diverse perspectives on cognition modeling and computational
linguistics promote our scientific community’s continued growth.

Additionally, as a novelty of this year’s edition, we have organized a shared task on eye-tracking
data prediction for English, and we accepted 10 system description papers. The ability to accurately
model gaze features is vital to advance our understanding of language processing. Therefore, we
posed the challenge of predicting token-level eye-tracking metrics recorded during natural reading.
The participating teams submitted predictions generated mainly with two approaches: (1) Tree-based
boosting algorithms with extensive feature engineering and (2) neural networks trained for regression
such as fine-tuning transformer-based language models. The features for training the systems included
surface features, lexical and syntactic features, token probability features, and text complexity metrics,
as well as representations from state-of-the-art language models, such as BERT, RoBERTa, and XLNet.
The winning team presented a linguistic feature-based approach.

Also for this year, the contribution of our PC members in thoroughly reviewing and selecting the best
papers has been invaluable. Here we wish to deeply thank all of them for their time and effort.

We also thank Afra Alishahi and Zoya Bylinskii, our keynote speakers, for having accepted our invitation.

Finally, thanks again to our sponsors: the Japanese Society for the Promotion of Sciences and the
Laboratoire Parole et Langage. Through their generous support, we have been able to offer fee waivers
to PhD students who were first authors of accepted papers, and to offset the participation costs of the
invited speakers.

The CMCL 2021 Organizing Committee
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Abstract

Word concreteness and imageability have
proven crucial in understanding how humans
process and represent language in the brain.
While word-embeddings do not explicitly in-
corporate the concreteness of words into their
computations, they have been shown to accu-
rately predict human judgments of concrete-
ness and imageability. Inspired by the re-
cent interest in using neural activity patterns
to analyze distributed meaning representations,
we first show that brain responses acquired
while human subjects passively comprehend
natural stories can significantly distinguish the
concreteness levels of the words encountered.
We then examine for the same task whether
the additional perceptual information in the
brain representations can complement the con-
textual information in the word-embeddings.
However, the results of our predictive mod-
els and residual analyses indicate the contrary.
We find that the relevant information in the
brain representations is a subset of the rele-
vant information in the contextualized word-
embeddings, providing new insight into the
existing state of natural language processing
models.

1 Introduction

Language comprises concrete and abstract words
that are distinctively used in everyday conversa-
tions. Concrete words refer to entities that can
be easily perceived with the senses (e.g., "house",
"blink", "red"). On the other hand, abstract words
refer to concepts that one cannot directly perceive
with the senses (e.g., "luck", "justify", "risky"), but
relies on the use of language to understand them
(Brysbaert et al., 2014).

This categorization of words based on their con-
creteness is rooted in theoretical accounts in cogni-
tive science. One such account is the Dual Coding
Theory (Paivio, 1971, 1991), according to which
two separate but interconnected cognitive systems

represent word meanings, i.e., a non-verbal system
that encodes perceptual properties of words and a
verbal system that encodes linguistic properties of
words. Concrete concepts can be easily imagined
and are represented in the brain with both verbal
and non-verbal codes. Abstract concepts are less
imaginable and are represented with only verbal
codes. For example, one can readily picture as well
as describe the word bicycle (e.g., "has a chain",
"has wheels"), but relies more on a verbal descrip-
tion for the word bravery.

The concreteness of words has since been used
as a differentiating property of word meaning
representations. Previous studies in natural lan-
guage processing (NLP) have examined the word-
embedding spaces of concrete and abstract words
and showed: (i) distinct vector representations of
the two categories within and across languages
(Ljubešić et al., 2018), and (ii) high predictabil-
ity of concreteness scores from pre-trained word-
embeddings (Charbonnier and Wartena, 2019).

Neurolinguistic studies have shown an exten-
sive, distributed network of brain regions repre-
senting the conceptual meaning of words (Mitchell
et al., 2008; Wehbe et al., 2014; Huth et al., 2016).
Among these, regions more closely involved in
sensory processing have been shown to respond
favorably to concrete words (Binder et al., 2005)
over abstract words. Hill et al. (2014) argued that
concrete and abstract concepts must be represented
differently in the human brain by showing through
a statistical analysis that concrete concepts have
fewer but stronger associations in the mind with
other concepts, while abstract concepts have weak
associations with several other concepts.

Wang et al. (2013) showed that functional Mag-
netic Resonance Imaging (fMRI) signals of brain
activity recorded as subjects attempted to decide
which two out of a triplet of words were most simi-
lar contained sufficient information to classify the
concreteness level of the word triplet, providing
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further evidence of the dissimilar representations
of the two categories in the brain. However, it re-
mains an open question whether the brain responses
within the semantic system can directly predict con-
creteness levels in the more challenging setting of
naturalistic word stimuli (e.g., words encountered
while reading a story). Moreover, given the hu-
man brain’s expertise in generating and processing
perceptual as well as linguistic information, one
could expect the brain representations to provide in-
formation that complements the word-embeddings
purely learned from linguistic contexts, improving
their predictive capability. We address both these
questions in this paper.

While several related works exist, the following
limitations prompted a new study: (i) Anderson
et al. (2017) indirectly decoded the brain represen-
tations for concrete and abstract nouns with the
help of word-embeddings and convolutional neural
network image representations. Instead of build-
ing a predictive model, the authors used a similar-
ity metric to determine which signal in a pair of
fMRI signals corresponds to which word in a pair
of words. However, a direct, supervised decoding
approach (as adopted here) would provide more
substantial evidence about the strengths and weak-
nesses of the different information modalities. (ii)
Brysbaert et al. (2014) found word concreteness
scores to be highly correlated with both visual and
haptic perceptual strength. However, multi-modal
methods (Anderson et al., 2017; Bhaskar et al.,
2017) have incorporated only visual features (as
the second source of information) instead of gen-
eral perceptual features into their predictions. By
incorporating brain representations in our models,
we do not miss out on such perceptual information
(e.g., the adjectives "silky", "crispy", and "salty"
are concrete but not as imagery-inducing as the ad-
jective "blue"). (iii) In contrast to previous studies
that have required participants to actively imagine
a randomly presented word stimulus1 (before be-
ing given a few seconds to "reset" their thoughts)
during the brain data acquisition task (Anderson
et al., 2012; Wang et al., 2013; Anderson et al.,
2017), we adopt a task where participants would
read highly engaging natural stories (without un-
natural pauses), enabling them to process the word
stimuli in a more realistic context.

To summarize, our objectives with this paper
are twofold. First, we investigate how well human

1e.g., one word would be presented every 10s.

brain representations can predict the concreteness
levels of words encountered in natural stories using
simple, supervised learning algorithms. Second,
we investigate whether brain representations en-
code information that may be missing from word-
embeddings trained on a text corpus in making
the concrete/abstract distinction. We believe that
answering such questions will shed light on the
current state of human and machine intelligence
and on the ways to incorporate human language
processing information into NLP models.

2 Related Work

A few studies have shown that the concreteness
(and imageability) of words can be directly pre-
dicted with high accuracy from precomputed word-
embeddings using supervised learning algorithms.
Recently, Charbonnier and Wartena (2019) used
a combination of word-embeddings and morpho-
logical features to predict the word concreteness
and imageability values provided in seven publicly
available datasets. Ljubešić et al. (2018) extended
the idea to perform a cross-lingual transfer of con-
creteness and imageability scores by exploiting pre-
trained bilingual aligned word-embeddings (Con-
neau et al., 2017).

Multi-modal models that use both linguistic and
perceptual information have been shown to out-
perform language models at various NLP tasks,
such as learning concrete or abstract word embed-
dings (Hill and Korhonen, 2014; Lazaridou et al.,
2015), concept categorization (Silberer and Lapata,
2014), and compositionality prediction (Roller and
Schulte im Walde, 2013). However, Bhaskar et al.
(2017) found that the concreteness of nouns could
be predicted equally well from the textual, visual,
and combined modalities. This suggests that the
textual and visual modalities independently pro-
vided reliable, non-complementary information to
represent both concrete and abstract nouns.

Several studies have addressed the idea of de-
coding neural activity patterns recorded in subjects
when presented with certain textual or visual stim-
uli. Anderson et al. (2017) applied linguistic and
visually-grounded computational models to decode
the fMRI representations of a set of concrete and
abstract nouns. They, too, reported no decoding
advantage for multi-modal combinations over the
linguistic model. Anderson et al. (2012) demon-
strated that fMRI signals contained sufficient in-
formation to perform a 7-way classification of a
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set of words into WordNet-based (Miller, 1995)
taxonomic categories.

Lately, there has been an increasing research
interest at the intersection of neuroimaging and
language models (Jain and Huth, 2018; Abnar
et al., 2019; Gauthier and Levy, 2019; Hollen-
stein et al., 2019; Toneva and Wehbe, 2019; Jain
et al., 2020; Caucheteux and King, 2020; Schrimpf
et al., 2020). In an interesting study, Schwartz et al.
(2019) finetuned the BERT language model to pre-
dict the fMRI responses of text-reading participants
to obtain representations that encode brain-activity-
relevant semantic information. While the modified
representations could better predict neural activity
and even generalize to new participants, this in-
clusion of brain-relevant bias did not improve or
degrade the model’s performance on downstream
NLP tasks.

3 Data Collection

3.1 Stimulus and fMRI data

We briefly describe the functional Magnetic Reso-
nance Imaging (fMRI) data-collection procedure
here and refer the reader to Deniz et al. (2019) for
specific details.

Nine participants were asked to read 11 autobi-
ographical narrative stories taken from The Moth
Radio Hour podcast. We used six participants’
data in our experiments. The stories are each 10-
15 minutes long and were chosen to cover a wide
range of topics. Each story was first aligned to its
transcript by applying the UPenn Forced Aligner
(Yuan and Liberman, 2008) and Praat (Boersma
and Weenink, 2001) on the narration audio. Times-
tamps for word-occurrences were then obtained
from Praat’s TextGrid as a list of entries of the form
(wi, ti) representing the ith word and its onset time,
respectively. Using this word-representation list
for each story, each word in the story was displayed
one-by-one at the center of a screen for a duration
equal to its duration in the spoken version.

Each fMRI scan consists of a sequence of
voxel-responses2 acquired at a fixed repetition-time
(TR = 2.0045s) with a voxel-size of 2.24×2.24×
4.1mm. A separate scan was conducted for each
subject and presented story (all analysis was done
within subjects). The acquired volumetric fMRI
responses for each subject were first preprocessed
to correct for motion and then aligned to the first

2voxel = volumetric pixel.

scan’s temporal average, using the FMRIB Lin-
ear Image Registration Tool (FLIRT) from FSL
v5.0 (Jenkinson et al., 2002; Jenkinson and Smith,
2001). A Savitzky–Golay filter (Schafer, 2011)
with a 120s window was applied to remove low-
frequency voxel-response drift from the signal. Fi-
nally, the voxel-responses for each story were z-
scored separately so that they have zero mean and
unit variance across all acquisitions for the story.

We note that an equivalent analysis could be car-
ried out through a listening task since the elicited
brain representations have been shown to be largely
invariant to the stimulus modality (Deniz et al.,
2019).

3.2 Concreteness Ratings

We used the dataset collected by Brysbaert et al.
(2014), consisting of concreteness ratings for
39,954 English words. Each word was rated by
around 25 participants (recruited through Amazon
Mechanical Turk) on a 1-5 scale so that the most
concrete words are assigned the highest score of 5,
and the most abstract words are assigned the lowest
score of 1. For each word, the average rating (and
standard deviation) across all raters was recorded.

3.3 Word-Embeddings

We extracted the 768-dimensional activations from
the final hidden layer of the Generative Pre-trained
Transformer (GPT-2) (Radford et al., 2019) to ob-
tain contextualized representations for the words
in the stories. The reasons for selecting GPT-2
in this work are due to the findings of Schrimpf
et al. (2020). First, GPT-2 was constrained to use
unidirectional attention in the same way humans
process text in a left-to-right fashion. Second, the
authors find that models best matching human lan-
guage processing are precisely those trained for a
next word prediction objective (such as the GPT
family).

4 Data Preparation

Rating and Vectorizing Using the word-
representation for each story and a list of the
fMRI acquisition-times (identical for all subjects),
we partitioned the words into disjoint chunks so
that all words in a chunk correspond to the same
acquisition. Therefore, all words read by the
subjects within a duration of 1 TR from the start
of the acquisition pulse were included in the same
chunk.
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We used GPT-2 to vectorize each word in a story
by supplying all words in the story leading up to
it3 as context and extracting the network’s hidden
layer representation corresponding to the last input
position. To rate the words in the story, we first
lowercased and lemmatized them and then used
the Brysbaert et al. (2014) concreteness dataset
to assign a rating to each word in a chunk. Only
around 7% of all words in the stories were not
covered by the dataset and were dropped before
subsequent analysis.

We stored the ith preprocessed functional im-
age of each subject as an Nb-dimensional voxel-
response vector ~bi, where Nb denotes the number
of voxels for that subject’s brain. Typical values
forNb were found to lie in the 70k-90k range (with
a mean of 80976 and a standard deviation of 6173,
across subjects).

Downsampling Since the rate at which the text
stimulus was presented to the subjects (the narra-
tion rate) is higher than the rate of fMRI data ac-
quisition (2.0045s per acquisition), several words
may occur within the TR corresponding to a sin-
gle acquisition and will all fall under the same
chunk. Therefore, we downsampled the stimulus to
match the acquisition rate before further analysis
by averaging out the concreteness ratings (rw) and
word-embeddings (~ew) within each TR. Thus, the
chunk-rating and chunk-embedding for chunk Ci

are given by:

ri =
1

|Ci|
∑

w∈Ci

rw

~ei =
1

|Ci|
∑

w∈Ci

~ew

Stacking We temporally stacked the voxel-
response vectors, chunk-embeddings and chunk-
ratings, first within each story and then across all
11 stories to obtain (i) a per-subject voxel-response
matrix B ∈ RT×Nb , (ii) an embedding matrix
E ∈ RT×D, and (iii) a rating vector ~r ∈ RT ,
where T denotes the total number of fMRI acquisi-
tions across all stories per subject, and D denotes
the dimensionality of the word-embedding space.
D = 768 for GPT-2, and 11 stories with an av-
erage duration close to 12.5 min per story gives
T = 4028.

3or as many as allowed by the model’s capacity.

5 Predictive Models

5.1 Word-Embedding based model

We consider the task of classifying words as
concrete or abstract (based on their concrete-
ness ratings) using the word-embeddings (chunk-
embeddings, ~ei) as explanatory variables. For this,
we first defined a concreteness threshold τ as fol-
lows: any word is labeled concrete if its assigned
rating is strictly greater than τ , and is labeled ab-
stract otherwise. We take τ = 3.

We then segregated the data into well-defined
classes by discarding any chunks that were found to
consist of a mixture of concrete and abstract words
(as defined above). This retains roughly 42% of all
chunks (T s < T ), resulting in the following strict
counterparts to the embedding matrix and rating
vector obtained in Section 4: (i) Es ∈ RT s×D, and
(ii) ~rs ∈ RT s

, with the superscript s denoting that
only chunks satisfying the strictly concrete/abstract
property are being considered. We binary-encoded
~rs into the boolean vector ~ys ∈ {0, 1}T s

, so that
ysi = 1 if the corresponding chunk is strictly con-
crete and ysi = 0 otherwise. Our specific choice
for the concreteness threshold (τ = 3) produces a
dataset that is approximately balanced between the
two classes and is a natural choice for a 1-5 scale.4

We learned the Es → ~ys mapping for each sub-
ject through L2-regularized logistic regression. We
trained on 75% of the available data and picked
the best value for the regularization parameter C
through 5-fold cross-validation. We report the ac-
curacy, recall, and F1 score of the classifier in our
results.

An important variable in cognitive processing is
the frequency with which words are encountered
in language. High-frequency words are often per-
ceived and processed faster than low-frequency
words (van Heuven et al., 2014). Thus, word fre-
quency could be a confounding variable to our ob-
jective if its distribution over the concrete words
significantly differs from its distribution over the
abstract words encountered in the stories. To check
if this is the case, we computed the distribution of
SUBTLEX-US (Brysbaert and New, 2009) word
frequencies separately over all concrete vs. abstract
words encountered by the subjects. However, a
Kolmogorov-Smirnov test showed that the com-
puted distribution over the concrete words was not

4Out of all strictly concrete/abstract chunks, 52% were
labeled concrete, and 48% were labeled abstract.
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significantly different from the distribution over the
abstract words (ks = 0.056, p = 0.063).

5.2 Voxel-Response based model
Voxel Selection With up to 90,000 voxel-
responses recorded per fMRI acquisition, not all
voxels may be relevant to our objective of predict-
ing the concreteness of word stimuli (Binder et al.,
2005).

A standard voxel selection method is to man-
ually determine regions of interest (ROIs) in the
brain by analyzing the fMRI responses recorded in
an auxiliary functional localizer task (Fedorenko
et al., 2010) and select voxels from only these re-
gions. However, this comes at the risk of being too
restrictive. For example, one might inadvertently
exclude regions in the brain encoding relevant sen-
sory processing information in favor of regions
encoding linguistic information. Given our objec-
tive to investigate whether brain representations
contain any such additional information over word-
embeddings, we avoided ROI-based methods for
voxel selection.

We instead selected voxels based on their frac-
tions of potentially-explainable response variance
across time steps. This may be estimated sepa-
rately for each voxel by recording different ver-
sions of its (time-varying) response corresponding
to repeated presentations (Hsu et al., 2004) of the
same stimulus-sequence. Assume that one story
is repeatedly presented N times to a given sub-
ject and b represents a voxel being analyzed. If
b
(n)
t represents its response at time step t corre-

sponding to the nth repetition, then its mean re-
sponse across repetitions is bt = 1

N

∑N
m=1 b

(m)
t .

The following equations estimate the fraction of
potentially-explainable variance for b assuming the
voxel-responses are z-scored across all time steps
for the story:

ev(b) =
1

N

N∑

n=1

[1− V ar
t

(b
(n)
t − bt)]

ev(b) = ev(b)− 1

N − 1
(1− ev(b))

Thus, ev(b) is analogous to the adjusted R2 of
a (perfect) model that always predicts the mean
response (bt) across repetitions. A larger value
indicates that the voxel responds consistently to
repetitions of the same stimulus. Each subject was
presented the last story N = 2 times, and the top-
V voxels with the highest ev values were retained.

From this, we obtain the desired reduced form B̂ ∈
RT×V . The optimal number of semantic voxels V
was chosen separately for each subject to maximize
performance on the validation set (described next).

Prediction Task Blood-oxygen-level-dependent
(BOLD) signals in the brain typically persist for
8-10s after stimulus onset (Ashby, 2019). Since
each chunk covers nearly 2s of stimulus presen-
tation, we expect the response to each chunk to
be jointly encoded by the first, second, third, and
fourth (reduced) voxel-response vectors that follow
the current acquisition. However, including the first
or fourth acquisition significantly degraded predic-
tive performance. We posit that this degradation
occurs because the voxel-response vectors recorded
one or four TRs after the current acquisition are
more prone to be directly affected by words falling
in chunks preceding or succeeding the chunk of
interest.

With this observation, we modeled the brain’s
representation of the stimulus in chunk Ci to

be of the form f(~̂bi+2,~̂bi+3), where ~̂bi′ repre-
sents the reduced voxel-response vector from the
i′th acquisition. We therefore constructed the
reduced+delayed voxel-response matrix B̂+ ∈
RT×2V by replacing each row of B̂ with the con-
catenation of the second and third rows that suc-
ceed it.5

For classification, we first discarded chunks
that are not strictly concrete/abstract and obtained
B̂+s ∈ RT s×2V . We then used regularized logistic
regression to learn the per-subject B̂+s → ~ys map-
ping. The training procedure is identical to the one
followed in Section 5.1.

Statistical Significance We determined the sta-
tistical significance of our classification results us-
ing a label-permutation method (Ojala and Garriga,
2009) with cross-validated accuracy as the chosen
test statistic. Here, the distribution of a test statistic
under the null hypothesis (that data and labels are
independent) is estimated by training and evaluat-
ing the classifier on several randomized versions
of the original data (by permuting classification
labels). The p-value is then calculated as the pro-
portion of randomized samples where the classifier
performs better than it does on the original sample.
We ran 100 iterations per subject.

5For rows that are ≤ 3 positions from the end, we used
zero-padding for consistent dimensions.
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6 Comparing the Representations

6.1 Combined model

First, we combined the word-embedding and voxel-
response stimulus representations (obtained in Sec-
tion 4 and Section 5.2) for each subject, by stack-
ing the word-embedding matrix (E) and the re-
duced+delayed voxel-response matrix (B̂+) along
the feature dimension to obtain the combined stim-
ulus matrix C ∈ RT×(D+2V ). Limiting the data to
strict chunks yields the matrixCs ∈ RT s×(D+2V ),
which was then used for the classification task.

The rationale behind combining representations
is the following. If the information encoded by
the word-embedding and voxel-response represen-
tations were indeed complementary, the combined
model should fare better at the prediction task than
the two individual models because it now has ac-
cess to information that was missing in either rep-
resentation.

The classification task (predicting ~ys) and its
training procedure are identical to those described
in Section 5.1.

6.2 Residual Classification

Next, we attempted to remove the information
present in each representation from the other and
then train the classification model using the result-
ing representation. This procedure is described
below.

1. Removing voxel-response information from
word-embeddings: For each subject, we
learned a linear mapping L ∈ R2V×D from
B̂+s to Es through multivariate ridge regres-
sion (Haitovsky, 1987). We then computed the
residuals Es

r ∈ RT s×D in a cross-validated
manner as follows, and used the residuals for
the classification task:

Es
r = Es − B̂+s · L

2. Removing word-embedding information from
voxel-responses: For each subject, we learned
the linear mapping L′ ∈ RD×2V from Es

to B̂+s through multivariate ridge regres-
sion. We then computed the residuals B̂+s

r ∈
RT s×2V in a cross-validated manner as fol-
lows, and used the residuals for the classifica-
tion task:

B̂+s
r = B̂+s − Es · L′

Statistical Significance To statistically validate
that any observed decrease in a residual model’s
performance compared to the corresponding non-
residual model is really due to shared information
between the representations (and not due to overfit-
ting/chance), we adopted a "residual-permutation"
procedure similar to that in Section 5.2.

Here, an empirical null distribution is created by
training and evaluating each residual model above
with several randomized versions of whichever rep-
resentation is to be regressed out. The randomiza-
tion is performed by permuting this representation
over all time steps. The p-value is then calculated
as the fraction of such residual models with cross-
validated accuracies lower than that of the true
(non-randomized) residual model. We ran 100 iter-
ations per subject.

7 Results

We use the abbreviations E for the word-
embedding based model, B for the voxel-response
based (brain) model, E+B for the combined-
representation model, E-B for the word-embedding
model with voxel-response information removed,
and B-E for the voxel-response model with word-
embedding information removed. Figure 1 shows
the classification accuracies of all models across
the six subjects.

7.1 Individual models

Table 1 shows the average accuracy, recall, and F1
score of E and B.

B achieved an average classification accuracy
of 69% and F1 score of 71%, and performed
significantly higher than chance under the label-
permutation test (p ≤ 9× 10−3) for each subject.
This indicates that the fMRI signals triggered due
to words encountered by subjects in natural stories
encode enough information to significantly distin-
guish their concreteness levels under the current
predictive framework. Evidently, this information
must be useful above and beyond the noise present
in the fMRI data unique to the data acquisition
process. To our knowledge, the ability to classify
the concreteness of naturalistic word stimuli from
their induced brain representations in a direct, su-
pervised fashion has not been shown in the existing
literature.

E achieved a comparatively higher classification
accuracy of 87%, which is in agreement with exist-
ing research (in non-naturalistic settings) on the pre-
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Model
Performance (Mean ± S.D.)

Accuracy Recall F1 score
E 0.87 0.88 0.87
B 0.69± 2.5% 0.77± 2.6% 0.71± 2.4%

E+B 0.86± 1.9% 0.86± 2.6% 0.85± 2.0%

Table 1: Classification metrics across the six participants for the word-embedding based (E), voxel-response based
(B) and combined (E+B) models.

Figure 1: Variation in classification accuracies of all models over the six subjects’ data.

dictability of word concreteness and imageability
using word-embeddings as explanatory variables
(Charbonnier and Wartena, 2019; Ljubešić et al.,
2018).

7.2 Comparative models

Table 1 shows the average accuracy, recall, and F1
score of E, B, and E+B.

As argued in Section 1, we expect the addi-
tional sensory processing information encoded in
the voxel-responses to complement the linguis-
tic/contextual information encoded in the word-
embeddings. Consequently, the combined model
should fare better at distinguishing the concreteness
of words in the stories.

However, our results indicate otherwise. The per-
formance of E+B (86±1.9%) was not significantly
different from E (87%) under a 1-sample t-test
(t = −2.33, p = 0.07, df = 5, 2-tail), meaning
the combined model is only as good as the word-
embedding based model at the task considered.
Therefore, the information present in the voxel-
responses relevant to differentiating between con-
crete and abstract words is already well-encoded
by the word-embeddings, and the former does not
complement the latter. On the other hand, the per-
formance of E+B (86 ± 1.9%) was significantly

higher than B (69 ± 2.5%) under a paired t-test
(t = 17.77, p = 5 × 10−6, df = 5, 1-tail). This
indicates that the word-embeddings may even con-
tain useful extra information above that in the fMRI
signals (note that we already demonstrated the ef-
fectiveness of our predictive framework in signif-
icantly distinguishing word-concreteness purely
from fMRI signals). We explore this idea further
next.

Table 2 shows the average accuracy, recall, and
F1 score of the residual models E-B and B-E.

The results of the residual analyses are surpris-
ing. First, E-B achieved an average accuracy of
84%, which was significant under the residual-
permutation test (p ≤ 9 × 10−3) for each sub-
ject. The performance of E-B (84 ± 1.7%) was
also significantly lower than E (87%) across sub-
jects under a 1-sample t-test (t = −4.71, p =
2.6 × 10−3, df = 5, 1-tail). This shows that re-
moving the voxel-response information from the
word-embeddings marginally affects its ability to
classify word concreteness. More strikingly, B-
E achieved an average accuracy of 48%, which
is lower than the theoretical chance accuracy of
50% (see Figure 1). This result was significant un-
der the residual-permutation test (p ≤ 9 × 10−3)
for each subject, ruling out the possibility that the
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Residual Model
Performance (Mean ± S.D.)

Accuracy Recall F1 score
E-B 0.84± 1.7% 0.85± 2.4% 0.84± 1.4%
B-E 0.48± 9.1% 0.60± 5.8% 0.55± 5.6%

Table 2: Classification metrics across the six participants for the two residual models.

Misclassified example Ground-truth label
... And so at the earliest opportunity ... abstract

... with this kind of curious compassion. And ... abstract
... to suggest I might find myself on such a wayward path ... abstract

... . Kind of blissfully unaware of what was ... abstract
... start to get a little tricky. My husband ... abstract

... couple amens and some applause and then everybody ... concrete
... you know, for hundred dollars a night maybe ... concrete

Table 3: Examples of chunks frequently misclassified by the voxel-response model. The exact phrase falling within
the chunk is in dark color. We find that a majority of such misclassifications come from the abstract category.

huge performance decrease was merely caused by
overfitting/chance. Across subjects too, the per-
formance of B-E (48 ± 9.1%) was significantly
lower than B (69 ± 2.5%) under a paired t-test
(t = −8.52, p = 1.8× 10−4, df = 5, 1-tail).

Therefore, while removing the word-embedding
information from the voxel-responses fully elimi-
nates the latter’s predictive capability (a 30% de-
crease), going the other way around only has a
marginal effect on predictive performance (a 3%
decrease). These results show not only that the
fMRI signals do not provide complementary in-
formation to the word-embeddings in making the
concrete/abstract distinction, but that the relevant
information in the voxel-responses is really a subset
of the relevant information in the word-embeddings.
This is a surprising result, considering the task was
to distinguish a property of words theorized to fun-
damentally affect how the human brain represents
language. We summarize our findings and provide
some additional observations about this work next.

8 Conclusion

This paper has three key findings. First, we showed
that words encountered in natural stories could be
classified based on concreteness purely from the
neural activity elicited as subjects passively com-
prehended the stories, using a direct, supervised
approach.

Second, we showed that in making the con-
crete/abstract distinction, contextualized word-
embeddings (i.e., GPT-2) do not benefit from the

inclusion of information from the accompanying
fMRI signals, despite evidence from several neu-
rolinguistic studies of the human brain exhibiting
fundamentally different representations over the
two categories.

Finally, we found that while the residual infor-
mation remaining in fMRI signals after regressing
out word-embedding information can no longer dis-
tinguish concrete from abstract words, the residual
information in word-embeddings beyond the fMRI
signals performs significantly at this task. This
shows that the information in the voxel-responses
important to our prediction task is a subset of the
corresponding information in the contextualized
word-embeddings.

Our results should be interpreted in light of the
following observations:

A limitation of our work is that while the voxel-
responses and word-embeddings (from GPT-2) con-
sidered provide contextualized stimulus representa-
tions, the Brysbaert et al. (2014) dataset provides
non-contextualized ratings for each word. We par-
tially addressed this discrepancy by formulating
the prediction task as a classification problem since
the available labels are now much more likely to
match ground-truth. I.e., it is reasonable to as-
sume that the broad binary concreteness class of a
word will rarely be modified by context as much
as the continuous scores would. Future work could
overcome this limitation by developing the ideas
from the recently introduced CONcreTEXT task6

6https://github.com/lablita/CONcreTEXT
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Metric
Model

E B E+B E-B B-E
Spearman’s ρ

(Mean ± S.D.)
0.85 0.42± 0.03 0.84± 0.02 0.80± 0.03 0.09± 0.05

Table 4: Spearman’s rank-correlation coefficients (ρ ∈ [−1, 1]) between predicted and true ratings across the six
participants.

of computing contextualized rating scores. We
still report regression results in Table 4 for com-
pleteness and observe that they are consistent with
our findings (e.g., B-E can no longer predict word
concreteness as suggested by its near-zero rank-
correlation). Finally, we find that repeating our
analyses with non-contextualized word2vec em-
beddings (Mikolov et al., 2013) also yielded qual-
itatively identical results as in Section 7.2, indi-
cating that our three conclusions above hold for
word-embeddings more generally.

Another observation is that while B (69± 2.5%)
significantly distinguishes concrete from abstract
words, it still does not perform as well as E (87%)
at this task. There could be two reasons for this
difference. First, B does not handle abstract stimuli
as well as E does. Quantitatively, while B achieves
a recall of 77 ± 2.6% on concrete chunks, its re-
call on abstract chunks is significantly lower at
63 ± 3.6%. On the other hand, E shows nearly
identical performances over the categories. Table
3 shows some of B’s misclassified examples com-
mon to as many as four out of six subjects. Out of
the 29 such common misclassifications, 19 (65.5%)
were found to be abstract. This could indicate that
neural activity patterns are not as informative for
abstract stimuli as concrete stimuli, which is in
agreement with psycholinguistic studies demon-
strating verbal processing advantages for concrete
concepts over abstract concepts (Holmes and Lang-
ford, 1976; Kroll and Merves, 1986; Romani et al.,
2008). Second, the temporal resolution of func-
tional Magnetic Resonance Imaging may be too
coarse (Gauthier and Levy, 2019; Schwartz et al.,
2019) for optimal performance on our task (we had
to downsample the stimulus in Section 4). Never-
theless, our findings are important. Applying the
current predictive framework on the fMRI signals
produced highly significant results, and it is under
such a framework that the above conclusions were
made. Future work could explore the differences in
decoding neural activity from naturalistic stimuli
with imaging methods of different temporal resolu-

tions (e.g., EEG, MEG) to determine which method
should be used for which kind of task.

To conclude, we believe that this paper will in-
spire future work to take up the following excit-
ing directions: Which natural language process-
ing tasks may benefit from incorporating human
language processing information into the existing
frameworks? Are there ways of including such in-
formation to expose avenues for improvement in
these models?
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Abstract

Recurrent neural networks (RNNs) have long
been an architecture of interest for compu-
tational models of human sentence process-
ing. The recently introduced Transformer ar-
chitecture outperforms RNNs on many natural
language processing tasks but little is known
about its ability to model human language pro-
cessing. We compare Transformer- and RNN-
based language models’ ability to account for
measures of human reading effort. Our anal-
ysis shows Transformers to outperform RNNs
in explaining self-paced reading times and neu-
ral activity during reading English sentences,
challenging the widely held idea that human
sentence processing involves recurrent and im-
mediate processing and provides evidence for
cue-based retrieval.

1 Introduction

Recurrent Neural Networks (RNNs) are widely
used in psycholinguistics and Natural Language
Processing (NLP). Psycholinguists have looked to
RNNs as an architecture for modelling human sen-
tence processing (for a recent review, see Frank
et al., 2019). RNNs have been used to account
for the time it takes humans to read the words of a
text (Monsalve et al., 2012; Goodkind and Bicknell,
2018) and the size of the N400 event-related brain
potential as measured by electroencephalography
(EEG) during reading (Frank et al., 2015; Rabovsky
et al., 2018; Brouwer et al., 2017; Schwartz and
Mitchell, 2019).

Simple Recurrent Networks (SRNs; Elman,
1990) have difficulties capturing long-term pat-
terns. Alternative RNN architectures have been
proposed that address this issue by adding gating
mechanisms that control the flow of information
over time; allowing the networks to weigh old and
new inputs and memorise or forget information
when appropriate. The best known of these are
the Long Short-Term Memory (LSTM; Hochreiter

and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU; Cho et al., 2014) models.

In essence, all RNN types process sequential
information by recurrence: Each new input is pro-
cessed and combined with the current hidden state.
While gated RNNs achieved state-of-the-art results
on NLP tasks such as translation, caption genera-
tion and speech recognition (Bahdanau et al., 2015;
Xu et al., 2015; Zeyer et al., 2017; Michel and Neu-
big, 2018), a recent study comparing SRN, GRU
and LSTM models’ ability to predict human read-
ing times and N400 amplitudes found no significant
differences (Aurnhammer and Frank, 2019).

Unlike the LSTM and GRU, the recently intro-
duced Transformer architecture is not simply an
improved type of RNN because it does not use re-
currence at all. A Transformer cell as originally
proposed (Vaswani et al., 2017) consists of self-
attention layers (Luong et al., 2015) followed by
a linear feed forward layer. In contrast to recur-
rent processing, self-attention layers are allowed to
‘attend’ to parts of previous input directly.

Although the Transformer has achieved state-of-
the art results on several NLP tasks (Devlin et al.,
2019; Hayashi et al., 2019; Karita et al., 2019),
not much is known about how it fares as a model
of human sentence processing. The success of
RNNs in explaining behavioural and neurophysi-
ological data suggests that something akin to re-
current processing is involved in human sentence
processing. In contrast, the attention operations’
direct access to past input, regardless of temporal
distance, seems cognitively implausible.

We compare how accurately the word sur-
prisal estimates by Transformer- and GRU-based
language models (LMs) predict human process-
ing effort as measured by self-paced reading,
eye tracking and EEG. The same human read-
ing data was used by Aurnhammer and Frank
(2019) to compare RNN types. We believe the
introduction of the Transformer merits a simi-
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lar comparison because the differences between
Transformers and RNNs are more fundamental
than among RNN types. All code used for the
training of the neural networks and the anal-
ysis is available at https://github.com/
DannyMerkx/next_word_prediction

2 Background

2.1 Human Sentence Processing

Why are some words more difficult to process than
others? It has long been known that more pre-
dictable words are generally read faster and are
more likely to be skipped than less predictable
words (Ehrlich and Rayner, 1981). Predictabil-
ity has been formalised as surprisal, which can
be derived from LMs. Neural network LMs are
trained to predict the next word given all previous
words in the sequence. After training, the LM can
assign a probability to a word: it has an expecta-
tion of a word w at position t given the preced-
ing words w1, ..., wt−1. The word’s surprisal then
equals − logP (wt|w1, ..., wt−1).

Hale (2001) and Levy (2008) related surprisal
to human word processing effort in sentence com-
prehension. In psycholinguistics, reading times are
commonly taken as a measure of word process-
ing difficulty, and the positive correlation between
reading time and surprisal has been firmly estab-
lished (Mitchell et al., 2010; Monsalve et al., 2012;
Smith and Levy, 2013). The N400, a brain poten-
tial peaking around 400 ms after stimulus onset
and associated with semantic incongruity (Kutas
and Hillyard, 1980), has been shown to correlate
with word surprisal in both EEG and MEG studies
(Frank et al., 2015; Wehbe et al., 2014).

In this paper, we compare RNN and Transformer-
based LMs on their ability to predict reading time
and N400 amplitude. Likewise, Aurnhammer and
Frank (2019) compared SRNs, LSTMs and GRUs
on human reading data from three psycholinguistic
experiments. Despite the GRU and LSTM gener-
ally outperforming the SRN on NLP tasks, they
found no difference in how well the models’ sur-
prisal predicted self-paced reading, eye-tracking
and EEG data.

2.2 Comparing RNN and Transformer

According to (Levy, 2008), surprisal acts as a
‘causal bottleneck’ in the comprehension process,
which implies that predictions of human processing
difficulty only depend on the model architecture

Figure 1: Comparison of sequential information flow
through the Transformer and RNN, trained on next-
word prediction.

through the estimated word probabilities. Here we
briefly highlight the difference in how RNNs and
Transformers process sequential information. The
activation flow through the networks is represented
in Figure 1.1

In an RNN, incoming information is immedi-
ately processed and represented as a hidden state.
The next token in the sequence is again immedi-
ately processed and combined with the previous
hidden state to form a new hidden state. Across
layers, each time-step only sees the corresponding
hidden state from the previous layer in addition
to the hidden state of the previous time-step, so
processing is immediate and incremental. Infor-
mation from previous time-steps is encoded in the
hidden state, which is limited in how much it can
encode so decay of previous time-steps is implicit
and difficult to avoid. In contrast, the Transformer’s
attention layer allows each input to directly receive
information from all previous time-steps.2 This ba-
sically unlimited memory is a major conceptual dif-
ference with RNNs. Processing is not incremental
over time: Processing of word wt is not dependent
on hidden states H1 through Ht−1 but on the unpro-
cessed inputs w1 through wt−1. Consequently, the
Transformer cannot use implicit order information,
rather, explicit order information is added to the
input.

However, a uni-directional Transformer can also
use implicit order information as long as it has
multiple layers. Consider H1,3 in the first layer
which is based on w1, w2 and w3. Hidden state

1Note that the figure only shows how activation is propa-
gated through time and across layers, not how specific architec-
tures compute the hidden states (see Elman (1990); Hochreiter
and Schmidhuber (1997); Cho et al. (2014); Vaswani et al.
(2017) for specifics on the SRN, LSTM, GRU and Trans-
former, respectively).

2Language modelling is trivial if the model also receives
information from future time-steps, as is commonly allowed in
Transformers. Our Transformer is thus uni-directional, which
is achieved by applying a simple mask to the input.
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H1,3 does not depend on the order of the previous
inputs (any order will result in the same hidden
state). However, H2,3 depends on H1,1, H1,2 and
H1,3. If the order of the inputs w1, w2, w3 is dif-
ferent, H1,3 will be the same hidden state but H1,1

and H1,2 will not, resulting in a different hidden
state at H2,3.

Unlike Transformers, RNNs are inherently se-
quential, making them seemingly more plausible as
a cognitive model. Christiansen and Chater (2016)
argue for a ‘now-or-never’ bottleneck in language
processing; incoming inputs need to be rapidly re-
coded and passed on for further processing to pre-
vent interference from the rapidly incoming stream
of new material. In line with this theory, Futrell
et al. (2020) proposed a model of lossy-context sur-
prisal based on a lossy representation of memory.
Recurrent processing, where input is forgotten as
soon as it is processed and only available for sub-
sequent processing through a bounded-size hidden
state, is more compatible with these theories than
the Transformer’s attention operation.

3 Methods

We train LMs with Transformer and GRU architec-
tures and compare how well their surprisal explains
human behavioural and neural data. Although
a state-of-the-art pre-trained model can achieve
higher LM quality, we opt to train our own models
for several reasons. Firstly, the predictive power
of surprisal increases with language model quality
(Goodkind and Bicknell, 2018), so to separate the
effects of LM quality from those of the architectural
differences, the architectures must be compared at
equal LM capability. We also need to make sure
both models have seen the same sentences. Train-
ing our own models gives us control over training
material, hyper-parameters and LM quality to make
a fair comparison.

Perhaps most importantly, we test our models
on previously collected human sentence processing
data. Most popular large-scale pre-trained models
use efficient byte pair encodings as input rather
than raw word tokens. This is a useful technique
for creating the best possible LM, but also a crucial
mismatch with how our test material was presented
to the human subjects. It is not possible to directly
compare the surprisal generated on BPEs to whole-
word measures such as gaze durations and reading
times.

3.1 Language Model Architectures

We first trained a GRU model using the same ar-
chitecture as Aurnhammer and Frank (2019): an
embedding layer with 400 dimensions per word, a
500-unit GRU layer, followed by a 400-unit linear
layer with a tanh activation function, and finally
an output layer with log-softmax activation func-
tion. All LMs used in this experiment use randomly
initialised (i.e., not pre-trained) embedding layers.

We implement the Transformer in PyTorch fol-
lowing Vaswani et al. (2017). To minimise the
differences between the LMs, we picked parame-
ters for the Transformer such that the total number
of weights is as close as possible to the GRU model.
We also make sure the embedding layers for the
models share the same initial weights. The Trans-
former model has an embedding layer with 400
dimensions per word, followed by a single Trans-
former layer with 8 attention heads and a fully
connected layer with 1024 units, and finally an
output layer with log-softmax activation function.
The total number of parameters for our single-layer
GRU and Transformer models are 9,673,137 and
9,581,961 respectively.

We also train two-layer GRU and Transformer
models. Neural networks tend to increase in ex-
pressiveness with depth (Abnar et al., 2019; Giu-
lianelli et al., 2018) and a second layer allows
the Transformer to use implicit order information,
as explained above. While results (see Section
4.2) showed that the two-layer Transformer outper-
formed the single-layer Transformer in explaining
the human reading data, the Transformer did not
further benefit from an increase to four layers so we
include only the single and two layer models. We
did not see a performance increase in the two-layer
GRU over the the single-layer GRU and therefore
did not try to further increase its layer depth.

3.2 Language Model Training

We train our LMs on Section 1 of the English Cor-
pora from the Web (ENCOW 2014; Schäfer, 2015),
consisting of sentences randomly selected from the
web. We first exclude word tokens containing nu-
merical values or punctuation other than hyphens
and apostrophes, and treat common contractions
such as ‘don’t’ as a single token. Following Au-
rnhammer and Frank (2019) we then select the
10,000 most frequent word types from ENCOW.
134 word types from the test data (see Section 3.3)
that were not covered by these most frequent words
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are added for a final vocabulary of 10,134 words.
We select the sentences from ENCOW that con-
sist only of words in the vocabulary and limit the
sentence length to 39 tokens (the longest sentence
in the test data). Our training data contains 5.9M
sentences with a total of 85M tokens.

The LMs are trained on a standard next-word pre-
diction task with cross-entropy loss. In the Trans-
former, we apply a mask to the upper diagonal of
the attention matrix such that each position can
only attend to itself and previous positions. To ac-
count for random effects of weight initialisation
and data presentation order we train eight LMs of
each type and share the random seeds between LM
types so each random presentation order and em-
bedding layer initialisation is present in both LM
types. The LMs were trained for two epochs using
stochastic gradient descent with a momentum of
0.9. Initial learning rates (0.02 for the GRU and
0.005 for the Transformer) were chosen such that
the language modelling performance of the GRU
and Transformer models are as similar as possi-
ble. The learning rate was halved after 1

3 ,
2
3 , and

all sentences during the first epoch and then kept
constant over the second epoch. LMs were trained
on minibatches of ten sentences.

3.3 Human Reading Data

We use the self paced reading (SPR, 54 partici-
pants) and eye-tracking (ET, 35 participants) data
from Frank et al. (2013) and the EEG data (24
participants) from Frank et al. (2015). In these
experiments, participants read English sentences
from unpublished novels. In the SPR and EEG
experiments, the participants were presented sen-
tences one word at a time. In the SPR experiment
the reading was self paced while in the EEG ex-
periment words had a fixed presentation time. In
the ET experiment, participants were shown full
sentences while an eye tracking device monitored
which word was fixated. The SPR stimuli consist
of 361 sentences, with the EEG and ET stimuli
being a subset of the 205 shortest SPR stimuli. The
experimental measures representing processing ef-
fort of a word are reading time for the SPR data
(time between key presses), gaze duration for the
ET data (time a word is fixated before the first fixa-
tion on a different word) and N400 amplitude for
the EEG data (average amplitude at the centropari-
etal electrodes between 300 and 500 ms after word
onset; Frank et al., 2015).

We exclude from analysis sentence-initial and
-final words, and words directly followed by a
comma. From the SPR and ET data we also ex-
clude the word following a comma, and words
with a reading time under 50 ms or over 3500
ms. From the EEG data we exclude datapoints
that were marked by Frank et al. (2015) as contain-
ing artifacts. The numbers of data points for SPR,
ET, and EEG were 136,727, 33,001, and 32,417,
respectively.

3.4 Analysis Procedure

At 10 different points during training (1K, 3K, 10K,
30K, 100K, 300K, 1M, 3M sentences and after
the first and second epoch) we save each LM’s
parameters and estimate a surprisal value on each
word of the 361 test sentences.

3.4.1 Linear Mixed Effects Regression
Following Aurnhammer and Frank (2019), we anal-
yse how well each set of surprisal values predicts
the human sentence processing data using linear
mixed effects regression (LMER) models with the
MixedModels package in Julia (Bates et al., 2019).
For each datasets (SPR, ET, and EEG) we fit a
baseline LMER model which takes into account
several factors known to influence processing ef-
fort. The dependent variables for the SPR and ET
models are log-transformed reading time and gaze
duration, respectively; for the EEG model it is the
size of the N400 response. All LMER models in-
clude log-transformed word frequency (taken from
SUBTLEXus; Brysbaert and New, 2009), word
length (in characters) and the word’s position in the
sentence as fixed effects.

Spill-over occurs when processing a word is not
yet completed when the next word is read (Rayner,
1998).To account for spill-over in the SPR and ET
data we include the previous word’s frequency and
length. For the SPR data, we include the previous
word’s reading time to account for the high corre-
lation between consecutive words’ reading times.
For the EEG data, we include the baseline activ-
ity (average amplitude in the 100 ms before word
onset). All fixed effects were standardised, and all
LMER models include two-way interaction effects
between all fixed effects, by-subject and by-item
(word token) random intercepts, and by-subject
random slopes for all fixed effects.

After fitting the baseline models, we include the
surprisal values (for SPR and ET also the previous
word’s surprisal) as fixed effects, but no new in-
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teractions. For each LMER model with surprisal,
we calculate the log-likelihood ratio with its corre-
sponding baseline model, indicating the decrease
in model deviance due to adding the surprisal mea-
sures. The more the surprisal values decrease the
model deviance, the better they predict the human
reading data. We call this log-likelihood ratio the
goodness-of-fit between the surprisal and the data.
Surprisal from the early stages of training often
received a negative coefficient, contrary to the ex-
pected longer reading times and higher N400 am-
plitude for higher surprisal. This could be caused
by collinearity, most likely between surprisal and
the log-frequency, which was confirmed by their
very high correlation (> .9) and Variance Infla-
tion Factors (> 15) (Tomaschek et al., 2018). Ap-
parently, the neural networks are very sensitive to
word frequency before they learn to pick up on
more complex relations in the data. We indicate af-
fected goodness-of-fit scores by adding a negative
sign and excluded these scores from the next stage
of analysis.

3.4.2 Generalised Additive Modelling
As said before, it is well known that surprisal val-
ues derived from better LMs are a better fit to hu-
man reading data (Monsalve et al., 2012; Frank
et al., 2015; Goodkind and Bicknell, 2018). We use
generalised additive modelling (GAM) to assess
whether the LMs differ in their ability to explain
the human reading data at equal language mod-
elling capability, that is, because of their architec-
tural differences and not due to being a better LM.
The log-likelihood ratios obtained in the LMER
analyses are a measure of how well each LM ex-
plains the human reading data. We use each LM’s
average log probability over the datapoints used
in the LMER analyses as a measure of the LM’s
language modelling capability. Separate GAMs
are fit for each of the three datasets, using the R
package mgcv by (Wood, 2004). LM type (single-
layer GRU, two-layer GRU, etc.) is used as an
unordered factor so that separate smooths are fit for
each LM type. Furthermore, we add training repeti-
tion (i.e., the random training order and embedding
initialisation) as a random smooth effect.

4 Results

4.1 LM Quality and Goodness-of-Fit

Figure 2 shows the goodness-of-fit values from the
LMER models and the smooths fit by the GAMs.

Overall we see the expected relationship where
higher LM quality results in higher goodness of
fit. The LM quality increases monotonically during
training, meaning the clusters seen in the scatter-
plots correspond to the points during training where
the network parameters were stored. The models
do seem to reach similar levels of LM quality at
the end of training: The average log probability of
the best LM (two-layer Transformer) is only 0.17
higher than the worst LM (two-layer GRU).

4.2 GAM Comparisons
The bottom row of Figure 2 shows the estimated
differences between the GAM curves in the mid-
dle row. The two-layer GRU does not seem to im-
prove over the single-layer GRU. It outperforms the
single-layer GRU only in the early stages of train-
ing on the EEG data, with the single-layer GRU
outperforming it in the later stages and on the SPR
data. The two-layer GRU also reaches lower LM
quality on all datasets. For the Transformers we
see the opposite, with the two-layer Transformer
outperforming the single-layer Transformer on the
N400 data at the end of training and never being
outperformed by its shallower counterpart. The
two-layer Transformer reaches a higher maximum
LM quality on all datasets.

For the comparison between architectures, we
only compare the best model of each type, i.e.,
the single-layer GRU and two-layer Transformer.
The GRU outperforms the Transformer in the early
stages of training (3K-300K sentences) on the
N400 data, but the Transformer outperforms the
GRU at the end of training on both the SPR and
N400 data. On the gaze duration data, there are
some performance differences with the Transform-
ers and GRUs outperforming each other at different
points during training but there are no differences
in the later stages of training.

4.3 Shorter and Longer Sentences in SPR
The SPR data contains a subset of sentences longer
(in number of characters) than those in the EEG/ET
data. As the Transformer has unlimited memory
of past inputs, the presence of longer sentences
could explain why it outperformed the GRU on the
SPR data. We repeated the analysis of the single-
and two-layer GRUs and Transformers but only
on those sentences from the SPR data that also
occurred in the EEG/ET data. On these shorter
sentences, there are no notable performance differ-
ences between any of the LM architectures (Figure
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Figure 2: Top row: results of the linear mixed effects regression analysis grouped by LM type. These scatter-plots
show the resulting goodness-of-fit values plotted against the average log-probability over the included test data.
Negative goodness-of-fit indicates effects in the unexpected direction. Middle row: smooths resulting from the
GAMs fitted on the goodness-of-fit data (excluding negative values), with their 95% confidence intervals. Bottom
row: estimated differences in goodness-of-fit score. The markings on the x-axis and the vertical lines indicate
intervals where zero is not within the 95% confidence interval. Each curve represents a comparison between
two models, with an estimated difference above zero meaning the first model performed better and vice versa for
differences below zero.
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3). When we test on only those sentences that were
not included in the EEG/ET experiments (i.e., the
longer sentences), the Transformers outperform the
GRUs as they did on the complete SPR dataset.

5 Discussion

We trained several language models based on Trans-
former and GRU architectures to investigate how
well these neural networks account for human read-
ing data. At equal LM quality, the Transformers
generally outperform the GRUs. It seems that their
attention-based computation allows them to better
fit the self-paced reading and EEG data. This is
an unexpected result, as we considered the Trans-
former’s unlimited memory and access to past in-
puts implausible given current theories on human
language processing.

Notably, the Transformer outperformed the GRU
on the two datasets where sentences were presented
to participants word by word (SPR and EEG).
Neurophysiological evidence suggests that natu-
ral (whole sentence) reading places different de-
mands on the reader than word-by-word reading,
leading to different encoding and reading strategies
(Metzner et al., 2015). Metzner et al. speculate
that word-by-word reading places greater demand
on working memory, leading to faster retrieval of
previously processed material. This seems to be
supported by our results; the Transformer has di-
rect access to previous inputs and hidden states and
is better at explaining the RT and N400 data from
the word-by-word reading experiments. However,
when we split the SPR data by sentence length, the
results suggest that the Transformers’ advantage
is mainly due to performing better on the longer
SPR sentences. On the other hand, the Transformer
did outperform the GRU on the EEG dataset which
contains only the shorter subset of sentences. The
question remains whether the Transformer’s unlim-
ited memory is an advantage on longer sentences
only, or if it could also explain why it performs bet-
ter on data presented word-by-word. This question
could be resolved with new data gathered in experi-
ments where the same set of stimuli is used in SPR
and EEG. Furthermore, future research could do a
more specific error analysis to identify on which
sentences the Transformer performs better, and per-
haps even on which sentences the GRU performs
better. Such an analysis may reveal the models are
sensitive to certain linguistic properties allowing
us to form testable hypotheses.

Surprisingly, adding a GRU layer did not im-
prove performance, and even hurt it on reading
time data, despite previous research showing that
increasing layer depth in RNNs allows them to
capture more complex patterns in linguistic data
(Abnar et al., 2019; Giulianelli et al., 2018). The
Transformers did show improvement when adding
a second layer but did not improve much with four
layers. As explained in Section 2, a single-layer
Transformer cannot make use of implicit order in-
formation in the sequence. When adding a single
layer to our Transformer, the second layer operates
no longer on raw input embeddings but on contex-
tualised hidden states allowing the model to utilise
implicit input order information. Further layers in-
crease the complexity of the model but do not make
such a fundamental difference in how input is pro-
cessed. In future work we could investigate how
powerful this implicit order information is, and
whether multi-layer Transformer LMs no longer
require the additional explicit order information.

Our results raise the question how good recur-
rent models are as models of human sentence pro-
cessing if they are outperformed by a cognitively
implausible model. However, one could also inter-
pret the results in favour of Transformers (and the
attention mechanism) being plausible as a cogni-
tive model. While unlimited working memory is
certainly implausible, some argue that the capac-
ity of working memory is even smaller than often
thought (only 2 or 3 items) and that language pro-
cessing depends on rapid direct-access retrieval of
items from storage (McElree, 1998; Lewis et al.,
2006). Cue based retrieval theory posits that items
are rapidly retrieved based on how well they match
the cue (Parker et al., 2017). This is compatible
with the attention mechanism used in Transformers
which, simply put, weighs previous inputs based
on their similarity to the current input. Cue-based
retrieval models due have a recency bias due to
decaying activation of memory representations but
it is possible to implement a similar mechanism in
Transformers (Peng et al., 2021).

Interestingly, Lewis et al. (2006) claims that se-
rial order information is retrieved too slowly to
support sentence comprehension. However, our
two-layer Transformer outperforms the single layer
Transformer, presumably due to order information
implicitly arising as a natural result from the atten-
tion operation being performed. The use of serial
order information could be compatible with cue-
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Figure 3: Top row: the results of the linear mixed effects regression analysis on the SPR data, where the data is split
by whether the sentences were present in the ET/EEG experiment or not. These scatter-plots show the resulting
goodness-of-fit values plotted against the average surprisal over the included test data. Middle row: the smooths
resulting from the GAMs fitted on the goodness-of-fit data, with their 95% confidence intervals. Bottom row: the
estimated differences in goodness-of-fit score with intervals where 0 is not withing the 95% confidence interval
marked by vertical lines and markers on the x-axis. Each curve represents a comparison between two models, with
an estimated difference above zero meaning the first model performed better and vice versa for differences below
zero.
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based retrieval models if the order information can
naturally arise from the retrieval operations.

In conclusion, we investigated how the Trans-
former architecture holds up as a model of human
sentence processing compared to the GRU. Our
Transformer LMs are better at explaining the EEG
and SPR data which contradicts the widely held
idea that human sentence processing involves recur-
rent and immediate processing with lossy retrieval
of previous input and provides evidence for cue-
based retrieval in sentence processing.
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Abstract

Hierarchical sentence structure plays a role
in word-by-word human sentence comprehen-
sion, but it remains unclear how best to char-
acterize this structure and unknown how ex-
actly it would be recognized in a step-by-step
process model. With a view towards sharpen-
ing this picture, we model the time course of
hemodynamic activity within the brain during
an extended episode of naturalistic language
comprehension using Combinatory Categorial
Grammar (CCG). CCG has well-defined incre-
mental parsing algorithms, surface composi-
tional semantics, and can explain long-range
dependencies as well as complicated cases of
coordination. We find that CCG-derived pre-
dictors improve a regression model of fMRI
time course in six language-relevant brain re-
gions, over and above predictors derived from
context-free phrase structure. Adding a spe-
cial Revealing operator to CCG parsing, one
designed to handle right-adjunction, improves
the fit in three of these regions. This evidence
for CCG from neuroimaging bolsters the more
general case for mildly context-sensitive gram-
mars in the cognitive science of language.

1 Introduction

The mechanism of human sentence comprehen-
sion remains elusive; the scientific community has
not come to an agreement about the sorts of ab-
stract steps or cognitive operations that would best-
explain people’s evident ability to understand sen-
tences as they are spoken word-by-word. One way
of approaching this question begins with a com-
petence grammar that is well-supported on lin-
guistic grounds, then adds other theoretical claims
about how that grammar is deployed in real-time
processing. The combined theory is then evaluated
against observations from actual human language
processing. This approach has been successful
in accounting for eye-tracking data, for instance

∗Correspondence to m.stanojevic@ed.ac.uk

starting from Tree-Adjoining Grammar and adding
a special Verification operation (Demberg et al.,
2013).

In this spirit, the current paper models the hemo-
dynamics of language comprehension in the brain
using complexity metrics from psychologically-
plausible parsing algorithms. We start from a
mildly context-sensitive grammar that supports in-
cremental interpretation,1 Combinatory Categorial
Grammar (CCG; for a review see Steedman and
Baldridge, 2011). We find that CCG offers an im-
proved account of fMRI blood-oxygen level depen-
dent time courses in “language network” brain re-
gions, and that a special Revealing parser operation,
which allows CCG to handle optional postmodi-
fiers in a more human-like way, improves fit yet
further (Stanojević and Steedman, 2019; Stanojević
et al., 2020). These results underline the consensus
that an expressive grammar, one that goes a little be-
yond context-free power, will indeed be required in
an adequate model of human comprehension (Joshi,
1985; Stabler, 2013).

2 A Focus on the Algorithmic Level

A step-by-step process model for human sentence
parsing would be a proposal at Marr’s (1982) mid-
dle level, the algorithmic level (for a textbook intro-
duction to these levels, see Bermúdez, 2020, §2.3).
While this is a widely shared research goal, a large
proportion of prior work linking behavioral and
neural data with parsing models has relied upon

1This work presupposes that sentence interpretation for the
most part reflects compositional semantics, and that compre-
hension proceeds by and large incrementally. This perspective
does not exclude the possibility that highly frequent or id-
iosyncratic patterns might map directly to interpretations in a
noncompositional way (see Ferreira and Patson, 2007; Blache,
2018 as well as Slattery et al., 2013; Paolazzi et al., 2019
and discussion of Bever’s classic 1970 proposal by Phillips
2013). de Lhoneux et al. (2019) shows how to accommodate
these cases as multi-word expressions in a CCG parser. Bhat-
tasali et al. (2019) maps brain regions implicated in these two
theorized routes of human sentence processing.
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Mary reads papers

NP (S\NP)/NP NP
mary′ λx.λy.reads′(y, x) papers′

>
S\NP

λy.reads′(y, papers′)
<

S
reads′(mary′, papers′)

(a) Right-branching derivation.

Mary reads papers

NP (S\NP)/NP NP
mary′ λx.λy.reads′(y, x) papers′

>T

S/(S\NP)
λp.p mary′

>B
S/NP

λx.reads′(mary′, x)
>

S
reads′(mary′, papers′)

(b) Left-branching derivation.

Figure 1: Semantically equivalent CCG derivations.

The flower that you love

NP/N N (N \N )/(S/NP) NP (S [dcl ]\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

N \N
<

N
>

NP

Figure 2: CCG derivation and extracted semantic de-
pendencies for a relative clause from the Little Prince.
Red highlighting indicates filler-gap relationship.

the surprisal linking hypothesis, which is not an al-
gorithm. In fact surprisal wraps an abstraction bar-
rrier around an algorithmic model, deriving pre-
dictions solely from the probability distribution on
that model’s outputs (for a review see Hale, 2016).
This abstraction is useful because it allows for the
evenhanded comparison of sequence-oriented mod-
els such as ngrams or recurrent neural networks
against hierarchical, syntax-aware models. And
indeed in eye-tracking, this approach confirms that
some sort of hierarchical structure is needed (see
e.g. Fossum and Levy, 2012; van Schijndel and
Schuler, 2015). This same conclusion seems to be
borne out by fMRI data (Henderson et al., 2016;
Brennan et al., 2016; Willems et al., 2016; Shain
et al., 2020).

But precisely because of the abstraction barrier
that it sets up, surprisal is ill-suited to the task of
distinguishing ordered steps in a processing mech-
anism. We therefore put surprisal aside in this
paper, focusing instead on complexity metrics that
are nearer to algorithms; the ones introduced be-
low in §5.3 all map directly on to tree traversals.
By counting derivation tree nodes, these metrics
track work that the parser does, rather than the rar-

ity of particular words or ambiguity of particular
constructions.2

Previous research at the algorithmic level has
been limited in various ways. Brennan et al.
(2016) used an expressive grammar, but it was not
broad coverage and the step counts were based on
derived X-bar trees rather than the derivation trees
that would need to be handled by a provably correct
parsing algorithm (Stanojević and Stabler, 2018).
Brennan et al. (2020) used a full-throated parser but
employed the Penn Treebank phrase structure with-
out explicit regard for long-distance dependency.
Figure 2 shows an example of one of these depen-
dencies.

3 Why CCG?

CCG presents an opportunity to remedy the lim-
itations identified above in section 2. As already
mentioned, CCG is appropriately expressive (Vijay-
Shanker and Weir, 1994). And it has special char-
acteristics that are particularly attractive for incre-
mental parsing. CCG can extract filler-gap depen-
dencies such as those in the object relative clause in
Figure 2, synchronously and incrementally build-
ing surface compositional semantics (cf. Demberg
2012).3 CCG also affords many different ways of

2Counting derivation-tree nodes dissociates from surprisal.
Brennan et al. (2020) addresses the choice of linking hypothe-
sis empirically by deriving both step-counting and surprisal
predictors from the same parser. The former but not the lat-
ter predictor significantly improves a regression model of
fMRI timecourse in posterior temporal lobe, even in the pres-
ence of a co-predictor derived from a sequence-oriented lan-
guage model.

3The derivations in Figure 1 and 2 use type-raising as a
parser operation. In the definition of CCG from Steedman
(2000) type-raising is not a syntactic, but a lexical operation.
The reason why we use it as a parsing operation is because
that is the way it was defined in the CCGbank (Hockenmaier
and Steedman, 2007) and because it is implemented as such
in all broad coverage parsers. Type-raising contributes to the
complexity metric described in Section 5.3
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deriving the same sentence (see Figure 1). These
alternative derivations all have the same semantics,
so from the point of view of comprehension they
are all equally useful. Steedman (2000, §9.2) ar-
gues that this flexible constituency is the key to
achieving human-like incremental interpretation
without unduly complicating the relationship be-
tween grammar and processor. Incremental in-
terpretation here amounts to delivering updated
meaning-representations at each new word of the
sentence. Such early delivery would seem to be
necessary to explain the high degree of incremen-
tality that has been demonstrated in laboratory ex-
periments (Marslen-Wilson, 1973; Altmann and
Steedman, 1988; Tanenhaus et al., 1995).

Other types of grammar rely upon special pars-
ing strategies to achieve incrementality. Eager
left-corner parsing (LC) is often chosen because it
uses a finite amount of memory for processing left-
and right-branching structures (Abney and Johnson,
1991). Resnik (1992) was the first to notice a simi-
larity between eager left-corner CFG parsing and
shift-reduce parsing of CCG left-branching deriva-
tions. In short, forward type-raising >T is like
LC prediction while forward function-composition
>B is like LC completion (both of these combi-
nators are used in Figure 2). However, CCG has
other combinators that make it even more incre-
mental. For instance, in a level one center embed-
ding such as “Mary gave John a book” a left-corner
parser cannot establish connection between Mary
and gave before it sees John. CCG includes a gener-
alized forward function composition >B2 that can
combine type-raised Mary S/(S\NP ) and gave
((S\NP )/NP )/NP into (S/NP )/NP .

To our knowledge, the present study is the first to
validate the human-like processing characteristics
of CCG by quantifying their fit to human neural
signals.

4 The Challenge of Right Adjunction for
Incremental Parsing

A particular grammatical analysis may be viewed
as imposing ordering requirements on left-to-right
incremental parser operations; it obligates certain
operations to wait until others have finished. A
case in point is right adjunction in sentences such
as “Mary reads papers daily.” (see Figure 3a). Here
the parser has built “Mary reads papers” eagerly, as
it should be expected from any parser with human-
like behavior, but then it encountered the adjunct

Mary reads papers daily

NP (S\NP)/NP NP (S\NP)\(S\NP)
>T

S/(S\NP)
>B

S/NP
>

S

(a) Problem — S\NP that needs to be modified was never built.

Mary reads papers daily

NP (S\NP)/NP NP (S\NP)\(S\NP)
>T >

S/(S\NP) S\NP
>

S

(b) Incremental tree rotation reveals the needed node of type
S\NP.

Mary reads papers daily

NP (S\NP)/NP NP (S\NP)\(S\NP)
>T >

S/(S\NP) S\NP
<

S\NP
>

S

(c) Right adjunct is attached to the revealed node.

Figure 3: Right adjunction. The right spine of each
derivation is highlighted in blue. The boxed node
S\NP is revealed after tree rotation. Psycholinguis-

tic implications are detailed in Stanojević et al. (2020).

“daily”. This adjunct is an optional postmodifier of
the verb phrase “reads papers.” It could be analyzed
using the rule VP → VP AdvP where “daily” is a
one-word adverbial phrase adjunct of VP. With this
rule, a context-free phrase structure parser will be
forced either (i) to backtrack upon seeing “daily” or
(ii) to leave the VP open for postmodification (Hale,
2014, pages 31–33 opts for the latter). Neither of
these alternatives is particularly appealing from
the perspective of cognitive modeling, and indeed
Sturt and Lombardo (2005) report a pattern of eye-
tracking data that appears to be inconsistent with
CCG. They suggest that CCG’s account of con-
junction, itself analyzable as adjunction, imposes
an ordering requirement that cannot be satisfied in
psycholinguistically-realistic way.

Sturt and Lombardo’s 2005 finding is an impor-
tant challenge for theories of incremental interpre-
tation, including neurolinguistic models based on
LC parsing (Brennan and Pylkkänen, 2017; Nelson
et al., 2017). Stanojević and Steedman (2019) offer
a crucial part of a solution to this problem.

First, they relax the notion of attaching of a
right-adjunct: an adjunct does not have to attach
to the top category of the tree but it can attach to
any node on the right spine of the derivation, as
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long as the attachment respects the node’s syntac-
tic type. In Figure 3a the right spine is highlighted
in blue. However, none of the constituents on the
right spine can be modified by “daily” because
the constituent that needs to be modified, “reads
papers” was never built; it is not part of the left-
branching derivation. To address this, the Stanoje-
vić and Steedman parser includes a second innova-
tion: it applies a special tree-rotation operation that
transforms left-branching derivations into semanti-
cally equivalent right-branching ones. In Figure 3b
this operation produces a new right spine, revealing
a node of type S\NP , which is the type assigned
to English verb phrases in CCG. In Figure 3c the
adjunct “daily” is properly attached to this boxed
node via Application, a CCG rule that is used quite
generally across many different constructions.

The idea of attaching right-adjuncts to a node of
an already-built tree has appeared several times be-
fore (Pareschi and Steedman, 1987; Niv, 1994; Am-
bati et al., 2015; Stanojević and Steedman, 2019)
and in all cases it crucially leverages CCG’s flexible
constituency as shown in Figure 1. See Stanojević
et al. (2020) for more detailed treatment of Sturt
and Lombardo’s construction using predictive com-
pletion. The present study examines whether or not
the addition of the Revealing operation increases
the fidelity of CCG-derived parsing predictions to
human fMRI time course data.

5 Methods

We follow Brennan et al. (2012) and Willems et al.
(2016) in using a spoken narrative as a stimulus in
the fMRI study. Participants hear the story over
headphones while they are in the scanner. The
neuroimages collected during their session serve as
data for regression modeling with word-by-word
predictors derived from the text of the story.

5.1 The Little Prince fMRI Dataset

The English audio stimulus was Antoine de Saint-
Exupéry’s The Little Prince, translated by David
Wilkinson and read by Karen Savage. It constitutes
a fairly lengthy exposure to naturalistic language,
comprising 19,171 tokens, 15,388 words and 1,388
sentences, and lasting over an hour and a half. This
is the fMRI version of the EEG corpus described
in Stehwien et al. (2020). It has been used before
to investigate a variety of brain-language questions
unrelated to CCG parsing (Bhattasali et al., 2019;
Bhattasali and Hale, 2019; Li et al., 2018). Prior to

parsing, number expressions were spelled out i.e.
42 as “forty two” and all punctuation was removed.

5.1.1 Participants
Participants comprised fifty-one volunteers (32
women and 19 men, 18-37 years old) with no his-
tory of psychiatric, neurological, or other medi-
cal illness or history of drug or alcohol abuse that
might compromise cognitive functions. All strictly
qualified as right-handed on the Edinburgh handed-
ness inventory (Oldfield, 1971). All self-identified
as native English speakers and gave their written
informed consent prior to participation, in accor-
dance with the university’s IRB guidelines. Partici-
pants were compensated for their time, consistent
with typical practice for studies of this kind. They
were paid $65 at the end of the session. Data from
three out of the 51 participants was excluded be-
cause they did not complete the entire session or
moved their head excessively.

5.1.2 Presentation
After giving their informed consent, participants
were familiarized with the MRI facility and as-
sumed a supine position on the scanner gurney. The
presentation script was written in PsychoPy (Peirce,
2007). Auditory stimuli were delivered through
MRI-safe, high-fidelity headphones (Confon HP-
VS01, MR Confon, Magdeburg, Germany) inside
the head coil. Using a spoken recitation of the US
Constitution, an experimenter increased the vol-
ume until participants reported that they could hear
clearly. Participants then listened passively to the
audio storybook for 1 hour 38 minutes. The story
had nine chapters and at the end of each chapter the
participants were presented with a multiple-choice
questionnaire with four questions (36 questions in
total), concerning events and situations described
in the story. These questions served to assess par-
ticipants’ comprehension. The entire session lasted
around 2.5 hours.

5.1.3 Data Collection
Imaging was performed using a 3T MRI scanner
(Discovery MR750, GE Healthcare, Milwaukee,
WI) with a 32-channel head coil at the Cornell MRI
Facility. Blood Oxygen Level Dependent (BOLD)
signals were collected using a T2 -weighted echo
planar imaging sequence (repetition time: 2000 ms,
echo time: 27 ms, flip angle: 77deg, image accel-
eration: 2X, field of view: 216×216 mm, matrix
size 72×72, and 44 oblique slices, yielding 3 mm
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Figure 4: Different parsing strategies for constituency trees. Below each word is a complexity measure associated
with that word. It is equivalent to the number of round nodes visited by the parser when the word is being integrated.

isotropic voxels). Anatomical images were col-
lected with a high resolution T1-weighted (1×1×1
mm3 voxel) with a Magnetization-Prepared RApid
Gradient-Echo (MP-RAGE) pulse sequence.

5.1.4 Preprocessing
Preprocessing allows us to make adjustments to
improve the signal to noise ratio. Primary prepro-
cessing steps were carried out in AFNI version 16
(Cox, 1996) and include motion correction, coreg-
istration, and normalization to standard MNI space.
After the previous steps were completed, ME-ICA
(Kundu et al., 2012) was used to further preprocess
the data. ME-ICA is a denoising method which
uses Independent Components Analysis to split
the T2*-signal into BOLD and non-BOLD compo-
nents. Removing the non-BOLD components miti-
gates noise due to motion, physiology, and scanner
artifacts (Kundu et al., 2017).

5.2 Grammatical Annotations

We annotated each sentence in The Little Prince
with phrase structure parses from the benepar con-
stituency parser (Kitaev and Klein, 2018). Previ-
ous studies have used the Stanford CoreNLP parser,
but benepar is much closer to the current state-
of-the-art in constituency parsing. To find CCG
derivations we used RotatingCCG by Stanojević
and Steedman (2019; 2020).

5.3 Complexity Metric

The complexity metric used in this study is the
number of nodes visited in between leaf nodes, on
a given traversal of a derivation tree. This corre-
sponds to the number of parsing actions that would

be taken, per word, in a mechanistic model of hu-
man comprehension (see e.g. Kaplan, 1972; Fra-
zier, 1985). These numbers (i.e. written below
the leaves of the trees in Figure 4) are intended as
predictions about sentence processing effort, which
may be reflected in the fMRI BOLD signal (see
discussion of convolution with hemodynamic re-
sponse function in §6.2).

For constituency parses we examine bottom-
up (aka shift-reduce parsing), top-down, and left-
corner parsing. Figure 4 shows all these parsing
strategies on an example constituency tree. This
Figure highlights three points: (a) that the complex-
ity metrics correspond to visited nodes of the tree
(b) that they are incremental metrics, computed
word by word and (c) that alternative parsing strate-
gies lead to different predictions.

In CCG all natural parsing strategies are bottom-
up. The main difference among them is what
kind of derivation they deliver. We evaluate right-
branching derivations, left-branching derivations
and revealing derivations; the latter are simply left-
branching derivations with the addition of the Re-
vealing operation. To compute this we get the best
derivation from a CCG parser and then convert it to
the three different kinds of semantically equivalent
derivations using the tree-rotation operation (Niv,
1994; Stanojević and Steedman, 2019).

In the case of revealing derivations we count
only the nodes that are constructed with reduce and
right-adjunction operations, but we do not count
the nodes constructed with tree-rotation. This is
because tree-rotation is not an operation that intro-
duces anything new in the interpretation — tree-
rotation only helps the right-adjunction operation
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reveal the constituent that needs to be modified.
All parsing strategies have the same total num-

ber of nodes, but only differ in the abstract tim-
ing of those nodes’ construction. In general, left-
branching derivations construct nodes earlier than
do the corresponding right-branching derivations.
However, in the case of right-adjunction both left-
and right-branching derivations delay construction
of many nodes until the right-adjunct is consumed.
This is not the case with the revealing derivations
that are specifically designed to allow flexibility
with right-adjuncts.

5.4 Hypotheses

Using the formalism-specific and parsing strategy-
specific complexity metrics defined above in §5.3,
we evaluate three hypotheses.

Hypothesis 1 (H1): CCG improves a model of
fMRI BOLD time courses above and beyond
context-free phrase structure grammar.

Mildly context-sensitive grammars like CCG cap-
ture properties of sentence structure that are only
very inelegantly covered by context-free phrase
structure grammars. For instance, the recovery of
filler-gap dependency in Figure 2 follows directly
from the definition of the combinators. This hy-
pothesis supposes that the brain indeed does work
to recover these dependencies, and that that work
shows up in the BOLD signal.

Hypothesis 2 (H2): The Revealing parser opera-
tion explains unique variability in the BOLD signal,
variability not accounted for by other CCG deriva-
tional steps.

As described above in §4, Revealing allows a CCG
parser to handle right-adjunction gracefully. This
hypothesis in effect proposes that this enhanced
psychological realism should extend to fMRI.

Hypothesis 3 (H3): Left-branching CCG deriva-
tions improve BOLD activity prediction over right-
branching.

Left-branching derivations provide maximally in-
cremental CCG analyses. If human processing is
maximally incremental, and if this incrementality
is manifested in fMRI time courses, then complex-
ity metrics based on left-branching CCG deriva-
tions should improve model fit over and above
right-branching.

6 Data Analysis

6.1 Regions of Interest
We consider six regions of interest in the left hemi-
sphere: the pars opercularis (IFG_oper), the
pars triangularis (IFG_tri), the pars orbitalis
(IFG_orb), the superior temporal gyrus (STG), the
superior temporal pole (sATL) and the middle tem-
poral pole (mATL). These regions are implicated
in current neurocognitive models of language (Ha-
goort, 2016; Friederici, 2017; Matchin and Hickok,
2020). However evidence suggests that partic-
ular sentence-processing operations could be lo-
calized to different specific regions within this
set (Lopopolo et al., 2021; Li and Hale, 2019;
Brennan et al., 2020). We use the parcellation
provided by the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) for
SPM12. For each subject, extracting the average
blood-oxygenation level-dependent (BOLD) sig-
nal from each region yields 2,816 data points for
each region of interest (ROI). These data served
as dependent measures in the statistical analyses
described below in §6.3.

6.2 Predictors
The predictors of theoretical interest are the parser-
derived complexity metrics described above in sec-
tion 5.3. To these we add additional covariates
that are known to influence human sentence pro-
cessing. The first of these is Word Rate, which
has the value 1 at the offset of each word and
zero elsewhere. The second is (unigram) word Fre-
quency. This is a log-transformed attestation count
of the given word type in a corpus of movie sub-
titles (Brysbaert and New, 2009). The third is the
root-mean-squared (RMS) intensity of the audio.
Finally we include the fundamental frequency f0 of
the narrator’s voice as recovered by the RAPT pitch
tracker (Talkin, 1995). These control predictors
serve to rule out effects that could be explained by
general properties of speech perception (cf. Good-
kind and Bicknell 2021; Bullmore et al. 1999; Lund
et al. 2006). The word-by-word complexity metrics
are given timestamps according to the offsets of the
words with which they correspond.

In order to use these predictors to model the
BOLD signal, we convolve the time-aligned vec-
tors with the SPM canonical hemodynamic re-
sponse function which consists of a linear com-
bination of two gamma functions and links neural
activity and the estimated BOLD signal (see e.g.
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Henson and Friston, 2007). After convolution, each
of the word-by-word metrics of interest is orthog-
onalized against convolved word rate to remove
correlations attributable to their common timing.
Figure 7 in the Appendix reports correlations be-
tween these predictors.

6.3 Statistical Analyses

Data were analyzed using linear mixed-effects re-
gression.4 All models included random intercepts
for subjects. Random slopes for the predictors were
not retained either because of convergence failures
or because they did not alter the pattern of results.

A theory-guided, model comparison framework
was used to contrast alternative hypotheses (articu-
lated in §5.4). The Likelihood Ratio test was used
to compare the fit of competing regression mod-
els (for an introduction, see Bliese and Ployhart,
2002). Effects were considered statistically signif-
icant with α = 0.008 (0.05/6 regions, following
the Bonferroni procedure).5

As a quantitative comparison between ROIs was
not directly relevant for the research questions at
issue, statistical analyses were carried out by re-
gion. This approach, as compared to examining the
effects of, and the interactions between, all ROIs
and predictors in the same analysis, reduced the
complexity of the models and facilitated parameter
estimation.

Hypothesis H1 was tested by examining the over-
all predictive power of the CCG-derived predic-
tors over and above a baseline model that included
word rate, word frequency, sound power, fundamen-
tal frequency, and word-by-word node counts de-
rived from all three phrase structure parsing strate-
gies:

(I) BOLD ∼ word_rate + word_freq + RMS + f0 +
bottom-up + top-down + left-corner {CCG-left +
CCG-right + CCG-revealing}

To test H2, we examined whether node counts
incorporating the Reveal operation explained
BOLD signal variability over and above a base-
line model that included, in addition to the vari-
ables in (I), node counts from left branching and
right branching CCG derivations:

4Regression analyses used the lme4 R package (version
1.1-26; Bates et al., 2015).

5A Bonferroni correction of 0.05/6 reflects the fact each
of the three hypotheses was tested with a single Likelihood
Ratio test per ROI, irrespective of the number of variables in
the models compared.

(II) BOLD ∼ word_rate + word_freq + RMS + f0
+ bottom-up + top-down + left-corner + CCG-left
+ CCG-right {CCG-revealing}

Last, for H3 in section 5.4, we tested whether
word-by-word traversals of left branching CCG
derivations accounted for any significant amount
of BOLD signal variability over and above
right branching. This amounts to asking whether
CCG processing is maximally eager or maxi-
mally delayed.

(III) BOLD ∼ word_rate + word_freq + RMS + f0
+ bottom-up + top-down + left-corner + CCG-right
{CCG-left}

7 Results

Behavioral results on the comprehension task
showed attentive listening to the spoken narrative
with average response accuracy of 90% (SD =
3.7%).

7.1 H1: CCG-specific effects

The first question that we investigated was whether
CCG derivations would account for any significant
amount of BOLD activity over and above bottom-
up, top-down, and left-corner phrase structure pars-
ing strategies in addition to baseline covariates (i.e.
as introduced above in §5.3 and depicted in Fig-
ure 4). The overall predictive power of the three
CCG derivations emerged to significantly improve
the models fit in all six regions examined, thus
providing strong support for H1. For all analyses,
the complete tables of results are provided in the
Appendix (Tables 1 to 6).

To better understand the source of those effects,
we followed-up with an additional set of analyses
in which we contrasted one CCG parsing strategy
at a time against the same baseline model. These
CCG parsing strategies exhibit a region-specific
pattern of fits which is summarized in Figure 5.6

7.2 H2: The Revealing parser operation

The second hypothesis, H2 in section 5.4, is about
hemodynamic effects of the Revealing operation.
The results summarized in Figure 6 supported this
hypothesis: the CCG-revealing predictor signifi-
cantly improved model fit to the BOLD signal in
three of six ROIs examined (IFG_tri, IFG_oper,

6The direction of the effects for the analyses in both Figure
5 and 6 was not affected by the correlation among variables
(Figure 7 in the Appendix).
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Figure 5: CCG derivation effects by ROI. Coefficient point estimates ± SE. Filled points indicate that the predictor
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after Bonferroni correction across ROIs.
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Figure 6: Effects of the CCG-revealing predictor
by ROI. Coefficient point estimates ± SE. Filled
points indicate that the predictor significantly improved
model fit. Note that for IFG_orb and mATL, the ef-
fects became only marginally significant after Bonfer-
roni correction.

sATL) and marginally significant in two others af-
ter Bonferroni correction (IFG_orb and mATL).
The positive sign of the statistically significant co-
efficients in Figure 6 indicates that, as expected, in-
creased processing cost, as derived from the CCG-
revealing parser, was associated with increased
BOLD activity.

7.3 H3: Left- versus Right-branching

In the last set of analyses, we investigated whether
left-branching CCG derivations improve BOLD ac-
tivity predictions over right-branching derivations

(H3 in section 5.4).
It emerged that the CCG-left predictor signif-

icantly improved model fit in IFG_tri, IFG_orb,
STG, mATL, and, but only marginally significant
after Bonferroni correction, IFG_oper. These find-
ings, overall, indicate the ability of left branching
CCG derivations to account for a unique amount
of BOLD activity during language processing.

8 Discussion

The improvement that CCG brings to modeling
fMRI time courses — over and above predictors de-
rived from well-known context-free parsing strate-
gies — confirms that mildly context-sensitive gram-
mars capture real aspects of human sentence pro-
cessing, as suggested earlier by Brennan et al.
(2016). We interpret the additional improvement
due to the Revealing operation as neurolinguis-
tic evidence in support of that particular way of
achieving heightened incrementality in a parser.
While it is possible that other incremental pars-
ing techniques might adequately address the chal-
lenge of right adjunction (see §4 above) we are
at present unaware of any that are supported by
evidence from human neural signals. The pattern-
ing of fits across regions aligns with the suggestion
that different kinds of processing, some more ea-
ger and others less so, may be happening across
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the brain (cf. Just and Varma 2007). For instance
the explanatory success of predictors derived from
left-branching and Revealing derivations in the mid-
dle temporal pole (mATL) supports the idea that
this region tracks tightly time-locked, incremen-
tal language combinatorics7 while other regions
such as the inferior frontal gyrus (IFG) hang back,
waiting to process linguistic relationships until the
word at which they would be integrated into a right-
branching CCG derivation (roughly consistent with
Friederici, 2017; Pylkkänen, 2019).

In the superior temporal gyrus (STG) the sign
of the effect changes for CCG-derived predictors.
This is the unique region where Lopopolo et al.
(2021) observe an effect of phrase structure pro-
cessing, as opposed to dependency grammar pro-
cessing. This could be because our CCG is lexical-
ized. Of course, the CCGbank grammar captures
many other aspects of sentence structure besides
lexical dependencies (see Hockenmaier and Steed-
man 2007).

Shain et al. (2020) use a different, non-
combinatory categorial grammar to model fMRI
time courses. Whereas this earlier publication em-
ploys the surprisal linking hypothesis to study pre-
dictive processing, the present study considers in-
stead the parsing steps that would be needed to re-
cover grammatical descriptions assigned by CCG.
This distinction can be cast as the difference be-
tween Marr’s computational and algorithmic lev-
els of analysis, as suggested above in §2. But be-
sides the choice of vantage point, there are con-
ceptual differences that lead to different modeling
at both levels. For instance, the generalized cate-
gorial grammar of Shain et al. (2020) is quite ex-
pressive and may go far beyond context-free power.
But in that study it was first flattened into a prob-
abilistic context-free grammar (PCFG) to derive
surprisal predictions. The present study avoids this
step by deriving processing complexity predictions
directly from CCG derivations using node count.
This directness is important when reasoning from
human data, such as neural signals, to mathemati-
cal properties of formal systems, such as grammars
(see discussion of Competence hypotheses in Steed-
man, 1989).

7This predictive relationship between left-branching
derivations in middle temporal pole timecourses is observed
in (the brains of) native speakers of English, a head-initial
language. An exciting direction for future work concerns the
possibility that the brain bases of language processing might
covary with typological distinctions like head direction (cf.
Bornkessel-Schlesewsky and Schlesewsky, 2016).

This prior work by Shain et al. (2020) includes
a telling observation: that surprisal from a 5-gram
language model improves fit to brain data, over
and above a PCFG. Shain et al. hypothesize that
this additional contribution is possible expressly
because of PCFGs’ context-freeness, and that a
(mildly) context-sensitive grammar would do better.
The results reported here are consistent with this
suggestion.

9 Conclusion and Future Work

CCG, a mildly context-sensitive grammar, helps
explain the time course of word-by-word language
comprehension in the brain over and above Penn
Treebank-style context-free phrase structure gram-
mars regardless of whether they are parsed left-
corner, top-down or bottom-up. This special con-
tribution from CCG is likely attributable to its
more realistic analysis of “movement” construc-
tions (e.g. Figure 2) which would not be assigned
by naive context-free grammars. CCG’s flexible
approach to constituency may offer a way to un-
derstand both immediate and delayed subprocesses
of language comprehension from the perspective
of a single grammar. The Revealing operation, de-
signed to facilitate more human-like CCG parsing,
indeed leads to increased neurolinguistic fidelity in
a subset of brain regions that have been previously
implicated in language comprehension.

We look ahead in future work to quantifying
the effect of individual complexity metrics across
brain regions using alternative metrics related to
surprise and memory (e.g. Graf et al., 2017). This
future work also includes investigation of syntac-
tic ambiguity, for instance via beam search along
the lines of Crabbé et al. (2019) using the incremen-
tal neural CCG model of Stanojević and Steedman
(2020).

Acknowledgements

This material is based upon work supported by the
National Science Foundation under grant numbers
1903783 and 1607251. The work was supported by
an ERC H2020 Advanced Fellowship GA 742137
SEMANTAX grant.

Ethical Considerations

The fMRI study described in section 5.1 was ap-
proved by Cornell University’s Institutional Review
Board under protocol ID #1310004157

31



References
Steven P. Abney and Mark Johnson. 1991. Memory

requirements and local ambiguities of parsing strate-
gies. Journal of Psycholinguistic Research, 20:233–
249.

Gerry Altmann and Mark Steedman. 1988. Interac-
tion with context during human sentence processing.
Cognition, 30:191–238.

Bharat Ram Ambati, Tejaswini Deoskar, Mark John-
son, and Mark Steedman. 2015. An Incremental Al-
gorithm for Transition-based CCG Parsing. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
53–63. Association for Computational Linguistics.

Douglas Bates, Martin Mächler, Benjamin M. Bolker,
and Steven C. Walker. 2015. Fitting linear mixed-
effects models using lme4. Journal of Statistical
Software, 67(1):1–48.

José Luis Bermúdez. 2020. Cognitive science: an in-
troduction to the science of the mind. Cambridge
University Press.

Shohini Bhattasali, Murielle Fabre, Wen-Ming Luh,
Hazem Al Saied, Mathieu Constant, Christophe Pal-
lier, Jonathan R. Brennan, R. Nathan Spreng, and
John T. Hale. 2019. Localising memory retrieval
and syntactic composition: An fMRI study of nat-
uralistic language comprehension. Language, Cog-
nition and Neuroscience, 34(4):491–510.

Shohini Bhattasali and John Hale. 2019. Diathesis al-
ternations and selectional restrictions: A fMRI study.
Papers from the Annual Meeting of the Chicago Lin-
guistic Society, 55:33–43.

Philippe Blache. 2018. Light-and-deep parsing: A
cognitive model of sentence processing. In Thierry
Poibeau and Aline Villavicencio, editors, Language,
Cognition and Computational Models, pages 27–52.
Cambridge University Press, Cambridge, U.K.

Paul D. Bliese and Robert E. Ployhart. 2002. Growth
modeling using random coefficient models: Model
building, testing, and illustrations. Organizational
Research Methods, 5(4):362–387.

Ina Bornkessel-Schlesewsky and Matthias Schle-
sewsky. 2016. The importance of linguistic typology
for the neurobiology of language. Linguistic Typol-
ogy, 20(3):303.

Jonathan Brennan, Yuval Nir, Uri Hasson, Rafael
Malach, David J. Heeger, and Liina Pylkkänen.
2012. Syntactic structure building in the anterior
temporal lobe during natural story listening. Brain
and Language, 120(2):163–173.

Jonathan R. Brennan, Chris Dyer, Adhiguna Kuncoro,
and John T. Hale. 2020. Localizing syntactic pre-
dictions using recurrent neural network grammars.
Neuropsychologia, 146:107479.

Jonathan R. Brennan and Liina Pylkkänen. 2017. MEG
evidence for incremental sentence composition in
the anterior temporal lobe. Cognitive Science,
41(S6):1515–1531.

Jonathan R. Brennan, Edward P. Stabler, Sarah E.
Van Wagenen, Wen-Ming Luh, and John T. Hale.
2016. Abstract linguistic structure correlates with
temporal activity during naturalistic comprehension.
Brain and Language, 157-158:81–94.

Marc Brysbaert and Boris New. 2009. Moving beyond
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Hypothesis 1
Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left+ CCG_right+ CCG_revealing

Region AIC_1a AIC_2b ∆AICc χ2(3) p

IFG_oper 1762175 1762156 -19.26 25.26 <0.001
IFG_orb 1717590 1717579 -10.31 16.31 0.001
IFG_tri 1715945 1715913 -32.10 38.1 <0.001
mATL 1562113 1562092 -20.92 26.92 <0.001
sATL 1604738 1604726 -12.09 18.09 <0.001
STG 1843201 1843194 -7.20 13.2 0.004

Table 1: Hypothesis 1, CCG-specific effects: CCG_left + CCG_right + CCG_revealing. aAkaike Information
Criterion for the baseline model (model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1.
Bonferroni adjusted significance threshold: 0.05/6 = 0.008.

Hypothesis 1: Follow-up analyses
Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_right

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762175 1762170 -5.42 7.42 0.007
IFG_orb 1717590 1717589 -1.03 3.03 0.082
IFG_tri 1715945 1715934 -11.25 13.25 <0.001
mATL 1562113 1562115 1.91 0.09 0.770
sATL 1604738 1604739 0.31 1.69 0.193
STG 1843201 1843201 0.51 1.49 0.223

Table 2: Hypothesis 1, CCG-specific effects: CCG_right. aAkaike Information Criterion for the baseline model
(model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance
threshold: 0.05/6 = 0.008.

Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762175 1762177 1.96 0.04 0.846
IFG_orb 1717590 1717582 -8.12 10.12 0.002
IFG_tri 1715945 1715947 1.81 0.19 0.666
mATL 1562113 1562101 -11.53 13.53 <0.001
sATL 1604738 1604740 1.60 0.4 0.527
STG 1843201 1843192 -8.52 10.52 0.001

Table 3: Hypothesis 1, CCG-specific effects: CCG_left. aAkaike Information Criterion for the baseline model
(model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance
threshold: 0.05/6 = 0.008.
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Model 1: BOLD ∼ word_freq + word_rate+RMS + f0 + bottomup+ leftcorner + topdown
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_revealing

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762175 1762173 -2.18 4.18 0.041
IFG_orb 1717590 1717576 -14.00 16 <0.001
IFG_tri 1715945 1715943 -1.77 3.77 0.052
mATL 1562113 1562096 -16.49 18.49 <0.001
sATL 1604738 1604737 -1.67 3.67 0.055
STG 1843201 1843192 -8.51 10.51 0.001

Table 4: Hypothesis 1, CCG-specific effects: CCG_revealing. aAkaike Information Criterion for the baseline
model (model 1). bAkaike Information Criterion for model 2. cAIC_2−AIC_1. Bonferroni adjusted significance
threshold: 0.05/6 = 0.008.

Hypothesis 2
Model 1: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left+ CCG_right
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_left+ CCG_right+ CCG_revealing

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762165 1762156 -9.34 11.34 0.001
IFG_orb 1717583 1717579 -4.03 6.03 0.014
IFG_tri 1715922 1715913 -9.68 11.68 0.001
mATL 1562096 1562092 -4.01 6.01 0.014
sATL 1604741 1604726 -14.32 16.32 <0.001
STG 1843193 1843194 0.61 1.39 0.239

Table 5: Hypothesis 2, CCG Revealing operation. aAkaike Information Criterion for the baseline model (model
1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance threshold:
0.05/6 = 0.008.

Hypothesis 3
Model 1: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_right
Model 2: BOLD ∼ word_freq +word_rate+RMS + f0 + bottomup+ leftcorner+ topdown+
CCG_right+ CCG_left

Region AIC_1a AIC_2b ∆AICc χ2(1) p

IFG_oper 1762170 1762165 -4.49 6.49 0.011
IFG_orb 1717589 1717583 -5.25 7.25 0.007
IFG_tri 1715934 1715922 -11.18 13.18 <0.001
mATL 1562115 1562096 -18.82 20.82 <0.001
sATL 1604739 1604741 1.93 0.07 0.788
STG 1843201 1843193 -8.32 10.32 0.001

Table 6: Hypothesis 3, Left- versus Right-CCG parsing. aAkaike Information Criterion for the baseline model
(model 1). bAkaike Information Criterion for model 2. cAIC_2 − AIC_1. Bonferroni adjusted significance
threshold: 0.05/6 = 0.008.
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Abstract

In the field of sentence processing, speak-
ers’ preferred interpretation of ambiguous sen-
tences is often determined using a variant of
a discrete choice task, in which participants
are asked to indicate their preferred meaning
of an ambiguous sentence. We discuss par-
ticipants’ degree of attentiveness as a poten-
tial source of bias and variability in such tasks.
We show that it may distort the estimates of
the preference of a particular interpretation ob-
tained in such experiments and may thus com-
plicate the interpretation of the results as well
as the comparison of the results of several ex-
periments. We propose an analysis method
based on multinomial processing tree models
(Batchelder and Riefer, 1999) which can cor-
rect for this bias and allows for a separation of
parameters of theoretical importance from nui-
sance parameters. We test two variants of the
MPT-based model on experimental data from
English and Turkish and demonstrate that our
method can provide deeper insight into the pro-
cesses underlying participants’ answering be-
havior and their interpretation preferences than
an analysis based on raw percentages.

1 Introduction

One of the key questions in the field of sentence pro-
cessing has been: What does the human sentence
processing mechanism do when confronted with
an ambiguity? A variety of different proposals re-
garding online disambiguation strategies have been
made over the years, such as the Garden-path The-
ory (Frazier, 1987), the Tuning Hypothesis (Cuetos
et al., 1996), the Competition-Integration Model
(McRae et al., 1998) and many others. Their diverg-
ing predictions have led to a significant body of em-
pirical research documenting, among other things,
substantial cross-linguistic variation in the interpre-
tation of ambiguous sentences: For instance, Cue-
tos and Mitchell (1988) compared the RC attach-
ment preferences of English and Spanish speakers

in ambiguous sentences like (1) and (2), in which
the relative clause ’who had an accident’ can at-
tach either to the NP headed by the first noun (N1,

’daughter’) or to the NP headed by the second noun
(N2, ’colonel’).1

Cuetos and Mitchell presented Spanish-speaking
and English-speaking participants with ambiguous
sentences like (1) and (2) and asked them to an-
swer comprehension questions like ‘Who had an
accident?’. Participants’ responses indicated that
English sentences like (1) were assigned an N2 in-
terpretation in 61% of the cases, while their Span-
ish counterparts like (2) were assigned an N1 in-
terpretation in 72% of the cases. The authors in-
terpret this finding as an argument against a cross-
linguistically universal parsing strategy in the reso-
lution of RC attachment ambiguities.

(1) The journalist interviewed the daughterN1

of the colonelN2 [who had an accident].

(2) El
The

periodista
journalist

entrevisto
interviewed

a
to

la
the

hijaN1

daughter
del
of the

coronelN2

colonel
[que
[who

tuvo
had

el
an

accidente].
accident].

Although disambiguation strategies seem to be
at least partially determined by the linguistic prop-
erties of a given language, various other factors ap-
pear to influence the resolution of RC attachment
ambiguities. For example, in a questionnaire study,
Gilboy et al. (1995, inter alia) demonstrated a sub-
stantial influence of construction type. They asked
participants to indicate which of the two available
noun phrases was modified by the RC in several
constructions. They found that the percentage of
N2 attachment responses ranged between approxi-
mately 20% to 70% for their English sentences and

1To any ambiguity in the context of typologically diverse
languages, we will refer to the two interpretation options as
N1 attachment and N2 attachment, with N1 and N2 referring
to the order of occurrence of the noun phrases head nouns
instead of the more common terms high attachment and low
attachment.
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between 10% to 80% for their Spanish sentences.
Grillo et al. (2015) also conducted a two-alternative
forced-choice (2AFC) task in which English speak-
ers choose between N1 and N2 as the attachment
sites for the RC to indicate their interpretation of
the sentence. They showed that English speakers,
who had previously been claimed to prefer N2 at-
tachment, preferred N1 attachment in more than
50% of the cases when a small clause reading was
possible.

RC attachment preferences have also been stud-
ied in Turkish, where the order of the RC and the
complex noun phrase is reversed, compared to En-
glish and Spanish. In a questionnaire study with
sentences like (3), Kırkıcı (2004) found that ani-
macy may affect attachment preferences such that
when both NPs were [+human], there was no sig-
nificant difference between the proportions of the
N1 and N2 attachment, while an N1 attachment
manifested when both NPs were [-human]. Con-
trary to this finding, Dinçtopal-Deniz (2010) found
an across-the-board preference for N1 attachment
in Turkish. In her questionnaire study, monolin-
gual Turkish speakers read Turkish sentences with
ambiguous RC-attachment and answered questions
about them by indicating one of two options on
each trial. The results of this study showed that
participants preferred N1 attachment over N2 at-
tachment: 66% percent of the responses indicated
an N1 interpretation of the sentence.

(3) Şoför
driver

[şehir
city

merkezin-de
center-in

oturan]RC

living
profesörünN1

professor’s
sekreteriniN2

secretary
gördü.
saw

’The driver saw the secretary of the profes-
sor who was living in the city center.’

2 The Role of Guessing

What most of the above studies of RC attachment
preferences have in common is that they use some
variant of a discrete choice task, in which partici-
pants select one of two response options to indicate
their interpretation of the ambiguity. The relative
proportion of responses indicating N1 and N2 at-
tachment, respectively are interpreted as estimates
of the magnitude of N1 or N2 attachment. A po-
tential complication in interpreting the percentage
of responses favoring an alternative in this way is
that participants’ responses may not always reflect
their interpretation. At least on some trials, partic-
ipants may process the sentence only partially or

fail to pay attention to it altogether. In such cases,
participants’ question responses must be based on
an incomplete or nonexistent representation, and
are more likely to resemble guesses than informed
responses.

Evidence for such incomplete processing comes
from the widely known fact that participants’ accu-
racy in experimental tasks is often far from perfect,
even for relatively simple tasks such as acceptabil-
ity judgments: For example, Dillon and Wagers
(2019) found in an offline acceptability judgment
study that ungrammatical sentences like (4) are
judged acceptable on 18% of the trials. Since it
appears unlikely that sentences like (4) are consid-
ered grammatical and interpretable when fully pro-
cessed, the explanation for such responses must lie
in their incomplete processing followed by guess-
ing.

(4) *Who do you think that the new professor
is going to persuade anyone?

One way of conceptualizing a simple generative
model of erroneous responses in relatively simple
discrete choice tasks is to assume that at least some
participants on some occasions fail to pay attention
to the stimulus, and as a result, select a random
response. If so, the relation between the probability
of response X being actually preferred to alternative
responses (pX ) and the probability of observing re-
sponse X (p′X ) can be formalized as in equation 1:
p′X is the weighted average of (i) the probability of
X being preferred to the alternative when the stimu-
lus is fully attended to (pX ) and (ii) the probability
of selecting X when the stimulus is not attended to
(gX ), where a is the probability of attending to the
stimulus.

p′X = a · pX + (1− a) · gX (1)

Equation 1 illustrates that under the above as-
sumptions, the proportion of responses indicating
a preference for X conflates multiple factors. As
a result, many preference estimates for X (p′X ) are
compatible with a wide range of underlying prefer-
ences (pX ) under different assumptions regarding
participants’ degree of attentiveness and guessing
behavior (a and gX ).

Table 1 illustrates this problem. It shows several
parameter combinations which can account for a
preference of 65% for X in a binary choice task.
Such a finding may reflect (i) the absence of an
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pX a gX p′X
2 0.5 0.7 1 0.65
1 0.9 0.7 0.06 0.65
3 0.1 0.35 0.945 0.65

Table 1: Example combinations of parameters that may
lead to an observed preference of approximately 65%
according to equation 1.

underlying preference (table 1, row 1), (ii) the pres-
ence of a much stronger preference (table 1, row
2), and (iii) even a strong preference towards the
alternative to X (table 1, row 3).

Given that participants in most if not all psy-
cholinguistic tasks produce a sizeable amount of
erroneous responses, it appears a priori quite plau-
sible that such mechanisms are also at play in at-
tachment preference studies. This means that em-
pirical estimates of attachment preferences (p′X )
are likely to be (i) biased towards the guessing pa-
rameter gX to a degree determined by a, and (ii)
are likely to vary between studies as a function of
the between-study differences in a and gX . In the
following, we propose a method for disentangling
the contributions of attachment preferences and
guessing using multinomial processing tree mod-
els (MPT; Erdfelder et al., 2009; Batchelder and
Riefer, 1999) based on response patterns in unam-
biguous baseline sentences. We will first assess the
empirical adequacy of two alternative MPT mod-
els on two experiments in English and Turkish, in
which participants answered polar comprehension
questions about sentences with ambiguous and un-
ambiguous RC attachment. We will then compare
the two experiments with regard to the parameter
estimates obtained from the MPT models.

3 Experiments

To evaluate our method, which will be presented in
the next section, we used question-answering data
from two experiments in which participants read
sentences with ambiguous and unambiguous RC
attachments and answered polar comprehension
questions about them.

3.1 Experiment 1

We used the RC question-answering data from
Swets et al.’s (2008) self-paced reading experiment
in English (N=48). In this experiment, participants
read sentences like (5) in three attachment condi-
tions and answered comprehension questions about

RC attachment similar to (6) on every trial. All
comprehension questions required a ’yes’/’no’ an-
swer. One-half of the questions asked whether the
RC modified the noun phrase headed by N1, and
the other half asked about N2.

RC attachment was disambiguated by means of
gender (mis)match between the reflexive in the RC
and the RC head noun. Each participant read 36
experimental sentences. Unambiguous sentences
had correct answers, while the responses to ambigu-
ous sentences indicated how readers disambiguated
the sentence, thus reflecting their RC attachment
preference.

(5) a. AMBIGUOUS ATTACHMENT

The maidN1 of the princessN2 [who
scratched herself in public] . . .

b. N1 ATTACHMENT

The sonN1 of the princessN2 [who
scratched himself in public] . . .

c. N2 ATTACHMENT

The sonN1 of the princessN2 [who
scratched herself in public] . . .

. . . was terribly humiliated.

(6) COMPREHENSION QUESTION

Did the maid/princess/son scratch in pub-
lic?

Figure 1 (left panel) shows the average percent-
ages of ’yes’ responses to comprehension questions
by attachment condition and question type (ques-
tions about N1 or N2).

3.2 Experiment 2
The second set of question-answering data came
from an unpublished self-paced reading experiment
on RC attachment in Turkish (N=99). In an experi-
mental design similar to Swets et al., participants
read sentences like (7). Because Turkish relative
clauses are pre-nominal, the RC who hit each other
preceded the complex noun phrase the fans of the
football players. All RCs contained a reciprocal
anaphor (each other), which allowed us to disam-
biguate the RC attachment by means of number
marking on the head nouns as RCs with the recip-
rocals can only modify plural noun phrases. When
only one of the nouns was plural, the sentence was
unambiguous, and ambiguous when both nouns
were plural since they were both licit attachment
sites for the RC.

Participants were asked ’yes’/’no’ comprehen-
sion questions, like (8), which were always about
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RC attachment. The comprehension question asked
about the event mentioned in the RC and whether
one of the nouns was involved in that event. Each
participant read 42 experimental sentences. One-
half of the questions asked whether the RC modi-
fied the noun phrase headed by N1, and the other
half asked about N2. The experiment was con-
ducted online on ibexfarm (Drummond, 2013). All
participants were undergraduate students at Boğaz-
içi University and native speakers of Turkish. Fig-
ure 1 (right panel) shows the average percentages
of ’yes’ responses to comprehension questions by
attachment condition and question type (question
about N1 or N2).

(7) Dün
Yesterday

akşam,
evening,

[birbirini
each other

döven]RC

hit
. . .

a. AMBIGUOUS ATTACHMENT

futbolcu-lar-ınN1

footballer-PL-GEN
hayran-lar-ıN2

fan-PL-POSS
. . .

b. N1 ATTACHMENT

futbolcu-lar-ın
footballer-PL-GEN

hayran-ı
fan.SG-POSS

. . .

c. N2 ATTACHMENT

futbolcu-nun
footballer.SG-GEN

hayran-lar-ı
fan-PL-POSS

. . .

. . . stadyumu
stadium

hemen
immediately

terk
leave

etti.
did.

‘The fan(s) of the football player(s) who
hit each other left the stadium immediately,
yesterday evening.’

(8) COMPREHENSION QUESTION

Futbolcu(lar)/hayran(lar) dövüşte yer
almış mı?

‘Was/were the football player(s)/fan(s)
involved in the fight?’

3.3 Results
The average percentages of ’yes’ responses in fig-
ure 1 indicate a substantial number of errors in
unambiguous experimental conditions in both ex-
periments, such as ’no’-responses to N1 questions
and ’yes’-responses to N2 questions about N1 at-
tachment sentences.

The average accuracy in answering questions
about unambiguous sentences was 79% (SE =
1.3) in Swets et al.’s English experiment, and
66.5% (SE = 2.5) in our Turkish experiment.

The responses in the ambiguous attachment con-
ditions indicate an N2 attachment preference in the
English as 58% (SE = 2.1) of the response were

English (Swets et al., 2008) Turkish
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Figure 1: Average percentages of ’yes’ responses by
attachment condition (color) and question type (x-axis).
Error bars indicate 95% within-subject CIs.

compatible with N2 attachment (’yes’ responses
to N2 questions and ’no’ responses to N1 ques-
tions). Meanwhile, the Turkish data indicated an
N1 preference as 58% (SE = 1.9) of the question
responses were compatible with an N1 interpreta-
tion of the sentence. In both cases, the preferred
attachment option is local, i.e., adjacent to the RC
and is consistent with prior research.

Even though the estimates of the magnitude of
the attachment preference are coincidentally equal,
the magnitude of the preference for local attach-
ment may not be. This is due to the presence of a
substantial number of erroneous responses in un-
ambiguous conditions in both experiments. Their
presence indicates a substantial number of guess-
ing trials, and thus suggests that not all N1- or
N2-compatible responses in ambiguous indicate
that the participant has successfully formed an N1-
or N2 attachment interpretation of the sentence as
they may have been generated by the same extra-
neous cognitive process that generates erroneous
responses in the unambiguous attachment condi-
tions.

The problem is exacerbated by the fact the re-
sponse accuracy is particularly low in the N2 attach-
ment condition in Experiment 2 (58.2%). A possi-
ble reason for this is that even on trials resulting in
an N2 interpretation, the parser always attempts to
construct an N1 attachment structure first because,
in Turkish, unlike in English, potential attachment
sites are processed sequentially after the relative
clause has already been processed. As a result, the
presence of a discarded alternative N1 attachment
structure (e.g., Staub, 2007) could interfere with
the retrieval of the correct structure during ques-
tion answering in N2 attachment conditions. If,

42



as a result of retrieval failure, participants resort
to guessing, we would expect to observe a sub-
stantial number of erroneous responses following
N2 attachment sentences or ambiguous sentences
which were ultimately disambiguated towards N2
attachment.

In the next section, we present two models of
erroneous responses and then use them to estimate
the magnitude of the actual strength of the attach-
ment preference.

4 MPT Models of Question-Answering
and Attachment

In accounting for the influence of extraneous cog-
nitive processes, we considered two mechanisms
that may generate erroneous question responses,
and implemented both as multinomial processing
tree (MPT) models (Batchelder and Riefer, 1999).
In the following sections, we will use the model
with the better empirical fit to obtain less biased
estimates of the attachment preferences in the am-
biguous conditions.

MPT models offer a way to formalize hypothe-
ses about how a mixture of several latent processes
generates a categorical response (cf. Erdfelder et al.,
2009, for an overview). That is, under the assump-
tion that different sequences of events may occur on
different trials, the latent processes hypothesized
to be involved in processing are represented as a
probability tree, with each path through the pro-
cessing tree corresponding to unique combinations
of cognitive processes which give rise to a partic-
ular response, along with the probabilities of each
path. Importantly, this formalization provides a
framework in which the probabilities of relevant la-
tent processes can be estimated. We will use them
to estimate the magnitude of the RC attachment
preference in Turkish and English.

4.1 Model 1

The first mechanism we considered as a potential
explanation for erroneous responses is that partic-
ipants sometimes fail to attend to or successfully
process the stimulus or the comprehension question
and simply press a random button. We hypothesize
that this may happen due to inattentiveness, care-
less responding, distractions in the environment,
mind-wandering (e.g., Smallwood, 2011), (tempo-
rary) fatigue, or failure to allocate sufficient pro-
cessing resources towards the experimental task.
We will subsume all of these factor under the um-

brella term inattentiveness.
The failure to process the stimulus is assumed to

affect all three attachment conditions to the same
degree. When participants do successfully com-
ply with the task, they always respond to compre-
hension questions correctly in unambiguous condi-
tions, while in ambiguous conditions, they some-
times adopt an N1 attachment interpretation of the
sentence, and sometimes an N2 attachment, and an-
swer comprehension questions in accordance with
the adopted disambiguation of the ambiguous struc-
ture.

N1
attachment
condition

attentive
state

’N1
response’

inattentive
state

’yes’
response

’no’
response

N2
attachment
condition

attentive
state

’N2
response’

inattentive
state

’yes’
response

’no’
response

ambiguous
attachment
condition

attentive
state

N1
attachment

’N1
response’

N2
attachment

’N2
response’

inattentive
state

’yes’
response

’no’
response

a

1 − a g

1 − g

a

1 − a g

1 − g

a

h

1 − h

1 − a
g

1 − g

Figure 2: An MPT model of question answering with
equal error rates for (i) N1 attachment, (ii) N2 attach-
ment, and (iii) ambiguous sentences.

The assumptions of this account are illustrated
in figure 2. The processing tree at the top illus-
trates how events during the processing of an N1
attachment sentence can unfold: On any given N1
attachment trial, a participant may be in an atten-
tive state (with probability a) or an inattentive state
(with probability 1 − a). If the participant is in
an attentive state throughout the trial (i.e., during
reading and question answering), they will form a
memory trace of the sentence they read, and later
use it to correctly answer a comprehension ques-
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tion. This is illustrated in the top branch of the N1
attachment condition schematic in figure 2, where

’N1 response’ stands for ’yes’ responses to N1 ques-
tions and ’no’ responses to N2 questions.

If the participant is in an inattentive state at any
point during the trial (i.e., during reading or ques-
tion answering), they will either fail to form a mem-
ory trace of the sentence they read or will fail to use
it to answer the comprehension question. On those
occasions, they will respond ’yes’ with probability
g, and ’no’ with probability 1 − g. This is illus-
trated in the bottom branch of the N1 attachment
condition MPT schematic in figure 2.

As a result of these assumptions, the probability
of a ’yes’ response in the N1 attachment condition
is as given in equation 3, where IN1 (as in eq. 2) is
an indicator variable which is 1 for N1 comprehen-
sion questions (such as ’Did N1 do RC?’) and 0 for
N2 comprehension questions such (as ’Did N2 do
RC?’).

IN1 =

{
1, for trials with N1 questions
0, for trials with N2 questions

(2)

pY |N1 = a · IN1 + (1− a) · g (3)

The processing assumptions for the N2 attach-
ment (middle, figure 2) condition and the ambigu-
ous condition (bottom, figure 2) follow a similar
logic, with the probability of a ’yes’ response given
by equations 4 and 5.

pY |N2 = a · (1− IN1) + (1− a) · g (4)

An important assumption about the hypothesized
processes in ambiguous attachment conditions is
that when readers are in an attentive state, they
disambiguate ambiguous sentences either towards
an N1 interpretation (with probability h) or an N2
interpretation (with probability 1 − h). We make
no assumptions about whether that happens during
reading or at the question answering stage.

pY |A = a·[h·IN1+(1−h)·(1−IN1)]+(1−a)·g
(5)

Importantly, we make no assumptions as to what
may bring on inattentiveness and whether it occurs
predominantly during reading or question answer-
ing. The key assumption of this account, however,
is that this process affects all attachment conditions
to the same degree.

4.2 Model 2

The second model included an additional possible
source of erroneous responses that may not affect
all attachment conditions equally. We hypothesized
that, as observed in the unambiguous conditions of
Experiment 2, one of the two interpretations (N1 or
N2 attachment) could be more prone to failure, in
that it may be less likely to be successfully created
during reading, or less likely to be successfully
recalled during question answering.

N1
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condition

recollection
certainty

’N1
response’

recollection
uncertainity

’yes’
response

’no’
response

N2
attachment
condition

recollection
certainty

N2
response

recollection
uncertainity

’yes’
response

’no’
response

ambiguous
attachment
condition

N1
attachment

recollection
certainty

N1
response

recollection
uncertainity

’yes’
response

’no’
response

N2
attachment

recollection
certainty

N2
response

recollection
uncertainity

’yes’
response

’no’
response

r1

1 − r1 g

1 − g

r2

1 − r2 g

1 − g

h

r1

1 − r1 g

1 − g

1 − h

r2

1 − r2 g

1 − g

Figure 3: An MPT model of question answering with
different error rates for N1 attachment and N2 attach-
ment processes.

We formalized the assumption of different error
rates associated with N1 and N2 attachment in the
model in figure 3. The hypothesized structure of
unambiguous N1 and N2 attachment trials is simi-
lar to Model 1 in figure 2. Each attachment process
(N1 and N2 attachment) is associated with a proba-
bility of complete recollection certainty (r1 and r2,
respectively) which reflects the probability that the
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correct sentence structure is (i) constructed during
reading and (ii) later correctly recalled during the
question answering phase. If the correct sentence
structure is constructed and recalled, participants
respond in accordance with the structure they con-
structed. Otherwise, they select a random response,
i.e., ’yes’ with a probability of g and ’no’ with a
probability of 1 − g. The probability of a ’yes’
response for all attachment conditions is given in
equations 6, 7, 8.

In the ambiguous condition (figure 3, bottom),
the recollection certainty and recollection uncer-
tainty nodes are nested under the RC attachment
nodes because the probabilities of the recollection
certainty and uncertainty states depend on which
RC attachment was chosen.

pY |N1 = r1 · IN1 + (1− r1) · g (6)

pY |N2 = r2 · (1− IN1) + (1− r2) · g (7)

pY |A = h · pY |N1 + (1− h) · pY |N2 (8)

Importantly, Model 2 (fig. 3) subsumes Model 1
(fig. 2) and therefore does not exclude the influence
of an additional attention-related processes that
affect all attachment conditions equally. This is
because it can be re-parameterized as (1− r1) =
(1 − a) + (1 − r′1) and (1 − r2) = (1 − a) +
(1− r′2), such that the guessing rates in N1 and N2
attachment conditions, (1− r1) and (1− r2), can
be interpreted as the sums of the attention-related
guessing rate (1 − a) and the condition-specific
guessing rates (1− r′1) and (1− r′2).

5 Method

We implemented both MPT models2 in brms and
rstan (Bürkner, 2018; Stan Development Team,
2020) in R (R Core Team, 2018) according to equa-
tions 3-8. We fitted the models to each experi-
ment separately, using 4 MCMC chains with 1, 000
warm-up and 3, 000 post-warm-up iterations. For
the sake of computational convenience, we esti-
mated all model parameters on the logit scale, and
in the following, we will use θ′ to refer to the logit-
transform of any parameter θ.

We used mildly informative Gaussian priors for
all logit-transformed population parameters in both
models: h′, g′ ∼ N(0, 1), and a, r1, r2 ∼ N(0, 1).

2All code has been made available at https://git.
io/JODKF
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Figure 4: Average percentages of ’yes’ responses in
the experiments, and 95% posterior prediction intervals
based on Model 1 by attachment condition and question
type.
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Figure 5: Average percentages of ’yes’ responses in
the experiments, and 95% posterior prediction intervals
based on Model 2 by attachment condition and question
type.

To account for individual differences in all pa-
rameters, we used hierarchical models with by-
subject intercepts for all parameters, where each
participant k’s responses were modeled as a func-
tion of population-level parameters θ with subject
subject-level adjustments δθ,k, with θ′k = θ′+ δθ′,k,
where the by-subject adjustments are distributed as
δθ′,k ∼ N(0, σθ′).

6 Model Comparison

Figures 4 and 5 show the average percentages of
’yes’ responses by experiment (circles and connect-
ing lines) alongside 95% posterior predictive in-
tervals generated by, Model 1 and 2, respectively
(error bars).

Figure 4 shows that although Model 1 could
approximate the experimental findings it system-
atically overestimated the proportion of responses
compatible with the preferred RC attachment (N2
in English, N1 in Turkish) in both unambiguous
conditions: For example, in the N1 attachment con-
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English Turkish
êlpd êlpd

model 1 −511.3 (18.1) −796.4 (15.0)
model 2 −469.4 (14.8) −750.5 (13.5)

∆êlpd ∆êlpd

model 2-1 41.9 (11.6) 45.9 (9.3)

Table 2: Estimates of expected log pointwise predic-
tive density (êlpd) by model for each experiment and
differences between model êlpds. Standard errors in
brackets.

dition in English, the number of ’yes’ responses to
N1 questions and ’no’ responses to N2 questions
were slightly overestimated. Similarly, in the N2
attachment condition in Turkish, the model under-
estimated the percentages of ’yes’ responses to N1
questions and ’no’ responses to N2 questions. Fig-
ure 5 shows that Model 2 appeared to have fewer
systematic deviations, and appeared to fit the data
quite well.

In order to compare the models more formally,
we using PSIS-LOO-CV (Vehtari et al., 2017) to
compute each model’s expected log pointwise pre-
dictive density (ELPD). ELPD provides an estimate
of the model’s out-of-sample performance and thus
penalizes additional model flexibility, which puts
Models 1 and 2 on an equal footing although Model
2 has more parameters. Table 2 shows the ELPD
estimates (∆êlpd), as well as the differences be-
tween models in ∆êlpd along with their respective
standard errors. Larger values indicate better per-
formance.

Both ∆êlpd estimates are relatively large rela-
tive to their standard errors, and thus point towards
Model 2 having better out-of-sample performance.
This finding suggests that the two attachment pro-
cesses are affected by the error-generating process
to different degrees.

7 Results

Having established Model 2 as an adequate model
of RC attachment in the context of question-
answering, we used its parameter estimates to un-
derstand the pattern of responses in the experimen-
tal data: Figure 6 shows the Model 2 population
parameter estimates for both experiments as well
as 95% credible intervals for all four parameters.
In addition to the difference in the guessing bias g
between experiments, it also shows a lot of uncer-
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Figure 6: Population parameter estimates and 95%
credible intervals for all four parameters of Model 2
(g, h, r1, r2) for both experiments, English (EN) and
Turkish (TR).

tainty in the estimates of the attachment parame-
ter h, which represents the probability with which
the parser adopts an N1 attachment interpretation
over an N2 attachment structure in ambiguous at-
tachment conditions. Both estimates of the N1
attachment probability have rather wide credible
intervals, with 42% (CrI = [30; 55]) for the En-
glish experiment and 48% (CrI = [24; 70]) for
the Turkish experiment. While the estimate for
English is consistent with weak evidence for an
N2 attachment preference, the estimate for Turkish
indicates no clear preference.

The explanation for the surprising absence of
evidence for an N1 attachment preference in the
parameter h in Turkish lies in the the substan-
tial difference between the successful recall prob-
abilities r1 (49%, CrI = [38; 59]) and r2 (9%,
CrI = [3; 20]), which indicate that N1 interpreta-
tions were successfully processed and recalled with
a higher probability than their N2 counterparts. Ac-
cording to the assumptions of Model 2, this leads
to a question response pattern which appears to
suggest an N1 preference even when there isn’t
one (h = 0.5): When participants decide to adopt
an N1 interpretation, their question responses in-
dicate N1 attachment on most trials – sometimes
due to successful recall of the N1 interpretation,
and at other times as a result of guessing. When
participants decide to adopt an N2 interpretation,
however, they fail to recall the correct interpreta-
tion most of the time, and thus engage in guessing.
Importantly, guesses result in N1 responses 50%
of the time, since questions about N1 and N2 inter-
pretations are balanced. As a result, a substantial
difference between r1 and r2, such that r1 < r2
will lead to more N1 responses than N2 responses
to questions about ambiguous sentences because
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N1 interpretations are more successfully recalled,
even if ambiguous sentences are assigned N1 inter-
pretations only 50% of the time.

Whatever the source of higher error rates in the
N2 attachment conditions in the Turkish experi-
ment is, our MPT analysis suggests that what ap-
pears as a weak N1 attachment preference in our
Turkish experiment is actually a consequence of
a large number of guessing trials associated with
N2 attachment. In sum, our analysis shows that (i)
the N2 attachment preference in the English exper-
iment appears to hold up even when guessing trials
are taken into account, and (ii) that what appears
to be an N1 attachment preference in Turkish is
readily explained by the processing difficulty asso-
ciated with processing and recalling N2 attachment
structures in Turkish.

8 Summary

Based on the assumption that readers sometimes
do not allocate the required amount of attention to
the task they are performing, we have discussed a
previously neglected source of bias and variability
that may affect studies of attachment preferences
and of interpretation preferences more generally.
We attempted to account for the role of guessing as
a strategy used in answering comprehension ques-
tions when the answer is not known. We argue
that understanding the role of guessing in discrete
choice tasks is crucial because data consisting of re-
sponses to comprehension questions where partici-
pants sometimes fail to arrive at a full interpretation
of the structure may be confounded. To this end,
we proposed an MPT-based analysis method that
allows to de-confound parameters of theoretical
importance from nuisance parameters such as the
guessing rate. We tested two variants of the MPT-
based model on experimental data from English
and Turkish, and demonstrated that this method
can provide further insight into the processes un-
derlying participants’ answering behavior as well
as their attachment preferences.
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Abstract

This paper investigates the relationship be-
tween two complementary perspectives in the
human assessment of sentence complexity and
how they are modeled in a neural language
model (NLM). The first perspective takes into
account multiple online behavioral metrics ob-
tained from eye-tracking recordings. The sec-
ond one concerns the offline perception of
complexity measured by explicit human judg-
ments. Using a broad spectrum of linguistic
features modeling lexical, morpho-syntactic,
and syntactic properties of sentences, we per-
form a comprehensive analysis of linguistic
phenomena associated with the two complex-
ity viewpoints and report similarities and dif-
ferences. We then show the effectiveness of
linguistic features when explicitly leveraged
by a regression model for predicting sentence
complexity and compare its results with the
ones obtained by a fine-tuned neural language
model. We finally probe the NLM’s linguistic
competence before and after fine-tuning, high-
lighting how linguistic information encoded
in representations changes when the model
learns to predict complexity.

1 Introduction

From a human perspective, linguistic complexity
concerns difficulties encountered by a language
user during sentence comprehension. The source
of such difficulties is commonly investigated us-
ing either offline measures or online behavioral
metrics. In the offline framework, complexity rat-
ings can be elicited either by assessing errors in
comprehension tests or collecting explicit com-
plexity judgments from readers. Instead, in the
online paradigm, cognitive signals are collected
mainly through specialized machinery (e.g., MRI
scanners, eye-tracking systems) during natural or
task-oriented reading. Among the wide range of
online complexity metrics, gaze data are widely re-
garded as reliable proxies of processing difficulties,

reflecting both low and high-level complexity fea-
tures of the input (Rayner, 1998; Hahn and Keller,
2016). Eye-tracking measures have recently con-
tributed to significant improvements across many
popular NLP applications (Hollenstein et al., 2019a,
2020) and in particular on tasks related to linguis-
tic complexity such as automatic readability as-
sessment (ARA) (Ambati et al., 2016; Singh et al.,
2016; González-Garduño and Søgaard, 2018), ob-
taining meaningful results for sentence-level classi-
fication in easy and hard-to-read categories (Vajjala
and Lučić, 2018; Evaldo Leal et al., 2020; Mart-
inc et al., 2021). However, readability levels are
conceptually very different from cognitive process-
ing metrics since ARA corpora are usually built in
an automated fashion from parallel documents at
different readability levels, without explicit eval-
uations of complexity by target readers (Vajjala
and Lučić, 2019). A different approach to com-
plexity assessment that directly accounts for the
perspective of readers is presented in the corpus by
Brunato et al. (2018), where sentences are individ-
ually labeled with the perception of complexity of
annotators, which may better reflect the underlying
cognitive processing required by readers to parse
the sentence. This consideration is supported by
recent results highlighting the unpredictability of
outliers in perceived complexity annotations, es-
pecially for sentences having complex syntactic
structures (Sarti, 2020).

Given the relation between complexity judg-
ments elicited from annotators and online cogni-
tive processing metrics, we investigate whether the
connection between the two perspectives can be
highlighted empirically in human annotations and
language model representations. We begin by lever-
aging linguistic features associated with a variety
of sentence-level structural phenomena and analyz-
ing their correlation with offline and online com-
plexity metrics. We then evaluate the performance
of models using either complexity-related explicit
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features or contextualized word embeddings, fo-
cusing mainly on the neural language model AL-
BERT (Lan et al., 2020). In this context, we show
how both explicit features and learned representa-
tions obtain comparable results when predicting
complexity scores. Finally, we focus on studying
how complexity-related properties are encoded in
the representations of ALBERT. This perspective
goes in the direction of exploiting human process-
ing data to address the interpretability issues of un-
supervised language representations (Hollenstein
et al., 2019b; Gauthier and Levy, 2019; Abnar et al.,
2019). To this end, we rely on the probing task ap-
proach, a recently introduced technique within the
area of NLMs interpretability consisting of training
diagnostic classifiers to probe the presence of en-
coded linguistic properties inside contextual repre-
sentations (Conneau et al., 2018; Zhang and Bow-
man, 2018). We observe that fine-tuning on on-
line and offline complexity produces a consequent
increase in probing performances for complexity-
related features during our probing experiments.
This investigation has the specific purpose of study-
ing whether and how learning a new task affects
the linguistic properties encoded in pretrained rep-
resentations. In fact, while pre-trained models have
been widely studied using probing methods, the
effect of fine-tuning on encoded information was
seldom investigated. For example, Merchant et al.
(2020) found that fine-tuning does not impact heav-
ily the linguistic information implicitly learned by
the model, especially when considering a super-
vised probe closely related to a downstream task.
Miaschi et al. (2020) further demonstrated a posi-
tive correlation between the model’s ability to solve
a downstream task on a specific input sentence and
the related linguistic knowledge encoded in a lan-
guage model. Nonetheless, to our knowledge, no
previous work has taken into account sentence com-
plexity assessment as a fine-tuning task for NLMs.
Our results suggest that the model’s competencies
during training are interpretable from a linguistic
perspective and are possibly related to its predictive
capabilities for complexity assessment.

Contributions To our best knowledge, this is the
first work displaying the connection between online
and offline complexity metrics and studying how
they are represented by a neural language model.
We a) provide a comprehensive analysis of linguis-
tic phenomena correlated with eye-tracking data
and human perception of complexity, addressing

Metric Level Description Label

Offline
(Perceptual)

Perceived complexity annota-
tion on a 1-to-7 Likert scale.

PC

Online (Early) Duration of the first reading
pass in milliseconds.

FPD

Online
(Late)

Total fixation count FXC

Total duration of all fixations in
milliseconds

TFD

Online
(Contextual)

Duration of outbound regres-
sive saccades in milliseconds

TRD

Table 1: Sentence-level complexity metrics. We refer
to the entire set of gaze metrics as ET (eye-tracking).

Perc. Complexity Eye-tracking

domain news articles literature

aggregation avg. annotators words sum +
avg. participants

filtering IAA + duplicates min length

# sentences 1115 4041
# words 21723 52131
avg. sent. length 19.48 12.90
avg. word length 4.95 4.60

Table 2: Descriptive statistics of the two sentence-level
corpora after the preprocessing procedure.

similarities and differences from a linguistically-
motivated perspective across metrics and at dif-
ferent levels of granularity; b) compare the per-
formance of models using both explicit features
and unsupervised contextual representations when
predicting online and offline sentence complexity;
and c) show the natural emergence of complexity-
related linguistic phenomena in the representations
of language models trained on complexity metrics.1

2 Data and Preprocessing

Our study leverages two corpora, each capturing
different aspects of linguistic complexity:

Eye-tracking For online complexity metrics,
we used the monolingual English portion of
GECO (Cop et al., 2017), an eye-tracking cor-
pus based on the novel “The Mysterious Case at
Styles” by Agatha Christie. The corpus consists of
5,386 sentences annotated at word-level with eye-
movement records of 14 English native speakers.
We select four online metrics spanning multiple

1Code and data available at https://github.com/
gsarti/interpreting-complexity
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Annotation Level Linguistic Feature Description Label

Raw Text Sentence length (tokens), word length (characters) n_tokens, char_per_tok
Words and lemmas type/token ratio ttr_form, ttr_lemma

POS Tagging
Distribution of UD and language-specific POS tags upos_dist_*, xpos_dist_*
Lexical density lexical_density
Inflectional morphology of auxiliaries (mood, tense) aux_mood_*, aux_tense_*

Dependency Parsing

Syntactic tree depth parse_depth
Average and maximum length of dependency links avg_links_len, max_links_len
Number and average length of prepositional chains n_prep_chains, prep_chain_len
Relative ordering of main elements subj_pre, subj_post, obj_pre, obj_post
Distribution of dependency relations dep_dist_*
Distribution of verbal heads vb_head_per_sent
Distribution of principal and subordinate clauses princ_prop_dist, sub_prop_dist
Average length of subordination chains sub_chain_len
Relative ordering of subordinate clauses sub_post, sub_pre

Table 3: Description of sentence-level linguistic features employed in our study.

phases of cognitive processing, which are widely
considered relevant proxies for linguistic process-
ing in the brain (Demberg and Keller, 2008; Va-
sishth et al., 2013). We sum-aggregate those at
sentence-level and average their values across par-
ticipants to obtain the four online metrics presented
in Table 1. As a final step to make the corpus
more suitable for linguistic complexity analysis,
we remove all utterances with fewer than 5 words.
This design choice is adopted to ensure consistency
with the perceived complexity corpus by Brunato
et al. (2018).

Perceived Complexity For the offline evaluation
of sentence complexity, we used the English por-
tion of the corpus by Brunato et al. (2018). The cor-
pus contains 1,200 sentences taken from the Wall
Street Journal section of the Penn Treebank (Mc-
Donald et al., 2013) with uniformly-distributed
lengths ranging between 10 and 35 tokens. Each
sentence is associated with 20 ratings of perceived-
complexity on a 1-to-7 point scale. Ratings were
assigned by English native speakers on the Crowd-
Flower platform. To reduce the noise produced by
the annotation procedure, we removed duplicates
and sentences for which less than half of the an-
notators agreed on a score in the range µn ± σn,
where µn and σn are respectively the average and
standard deviation of all annotators’ judgments for
sentence n. Again, we average scores across anno-
tators to obtain a single metric for each sentence.

Table 2 presents an overview of the two corpora
after preprocessing. The resulting eye-tracking
(ET) corpus contains roughly four times more sen-
tences than the perceived complexity (PC) one,

with shorter words and sentences on average.

3 Analysis of Linguistic Phenomena

As a first step to investigate the connection between
the two complexity paradigms, we evaluate the cor-
relation of online and offline complexity labels with
linguistic phenomena modeling a number of prop-
erties of sentence structure. To this end, we rely
on the Profiling-UD tool (Brunato et al., 2020) to
annotate each sentence in our corpora and extract
from it ∼100 features representing their linguistic
structure according to the Universal Dependencies
formalism (Nivre et al., 2016). These features cap-
ture a comprehensive set of phenomena, from ba-
sic information (e.g. sentence and word length) to
more complex aspects of sentence structure (e.g.
parse tree depth, verb arity), including properties
related to sentence complexity at different levels of
description. A summary of most relevant features
in our analysis is presented in Table 3.

Figure 1 reports correlation scores for features
showing a strong connection (|ρ| > 0.3) with at
least one of the evaluated metrics. Features are
ranked using their Spearman’s correlation with
complexity metrics, and scores are leveraged to
highlight the relation between linguistic phenom-
ena and complexity paradigms. We observe that
features showing a significant correlation with eye-
tracking metrics are twice as many as those corre-
lating with PC scores and generally tend to have
higher coefficients, except for total regression dura-
tion (TRD). Nevertheless, the most correlated fea-
tures are the same across all metrics. As expected,
sentence length (n_tokens) and other related fea-
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Figure 1: Ranking of the most correlated linguistic fea-
tures for selected metrics. All Spearman’s correlation
coefficients have p < 0.001.

tures capturing aspects of structural complexity
occupy the top positions in the ranking. Among
those, we also find the length of dependency links
(max_links_len, avg_links_len) and the depth of
the whole parse tree or selected sub-trees, i.e. nom-
inal chains headed by a preposition (parse_depth,
n_prep_chains). Similarly, the distribution of sub-
ordinate clauses (sub_prop_dist, sub_post) is posi-
tively correlated with all metrics but with stronger
effect for eye-tracking ones, especially in presence
of longer embedded chains (sub_chain_len). In-
terestingly, the presence of numbers (upos_NUM,
dep_nummod) affects only the explicit perception
of complexity while it is never strongly correlated
with all eye-tracking metrics. This finding is ex-
pected since numbers are very short tokens and,
like other functional POS, were never found to be
strongly correlated with online reading in our re-
sults. Conversely, numerical information has been
identified as a factor hampering sentence readabil-
ity and understanding (Rello et al., 2013).

Unsurprisingly, sentence length is the most cor-
related predictor for all complexity metrics. Since
many linguistic features highlighted in our analysis
are strongly related to sentence length, we tested
whether they maintain a relevant influence when
this parameter is controlled. To this end, Spear-
man’s correlation was computed between features
and complexity tasks, but this time considering
bins of sentences having approximately the same
length. Specifically, we split each corpus into 6
bins of sentences with 10, 15, 20, 25, 30 and 35
tokens respectively, with a range of ±1 tokens per
bin to select a reasonable number of sentences for
our analysis.

Figure 2 reports the new rankings of the most
correlated linguistic features within each bin across
complexity metrics (|ρ| > 0.2). Again, we observe
that features showing a significant correlation with
complexity scores are fewer for PC bins than for
eye-tracking ones. This fact depends on controlling
for sentence length but also on the small size of
bins for the whole dataset. As in the coarse-grained
analysis, TRD is the eye-tracking metric less cor-
related to linguistic features, while the other three
(FXC, FPD, TFD) show a homogeneous behav-
ior across bins. For the latters, vocabulary-related
features (token-type ratio, average word length, lex-
ical density) are always ranked on top (and with
a positive correlation) in all bins, especially when
considering shorter sentences (i.e. from 10 to 20
tokens). For PC, this is true only for some of them
(i.e. word length and lexical density). At the same
time, features encoding numerical information are
still highly correlated with the explicit perception
of complexity in almost all bins. Interestingly, fea-
tures modeling subordination phenomena extracted
from fixed-length sentences exhibit a reverse trend
than when extracted from the whole corpus, i.e.
they are negatively correlated with judgments. If,
on the one hand, we expect an increase in the pres-
ence of subordination for longer sentences (pos-
sibly making sentences more convoluted), on the
other hand, when length is controlled, our findings
suggest that subordinate structures are not necessar-
ily perceived as a symptom of sentence complex-
ity. Our analysis also highlights that PC’s relevant
features are significantly different from those cor-
related to online eye-tracking metrics when con-
trolling for sentence length. This aspect wasn’t
evident from the previous coarse-grained analysis.
We note that, despite controlling sentence length,
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Figure 2: Rankings of the most correlated linguistic features for metrics within length-binned subsets of the two
corpora. Coefficients ≥ 0.2 or ≤ -0.2 are highlighted, and have p < 0.001. (Bins from 10 to 35 have sizes of 173,
163, 164, 151, 165, and 147 sentences for PC and 899, 568, 341, 215, 131, and 63 sentences for gaze metrics.)

gaze measures are still significantly connected to
length-related phenomena. This can be possibly
due to the ±1 margin applied for sentence selec-
tion and the high sensitivity of behavioral metrics
to small changes in the input.

4 Predicting Online and Offline
Linguistic Complexity

Given the high correlations reported above, we pro-
ceed to quantify the importance of explicit linguis-
tic features from a modeling standpoint. Table 4
presents the RMSE and R2 scores of predictions
made by baselines and models for the selected com-

plexity metrics. Performances are tested with a 5-
fold cross-validation regression with fixed random
seed on each metric. Our baselines use average
metric scores of all training sentences (Average)
and average scores of sentences binned by their
length in # of tokens (Length-binned average) as
predictions. The two linear SVM models leverage
explicit linguistic features, using respectively only
n_tokens (SVM length) and the whole set of ∼100
features (SVM feats). Besides those, we also test
the performances of a state-of-the-art Transformer
neural language model relying entirely on contex-
tual word embeddings. We selected ALBERT as a
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PC FXC FPD TFD TRD

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Average .87 .00 6.17 .06 1078 .06 1297 .06 540 .03
Length-binned average .53 .62 2.36 .86 374 .89 532 .85 403 .45

SVM length .54 .62 2.19 .88 343 .90 494 .86 405 .45
SVM feats .44 .74 1.77 .92 287 .93 435 .89 400 .46

ALBERT .44 .75 1.98 .91 302 .93 435 .90 382 .49

Table 4: Average Root-Mean-Square Error andR2 for complexity predictions of two average baselines, two SVMs
relying on explicit features and a pretrained language model with contextualized word embeddings using 5-fold
cross-validation. ALBERT learns eye-tracking metrics in a multitask setting over parallel annotations.

lightweight yet effective alternative to BERT (De-
vlin et al., 2019) for obtaining contextual word
representations, using its last-layer [CLS] sentence
embedding as input for a linear regressor during
fine-tuning and testing. We selected the last layer
representations, despite having strong evidence on
the importance of intermediate representation in
encoding language properties, because we aim to
investigate how final layers encode complexity-
related competences. Given the availability of par-
allel eye-tracking annotations, we train ALBERT
using multitask learning with hard parameter shar-
ing (Caruana, 1997) on gaze metrics.2

From results in Table 4 we note that: i) the
length-binned average baseline is very effective
in predicting complexity scores and gaze metrics,
which is unsurprising given the extreme correla-
tion between length and complexity metrics pre-
sented in Figure 1; ii) the SVM feats model shows
considerable improvements if compared to the
length-only SVM model for all complexity met-
rics, highlighting how length alone accounts for
much but not for the entirety of variance in com-
plexity scores; and iii) ALBERT performs on-par
with the SVM feats model on all complexity met-
rics despite the small dimension of the fine-tuning
corpora and the absence of explicit linguistic in-
formation. A possible interpretation of ALBERT’s
strong performances is that the model implicitly
develops competencies related to phenomena en-
coded by linguistic features while training on on-
line and offline complexity prediction. We explore
this perspective in Section 5.

As a final step in the study of feature-based
models, we inspect the importance accorded by
the SVM feats model to features highlighted in

2Additional information on parameters and chosen training
approach is presented in Appendix A.

previous sections. Table 5 presents coefficient
ranks produced by SVM feats for all sentences
and for the 10±1 length bin, which was selected
as the broadest subset. Despite evident similar-
ities with the previous correlation analysis, we
encounter some differences that are possibly at-
tributable to the model’s inability in modeling non-
linear relations. In particular, the SVM model
still finds sentence length and related structural
features highly relevant for all complexity met-
rics. However, especially for PC, lexical features
also appear in the top positions (e.g. lexical den-
sity, ttr_lemma, char_per_tok), as well as specific
features related to verbal predicate information
(e.g. xpos_dist_VBZ,_VBN). This holds both for
all sentences, and when considering single length-
binned subsets. While in the correlation analysis
eye-tracking metrics were almost indistinguishable,
those behave quite differently when considering
how linguistic features are used for inference by
the linear SVM model. In particular, the fixation
count metric (FXC) consistently behaves in a differ-
ent way if compared to other gaze measures, even
when controlling for length.

5 Probing Linguistic Phenomena in
ALBERT Representations

As shown in Table 4, ALBERT performances on
the PC and eye-tracking corpora are comparable
to those obtained using a linear SVM with explicit
linguistic features. To investigate if ALBERT en-
codes the linguistic knowledge that we identified
as strongly correlated with online and perceived
sentence complexity during training and prediction,
we adopt the probing task testing paradigm. The
aim of this analysis is two-fold: i) probing the pres-
ence of complexity-related information encoded by
ALBERT representations during the pre-training
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All Sentences Bin 10±1

PC FXC FPD TFD TRD PC FXC FPD TFD TRD

n_tokens 1 1 1 1 1 -36 5 1 1 2
char_per_tok 2 2 12 10 16 3 1 3 3 19
xpos_dist_VBN 5 -37 76 77 75 28 9 26 21 42
avg_links_len 6 -6 7 7 7 11 -8 -23 -30 -46
n_prep_chains 7 3 10 9 8 -44 16 50 41 48
dep_dist_compound 9 7 58 61 49 13 12 60 51 47
vb_head_per_sent 10 4 4 6 3 2 -9 31 36 -33
max_links_len 56 5 2 2 2 -32 -30 36 30 -39
parse_depth 34 -36 3 3 4 -17 -1 22 24 12
sub_post 28 -33 8 8 9 -28 -40 33 34 48
dep_dist_conj 17 31 11 13 10 37 -37 46 56 -48
upos_dist_NUM 15 39 70 72 72 4 / / / /
ttr_form -42 28 77 74 -26 17 2 3 2 1
prep_chain_len 53 12 16 16 14 -48 -23 43 39 42
sub_chain_len 24 -14 19 19 32 -30 -43 56 55 35
dep_dist_nsubj 11 -16 -8 -8 -9 -2 31 -18 -19 -29
upos_dist_PRON -16 -13 -7 -6 -8 -44 -21 -5 -8 -38
dep_dist_punct -21 -3 -4 -4 -4 -20 -3 -2 -2 -2
dep_dist_nmod -20 -2 55 50 50 -9 3 28 17 15
xpos_dist_. -11 15 -1 -1 -1 -6 43 -24 -30 32
xpos_dist_VBZ -9 20 82 -33 -30 24 14 20 40 -47
dep_dist_aux -8 17 -30 -29 77 32 27 39 31 45
dep_dist_case -7 -34 25 22 34 8 -6 62 44 -21
ttr_lemma -4 21 -22 -28 -11 -4 -45 4 4 9
dep_dist_det -3 52 42 40 21 -27 -36 17 14 5
sub_prop_dist -2 29 6 5 5 26 28 63 59 21
lexical_density -1 -1 26 25 20 -37 -5 5 6 10

Table 5: Rankings based on the coefficients assigned by SVM feats for all metrics. Top ten positive and negative
features are marked with orange and cyan respectively. “/” marks features present in less than 5% of sentences.

process, especially in relation to analyzed features;
and ii) verifying whether, and in which respect, this
competence is affected by a fine-tuning on com-
plexity assessment tasks.

To conduct the probing experiments, we aggre-
gate three UD English treebanks representative of
different genres, namely: EWT, GUM and Par-
TUT by Silveira et al. (2014); Zeldes (2017);
Sanguinetti and Bosco (2015), respectively. We
thus obtain a corpus of 18,079 sentences and use
the Profiling-UD tool to extract n sentence-level
linguistic features Z = z1, . . . , zn from gold lin-
guistic annotations. We then generate representa-
tions A(x) of all sentences in the corpus using the
last-layer [CLS] embedding of a pretrained AL-
BERT base model without additional fine-tuning,
and train n single-layer perceptron regressors gi :
A(x)→ zi that learn to map representations A(x)
to each linguistic feature zi. We finally evaluate
the error and R2 scores of each gi as a proxy to
the quality of representations A(x) for encoding
their respective linguistic feature zi. We repeat

the same evaluation for ALBERTs fine-tuned re-
spectively on perceived complexity (PC) and on all
eye-tracking labels with multitask learning (ET),
averaging scores with 5-fold cross-validation. Re-
sults are shown on the left side of Table 6.

As we can see, ALBERT’s last-layer sentence
representations have relatively low knowledge of
complexity-related probes, but the performance on
them highly increases after fine-tuning. Specif-
ically, a noticeable improvement is obtained on
features that were already better encoded in base
pretrained representation, i.e. sentence length and
related features, suggesting that fine-tuning possi-
bly accentuates only properties already well-known
by the model, regardless of the target task. To ver-
ify that this isn’t the case, we repeat the same ex-
periments on ALBERT models fine-tuned on the
smallest length-binned subset (i.e. 10±1 tokens)
presented in previous sections. The right side of
Table 6 presents these results. We know from our
length-binned analysis of Figure 2 that PC scores
are mostly uncorrelated with length phenomena,
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Base PC ET PC Bin 10±1 ET Bin 10±1

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

n_tokens 8.19 .26 4.66 .76 2.87 .91 8.66 .18 6.71 .51
parse_depth 1.47 .18 1.18 .48 1.04 .60 1.50 .16 1.22 .43
vb_head_per_sent 1.38 .15 1.26 .30 1.14 .42 1.44 .09 1.30 .25
xpos_dist_. .05 .13 .04 .41 .04 .42 .04 .18 .04 .38
avg_links_len .58 .12 .53 .29 .52 .31 .59 .10 .56 .20
max_links_len 5.20 .12 4.08 .46 3.75 .54 5.24 .11 4.73 .28
n_prep_chains .74 .11 .67 .26 .66 .29 .72 .14 .69 .21
sub_prop_dist .35 .09 .33 .13 .31 .22 .34 .05 .32 .15
upos_dist_PRON .08 .09 .08 .14 .08 .07 .07 .23 .08 .15
upos_dist_NUM .05 .08 .05 .06 .05 .02 .05 .16 .05 .06
dep_dist_nsubj .06 .08 .06 .10 .06 .05 .05 .17 .06 .11
char_per_tok .89 .07 .87 .12 .90 .05 .82 .22 .86 .14
prep_chain_len .60 .07 .57 .17 .56 .19 .59 .12 .56 .18
sub_chain_len .70 .07 .67 .15 .62 .26 .71 .04 .66 .16
dep_dist_punct .07 .06 .07 .06 .07 .14 .07 .06 .07 .14
dep_dist_nmod .05 .06 .05 .07 .05 .06 .05 .09 .05 .09
sub_post .44 .05 .46 .12 .44 .18 .47 .05 .45 .14
dep_dist_case .07 .05 .06 .06 .07 .08 .07 .07 .07 .10
lexical_density .14 .05 .13 .03 .13 .03 .13 .13 .13 .13
dep_dist_compound .06 .04 .06 .05 .06 .03 .06 .10 .06 .07
dep_dist_conj .04 .03 .04 .04 .04 .04 .05 .02 .04 .03
ttr_form .08 .03 .08 .05 .08 .05 .08 .05 .08 .05
dep_dist_det .06 .03 .06 .02 .06 .04 .06 .03 .06 .03
dep_dist_aux .04 .02 .04 .01 .04 .01 .04 .06 .04 .04
xpos_dist_VBN .03 .01 .03 .00 .03 .00 .03 .01 .03 .00
xpos_dist_VBZ .04 .01 .04 .01 .04 .02 .04 .02 .04 .02
ttr_lemma .09 .01 .09 .06 .09 .06 .09 .04 .09 .03

Table 6: RMSE and R2 scores for diagnostic regressors trained on ALBERT representations, respectively, without
fine-tuning (Base), with PC and eye-tracking (ET) fine-tuning on all data (left) and on the 10 ± 1 length-binned
subset (right). Bold values highlight relevant increases in R2 from Base.

while ET scores remain significantly affected de-
spite our controlling of sequence size. This also
holds for length-binned probing task results, where
the PC model seems to neglect length-related prop-
erties in favor of other ones, which were the same
highlighted in our fine-grained correlation analy-
sis (e.g. word length, numbers, explicit subjects).
The ET-trained model confirms the same behav-
ior, retaining strong but lower performances for
length-related features. We note that, for all met-
rics, features that were highly relevant only for the
SVM predictions, such as those encoding verbal
inflectional morphology or vocabulary-related ones
(Table 5), are not affected by the fine-tuning pro-
cess. Despite obtaining the same accuracy of a
SVM, the neural language model seem to address
the task more similarly to humans when accounting
for correlation scores (Figure 2). A more extensive
analysis of the relation between human behavior
and predictions by different models is deemed in-
teresting for future work.

To conclude, although higher probing tasks per-
formances after fine-tuning on complexity met-
rics should not be interpreted as direct proof that
the neural language model is exploiting newly-
acquired morpho-syntactic and syntactic informa-
tion, they suggest an importance shift in NLM rep-
resentation, triggered by fine-tuning, that produces
an encoding of linguistic properties able to better
model the human assessment of complexity.

6 Conclusion

This paper investigated the connection between
eye-tracking metrics and the explicit perception of
sentence complexity from an experimental stand-
point. We performed an in-depth correlation analy-
sis between complexity scores and sentence-level
properties at different granularity levels, highlight-
ing how all metrics are strongly connected to sen-
tence length and related properties, but also re-
vealing different behaviors when controlling for
length. We then evaluated models using explicit
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linguistic features and unsupervised word embed-
dings to predict complexity, showing comparable
performances across metrics. We finally tested the
encoding of linguistic properties in the contextual
representations of a neural language model, not-
ing the natural emergence of task-related linguistic
properties within the model’s representations after
the training process. We thus conjecture that a re-
lation subsists between the linguistic knowledge
acquired by the model during the training proce-
dure and its downstream performances on tasks
for which the morphosyntactic and syntactic struc-
tures play a relevant role. For the future, we would
like to test comprehensively the effectiveness of
tasks inspired by the human language learning as
intermediate steps to train more robust and parsi-
monious neural language models.

7 Broader Impact and Ethical
Perspectives

The findings described in this work are mostly
intended to evaluate recent efforts in the compu-
tational modeling of linguistic complexity. This
said, some of the models and procedures described
can be clearly beneficial to society. For exam-
ple, using models trained to predict reading pat-
terns may be used in educational settings to iden-
tify difficult passages that can be simplified, im-
proving reading comprehension for students in a
fully-personalizable way. However, it is essen-
tial to recognize the potentially malicious usage
of such systems. The integration of eye-tracking
systems in mobile devices, paired with predictive
models presented in this work, could be used to
build harmful surveillance systems and advertise-
ment platforms using gaze predictions for extreme
behavioral manipulation. In terms of research im-
pact, the experiments presented in this work may
provide useful insights into the behavior of neural
language models for researchers working in the
fields of interpretability in NLP and computational
psycholinguistics.
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Model & Tokenizer Parameters

heads dimension 1-Layer Dense
max seq. length 128
embed. dropout 0.1
seed 42

lowercasing 7

tokenization SentencePiece
vocab. size 30000

Training Parameters

PC ET Probes

fine-tuning standard multitask multitask
freeze LM w 7 7 3

weighted loss - 3 7

CV folds 5 5 5
early stopping 3 3 7

training epochs 15 15 5
patience 5 5 -
evaluation steps 20 40 -
batch size 32 32 32
learning rate 1e-5 1e-5 1e-5

Table 7: Model, tokenizer and training parameters used
for fine-tuning ALBERT on complexity metrics.

A Parametrization and Fine-tuning
Details for ALBERT

We leverage the pretrained albert-base-v2 check-
point available in the HuggingFace’s Trans-
former framework (Wolf et al., 2020) and use
adapted scripts and classes from the FARM frame-
work (Deepset, 2019) to perform multitask learn-
ing on eye-tracking metrics. Table 7 presents the
parameters used to define models and training pro-
cedures for experiments in Sections 4 and 5.

During training we compute MSE loss scores
for task-specific heads for the four eye-tracking
metrics (`FXC , `FPD, `TFD, `TRD) and perform
a weighted sum to obtain the overall loss score `ET

to be optimized by the model:

`ET = `FXC + `FPD + `TFD + (`TRD × 0.2)

The use of `TRD was shown to have a positive im-
pact on the overall predictive capabilities of the
model only when weighted to prevent it from dom-
inating the `ET sum.

Probing tasks on linguistic features are per-
formed by freezing the language model weights
and training 1-layer heads as probing regressors
over the last-layer [CLS] token for each feature. In
this setting no loss weighting is applied, and the
regressors are trained for 5 epochs without early
stopping on the aggregated UD dataset.

B Examples of Sentences from
Complexity Corpora

Table 8 presents examples of sentences randomly
selected from the two corpora leveraged in this
study. We highlight how eye-tracking scores show
a very consistent relation with sentence length,
while PC scores are much more variable. This fact
suggests that the offline nature of PC judgments
makes them less related to surface properties and
more connected to syntax and semantics.

C Models’ Performances on
Length-binned Sentences

Similarly to the approach adopted in Section 3, we
test the performances of models on length-binned
data to verify if performances on length-controlled
sequences are consistent with those achieved on the
whole corpora. RMSE scores averaged with 5-fold
cross validation over the length-binned sentences
subsets are presented in Figure 3. We note that
ALBERT outperforms the SVM with linguistic fea-
tures on nearly all lengths and metrics, showing the
largest gains on intermediate bins for PC and gaze
durations (FPD, TFD, TRD). Interestingly, overall
performances of models follow a length-dependent
increasing trend for eye-tracking metrics, but not
for PC. We believe this behavior can be explained
in terms of the high sensibility to length previously
highlighted for online metrics, as well as the vari-
ability in bin dimensions (especially for the last bin
containing only 63 sentences). We finally observe
that the SVM model based on explicit linguistic
features (SVM feats) performs poorly on larger
bins for all tasks, sometimes being even worse than
the bin-average baseline. While we found this be-
havior surprising given the positive influence of
features highlighted in Table 4, we believe this is
mostly due to the small dimension of longer bins,
which negatively impacts the generalization capa-
bilities of the regressor. The relatively better scores
achieved by ALBERT in those, instead, support the
effectiveness of information stored in pretrained
language representations when a limited number of
examples is available.
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Length bin Sentence PC Score

Bin 10±1 It hasn’t made merger overtures to the board. 2.15
Bin 15±1 For most of the past 30 years, the marriage was one of convenience. 1.45
Bin 20±1 Shanghai Investment & Trust Co., known as Sitco, is the city’s main financier for trading business. 3.35
Bin 25±1 For fiscal 1988, Ashland had net of $224 million, or $4.01 a share, on revenue of $7.8 billion. 4.55
Bin 30±1 C. Olivetti & Co., claiming it has won the race in Europe to introduce computers based on a

powerful new microprocessor chip, unveiled its CP486 computer yesterday.
4.25

Bin 35±1 The White House said he plans to hold a series of private White House meetings, mostly with
Senate Democrats, to try to persuade lawmakers to fall in line behind the tax cut.

2.9

Length bin Sentence FPD FXC TFD TRD

Bin 10±1 Evidently there was a likelihood of John Cavendish being acquitted. 1429 7.69 1527 330
Bin 15±1 I come now to the events of the 16th and 17th of that month. 1704 9.71 1979 467
Bin 20±1 Who on earth but Poirot would have thought of a trial for murder as a

restorer of conjugal happiness!
2745 15.38 3178 1003

Bin 25±1 He knew only too well how useless her gallant defiance was, since it was
not the object of the defence to deny this point.

3489 19.77 4181 1012

Bin 30±1 I could have told him from the beginning that this obsession of his over
the coffee was bound to end in a blind alley, but I restrained my tongue.

3638 21.36 4190 1010

Bin 35±1 There was a breathless hush, and every eye was fixed on the famous
London specialist, who was known to be one of the greatest authorities of
the day on the subject of toxicology.

4126 23.14 4814 1631

Table 8: Example of sentences selected from all the length-binned subset for the Perceived Complexity Corpus (top)
and the GECO corpus (bottom). Scores are aggregated following the procedure described in Section 2. Reading
times (FPD, TFD, TRD) are expressed in milliseconds.

Figure 3: Average Root Mean Square Error (RMSE) scores for models in Table 4, performing 5-fold cross-
validation on the same length-binned subsets used for the analysis of Figure 2. Lower scores are better.
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Abstract

We advance a novel explanation of similarity-
based interference effects in subject-verb
and reflexive pronoun agreement processing,
grounded in surprisal values computed from
a pretrained large-scale Transformer model,
GPT-2. Specifically, we show that surprisal
of the verb or reflexive pronoun predicts fa-
cilitatory interference effects in ungrammati-
cal sentences, where a distractor noun that
matches in number with the verb or pronoun
leads to faster reading times, despite the dis-
tractor not participating in the agreement re-
lation. We review the human empirical evi-
dence for such effects, including recent meta-
analyses and large-scale studies. We also show
that attention patterns (indexed by entropy and
other measures) in the Transformer show pat-
terns of diffuse attention in the presence of sim-
ilar distractors, consistent with cue-based re-
trieval models of parsing. But in contrast to
these models, the attentional cues and mem-
ory representations are learned entirely from
the simple self-supervised task of predicting
the next word.

1 Introduction

Deep Neural Network (DNN) language models (Le-
Cun et al., 2015; Sundermeyer et al., 2012; Vaswani
et al., 2017) have recently attracted the attention of
researchers interested in assessing their linguistic
competence (Chaves, 2020; Da Costa and Chaves,
2020; Ettinger, 2020; Wilcox et al., 2018, 2019)
and potential to provide accounts of psycholinguis-
tic phenomena in sentence processing (Futrell et al.,
2018; Linzen and Baroni, 2021; Van Schijndel and
Linzen, 2018; Wilcox et al., 2020). In this paper
we show how attention-based transformer models
(we use a pre-trained version of GPT-2) provide the
basis for a new theoretical account of facilitatory
interference effects in subject-verb and reflexive
agreement processing. These effects, which we re-
view in detail below, have played an important role

in psycholinguistic theory because they show that
properties of noun phrases that are not the gram-
matical targets of agreement relations may nonethe-
less exert an influence on processing time at points
where those agreement relations are computed.

The explanation we propose here is a novel one
grounded in surprisal (Hale, 2001; Levy, 2008),
but with origins in graded attention and similarity-
based interference (Van Dyke and Lewis, 2003;
Lewis et al., 2006; Jäger et al., 2017). We use sur-
prisal as the key predictor of reading time (Levy,
2013), and through targeted analyses of patterns of
attention in the transformer, show that the model
behaves in ways consistent with cue-based re-
trieval theories of sentence processing. The ac-
count thus provides a new integration of surprisal
and similarity-based interference theories of sen-
tence processing, adding to a growing literature
of work integrating noisy memory and surprisal
(Futrell et al., 2020). In this case, the noisy rep-
resentations arise from training the transformer,
and interference must exert its influence on reading
times through a surprisal bottleneck (Levy, 2008).

The remainder of this paper is organized as fol-
lows. We first provide an overview of some of
key empirical work in human sentence process-
ing concerning subject-verb and reflexive pronoun
agreement. We then provide a brief overview of
the GPT-2 architecture, its interesting psycholin-
guistic properties, and the method and metrics that
we will use to examine the agreement effects. We
then apply GPT-2 to the materials used in several
different human reading time studies. We conclude
with some theoretical reflections, identification of
weaknesses, and suggestions for future work.

2 Agreement Interference Effects in
Human Sentence Processing

One long-standing focus of work in sentence com-
prehension is understanding how the structure of
human short-term memory might support and con-
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strain the incremental formation of linguistic depen-
dencies among phrases and words (Gibson, 1998;
Lewis, 1996; Lewis et al., 2006; Miller and Chom-
sky, 1963; Nicenboim et al., 2015). A key prop-
erty of human memory thought to shape sentence
processing is similarity-based interference (Miller
and Chomsky, 1963; Lewis, 1993, 1996). Figure
1 shows a simple example of how such interfer-
ence arises in cue-based retrieval models of sen-
tence processing, as a function of the compatibility
of retrieval targets and distractors with retrieval
cues (Lewis and Vasishth, 2005; Lewis et al., 2006;
Van Dyke and Lewis, 2003) (Corresponding sen-
tences are from Wagers et al. (2009)’s Exp 4–6
shown in Table 1). Inhibitory interference effects
occur when features of the target perfectly match
the retrieval cue and features of a distractor partially
matches, while facilitatory interference effects oc-
cur when the features of both target and distractor
partially match the features of retrieval cue.

In this study, we focus on interference effects
in subject-verb number agreement and reflexive
pronoun-antecedent agreement, specifically in lan-
guages where the agreement features include syn-
tactic number which is morphologically marked
on the verb or pronoun. In such cases, number is
plausibly a useful retrieval cue, and it is easy to ma-
nipulate the number of distractor noun phrases to
allow for carefully controlled empirical contrasts.

Interference in subject-verb agreement. Previ-
ous studies (Pearlmutter et al., 1999; Wagers et al.,
2009; Dillon et al., 2013; Lago et al., 2015; Jäger
et al., 2020) attest to both inhibitory interference
(slower processing in the presence of an interfering
distractor) and facilitatory interference (faster pro-
cessing in the presence of an interfering distractor),
but the existing empirical support for inhibitory
interference is weak, and many studies fail to find
any evidence for it (Dillon et al., 2013; Lago et al.,
2015; Wagers et al., 2009). There is stronger ev-
idence for facilitatory effects, which arise in un-
grammatical structures where the verb or pronoun
fails to agree in number with the structurally correct
target noun phrase, but where either an intervening
or preceding distractor noun phrase does match in
number. Example A. below illustrates, taken from
Wagers et al. (2009), where the subject and verb
are boldfaced and the distractor noun is underlined:

A. The slogan on the posters were designed to get
attention.

Figure 1: How facilitatory and inhibitory interference
effects arise in subject-verb dependency creation in cue-
based retrieval parsing. The critical manipulation con-
cerns the overlap of number feature between the dis-
tractor, target, and retrieval cue.

A Bayesian meta-analysis of agreement phenom-
ena was recently conducted with an extensive set
of studies (Jäger et al., 2017; Vasishth and Engel-
mann, 2021). Their analysis of first-pass reading
times from eye-tracking experiments on subject-
verb number agreement is shown in Figure 1. The
evidence from the meta-analysis is consistent with
a very small or nonexistent inhibitory interference
effect in in the grammatical conditions, with a small
but robust facilitatory interference effects in the
ungrammatical conditions. Concerned that the ex-
isting experiments did not have sufficient power
to detect the inhibitory effects, Nicenboim et al.
(2018) ran a large scale eye-tracking study (185
participants) with materials designed to increase
the inhibition effect, and did detect a 9ms effect
(95% credible posterior interval 0–18ms). This rep-
resents the strongest evidence to date for inhibitory
effects in grammatical agreement structures, but
even this evidence indicates the effect may be near
zero.

Interference in reflexive pronoun agreement.
Example B. below shows a pair of sentences from
Dillon et al. (2013) used to probe facilitatory ef-
fects in reflexive pronoun agreement (again, the
target antecedent and pronoun are boldfaced and
the distractor is underlined):

B. (1) interfering The basketball coach who
trained the star players usually blamed them-
selves for the ...

62



Figure 2: Results of the meta-analysis on subject-verb number agreement from Vasishth and Engelmann (2021).
The materials from boldfaced studies are those that we used in our GPT-2 experiments.

(2) non-interfering The basketball coach who
trained the star player usually blamed them-
selves for the ...

The empirical record concerning facilitatory ef-
fects in reflexive agreement is mixed. Some have
claimed that such effects do not arise (Sturt, 2003;
Xiang et al., 2009; Dillon et al., 2013), and that
this is expected under a model in which the struc-
tural constraints from binding theory (Chomsky
et al., 1982) serve to effectively filter candidates
for retrieval—in short, the parser does not consider
or make contact with the ungrammatical distractor
noun phrases (Sturt, 2003; Dillon et al., 2013).

However, a recent Bayesian meta-analysis of
key experiments by Dillon et al. (2013) indicates
substantially overlapping posterior estimates of fa-
cilitatory effects for subject-verb agreement and re-
flexive agreement (Vasishth and Engelmann, 2021).
Concerned again about under-powered studies,
Jäger et al. (2020) undertook a large scale (181
participants) eye-tracking replication and did find
evidence for nearly equivalent facilitatory speed-
ups for reflexive and subject-verb agreement (Fig-
ure 3). This result is not inconsistent with the meta-
analysis, but provides stronger evidence that the
facilitation effects in reflexives are real.

We take advantage of the very broad coverage
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(b) Ungrammatical conditions.
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Figure 10 . Interference e�ects in grammatical (a) and ungrammatical conditions (b). The
figure shows the posterior means together with 95% credible intervals of the interference
e�ects in total fixation times. These estimates were obtained from the Bayesian analysis
of the original data of Dillon et al. (2013), and from our replication data. Separate e�ect
estimates for each dependency type as well as the overall e�ect obtained when collapsing over
dependencies are presented. The left-most line of each plot shows the range of predictions
of the Lewis and Vasishth (2005) ACT-R cue-based retrieval model (see Section Deriving
quantitative predictions from the Lewis and Vasishth (2005) model for details).

Figure 3: From Jäger et al. (2020). Posterior estimates
of facilitatory interference effects in subject-verb and
reflexive agreement processing in a large scale replica-
tion of Dillon et al. (2013), the original effects, and pre-
dictions from the Lewis and Vasishth (2005) model.

of GPT-2 by having GPT-2 process the same set of
sentence materials as human subjects in four differ-
ent agreement experiments. To anticipate our key
results, we find GPT-2 yields lower surprisal, i.e. fa-
cilitatory effects, in both subject-verb and reflexive
pronoun conditions. Furthermore, we show that at-
tention at the verb or pronoun is distributed to both
target and distractor in just those conditions where
the distractor matches the hypothesized number re-
trieval cue (Lin et al., 2019). Finally, we show that
the surprisal contrasts between matching and non-
matching distractors in the grammatical (inhibitory)
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interference conditions are essentially zero.

3 GPT-2 for Psycholinguistic Analysis

The psycholinguistic relevance of GPT-2 and its
training method. GPT-2 (Generative Pre-trained
Transformer-2), introduced by OpenAI in Rad-
ford et al. (2019), is a language model with a
decoder-only Transformer architecture (Vaswani
et al., 2017), and has achieved state-of-the-art per-
formance in diverse downstream tasks. GPT-2 and
other large-scaled language models based on trans-
former architectures were trained on billions of
words of text, and engineered with performance in
mind, not with concern for psycholinguistic plausi-
bility. Why then should we then take them seriously
as the basis of psycholinguistic models?

We believe that the new transformer-based mod-
els have three important properties that make them
of psycholinguistic interest. (a) The models are
among the first to serve as the basis of systems
that achieve human-level performance on a range
of linguistic tasks, and they directly generate a
key quantity, surprisal of the next word, that we
know is an important predictor of reading times in
humans (Hale, 2001; Levy, 2008). (b) Although
the data requirements are currently much greater
than that for human language acquisition, the mod-
els are trained on a simple task—predict the next
word—that may plausibly serve as the basis of a
self-supervised learning signal in human language
acquisition. The representations that arise from
such learning are thus psycholinguistically inter-
esting. (c) The learned soft-attention and parallel
content-based retrieval of representations of prior
input are architectural properties of the GPT mod-
els that align very closely with retrieval-based mod-
els of sentence comprehension (Lewis et al., 2006).
And the structure of these psycholinguistic models
was proposed as a response to the challenges of
computing long-distance dependencies—the same
challenge that motivated the transformer as a depar-
ture from standard recurrent architectures (Vaswani
et al., 2017; Galassi et al., 2020).

Identifying specialized heads in GPT-2. Here
we use the medium-sized GPT-2 which is con-
structed with 12 layers, each of which includes 12
attention heads. Previous studies have revealed that
individual attention heads in Transformer models
serve are at least partially specialized in function
(Clark et al., 2019; Vig, 2019; Vig and Belinkov,
2019; Voita et al., 2019). Specifically, Voita et al.

(2019) found that certain attention heads are spe-
cialized for different dependency relations.

Following Voita et al. (2019)’s method, we iden-
tified heads that are specialized for subject-verb
relations and reflexive anaphora resolution. Voita
et al. (2019)’s method works as follows. First,
sentences are parsed using CoreNLP dependency
parser (Manning et al., 2014). Then, relative string
positions (e.g., one token back, two tokens back)
of all instances in each syntactic dependency were
counted. Considering the proportion of the most
frequent relative position as the baseline, attention
heads are selected as specialized for a particular
dependency relation if attention is paid for the cor-
responding dependent at least 10% more often than
the baseline. In other words, there must be some
evidence that the attention head is sensitive to the
dependency and not merely string position.

To find attention heads responsible for the re-
lation between subjects and verbs, we used the
CoreNLP parser on 148,376 sentences from the
Brown corpus and Gutenberg corpus provided via
Natural Language Toolkit (NLTK) (Bird et al.,
2009), extracting 49,145 nsubj relations, which as-
sociate nominal subjects and their governors which
are mostly verbs. The most frequent relative po-
sition for nsubj dependency relation is -1, which
means that the nominal subjects usually come right
before their governor, taking up 42% of the cases.

After analyzing the attention distribution pattern
using GPT-2, we obtained four syntactic heads that
were found to be partly specialized for nsubj depen-
dency relations: head4_3 (59%); head3_6 (51%);
head6_0 (49%); head2_9 (49%)1. Although we
expect that the four syntactic heads responsible
for nsubj dependency relation may play distinct
roles, in our analyses here we simply use the best
performing head (head4_3).

The same method was implemented to find at-
tention heads responsible for reflexive anaphora
resolution. The only difference was that we used
NeuralCoref (Wolf et al., 2018) to count relative po-
sition of antecedents to reflexive anaphora since the
dependency parser does not associate antecedents
and anaphora. Out of 2,660 sentences that includes
reflexive anaphora, we extracted 510 sentences
where NeuralCoref identified a single unique an-
tecedent for the reflexive pronoun. The most fre-

1headn_m refers to the m-th attention head in the n-th
layer. Numbers in parentheses indicate accuracies of heads in
paying the highest attention to the subject/antecedent by the
verb/pronoun.
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Table 1: A set of data included for the experiment on subject-verb agreement. (Wagers et al. (2009)’s Exp3 also
included sets with plural subjects in the ungrammatical conditions.)

Interference Grammaticality Example sentences
int gram The commentator who the viewer trusts ...

Wagers 2009 non-int gram The commentators who the viewer trusts ...
Exp 2-3 int ungram *The commentators who the viewer trust ...

non-int ungram *The commentator who the viewer trust ...
int gram The slogan on the poster was designed ...

Wagers (2009) non-int gram The slogan on the posters was designed ...
Exp 4-6 int ungram *The slogan on the posters were designed ...

non-int ungram *The slogan on the poster were designed ...
int gram The executive who oversaw the middle manager

apparently was dishonest ...
non-int gram The executive who oversaw the middle managers

Dillon 2013 apparently was dishonest ...
Exp 1 agrmt int ungram *The executive who oversaw the middle managers

apparently were dishonest ...
non-int ungram *The executive who oversaw the middle manager

apparently were dishonest ...

quent relative position for reflexive anaphora and
their antecedents was -2, meaning that antecedents
appear before reflexive anaphora having one word
in between. The proportion of the highest relative
position was 22%, requiring 24.2 % of accuracy
for attention heads to be considered responsible
for reflexive anaphora resolution. We found four
heads whose accuracies are higher than the thresh-
old: head1_5 (44%); head3_5 (39%); head4_3
(27%); head6_0 (25%), and we again take the best
performing head (head1_5) for further analysis.

Metrics. We define here three metrics for our
analyses: surprisal, attention entropy from syntac-
tic heads, and attention to target. We use surprisal
for making reading time predictions, but use the
attention metrics to provide insight into the process-
ing at the critical region and therefore the represen-
tations computed in the prefix before the critical
region. Surprisal is thus based on the final predic-
tion of the entire model, but the attention metrics
are associated with the attention heads most spe-
cialized for our dependencies of interest.

Surprisal (Hale, 2001; Levy, 2008) is defined
as the negative log probability of the word given
left context.

Surprisal(w) = −log2P (w|context) (1)

Any use of surprisal requires adoption of some kind
of language model; e.g. some past work has used

probabilistic CFGs (Levy, 2008). Here we use
GPT-2, which computes after each word a prob-
ability distribution over its large lexicon that is
conditioned on its internal representation of the left
context.

Attention to target is simply the value of the
soft attention vector element that corresponds
to the target word position, which we denote
Attn(wcue, wtarget), and indicates how much at-
tention is allocated to the target by one of the spe-
cialized attention heads (head4_3 for subject-verb
and head1_5 for reflexives.)

Attention entropy is a variant of Shannon
(1948)’s information entropy that we use as a mea-
sure of how sharply focused (low entropy) or dif-
fuse (high entropy) the attention pattern is. (It may
be thought of as a measure of the uncertainty about
the attentional target, but because the attention val-
ues are not probabilities from which targets are sam-
pled, this interpretation is not strictly warranted).

Entropy(wi) =

i−1∑

j=1

Attn(wi, wj)× log2Attn(wi, wj)

(2)

where i refers to the location of the critical word,
j are locations of prior words, and Attn(wi, wj) is
attention allocated to wj from wi.
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4 Subject-verb Agreement Experiments

To investigate whether GPT-2 may predict facilita-
tory interference effects in subject-verb agreement,
we ran GPT-2 on materials from three studies (Dil-
lon et al., 2013; Wagers et al., 2009): 48 sets of
sentences from Experiments 2-3 in Wagers et al.
(2009)2; 24 sets of sentences from Experiments 4-7
in Wagers et al. (2009); 48 sets of sentences from
Dillon et al. (2013) (See Table 1).

These three sets of sentences have in common
a 2 × 2 structure with the factors grammatical-
ity (grammatical/ungrammatical) and interference
(interfering/non-interfering), as described above.
Additionally, Wagers et al. (2009)’s Exp 3 also
includes an additional condition, subject (singu-
lar/plural) for investigating a possible singular-
plural asymmetry, i.e., asking whether interference
effects are equivalent for plural (for plural verbs)
and singular (for singular verbs) distractors.

Note that sentences from Experiments 2–3 in
Wagers et al. (2009) involve structures in which the
distractor appears before the target, and so test ef-
fects of proactive interference. Thus the distractors
are also more distant from verbs than in the other
experimental materials.

Results of surprisal analyses. Figure 4 shows
the surprisal computed at the critical verbs in each
of the experiments and in each of the four condi-
tions separately (red dots and intervals represent
means and conventional 95% confidence intervals).
Surprisal matches the important qualitative pattern
found in the meta-analysis of first-pass reading
times: lower surprisal—facilitatory effects—are
found in the ungrammatical conditions when the
distractor matches the verb’s number, and no in-
hibitory effects are found in the grammatical con-
ditions. Furthermore, the effects are largest for the
case of retroactive interference, where the distrac-
tor follows the target and immediately precedes the
verb (Figure 4a), compared to proactive inteference,
where the distractor precedes the target (Figure 4c).
The exception is that no facilitatory effects were
found when the verb is singular and the target sub-
ject is plural (see Figure 4d). But the facilitatory
effect in this condition was not reliably different
from zero in the meta-analysis, and it mirrors a
plural-singular asymmetry (or markedness effect)
found in agreement attraction in production.

2Wagers et al. (2009)’s materials are an extended and
slightly modified version of Pearlmutter et al. (1999)

(a) Wagers et al. 2009 (Exp 4–6).

(b) Dillon et al. 2013 (Exp 1)

(c) Wagers et al. 2009 (Exp 2–3, singular subject)

(d) Wagers et al. 2009 (Exp 3, plural subject)

Figure 4: The surprisal of critical verbs computed by
GPT-2 on the materials in four subject-verb number
agreement experiments. Each small dot is a data point
from one sentence; the red dots and intervals represent
means and 95% confidence intervals.

Results of attention analyses. Our conjecture is
that in the interfering conditions where the distrac-
tor matches the verb in number that the attention of
the nsubj-specialized attention head head4_3 will
be distributed to both the target and the distractor.
It is possible to visualize exactly this pattern using
a tool developed by Vig (2019). Figure 5 shows an
example visualization.

Analyses of the attention entropy and attention
to target metrics provide quantitative evidence for
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interfering non-interfering

grammatical

ungrammatical

Figure 5: An example of the attention distribution of an attention head specialized for subject-verb dependencies
in the four conditions of the subject-verb agreement experiments.

this conjecture: Figure 6 shows two metrics across
the four datasets. The interfering conditions always
show the highest value of attention entropy and the
lowest value of attention to target, which means
that the head most specialized for subject-verb rela-
tions distributes attention more diffusely and away
from the target subject. There is evidence for the
expected attention effects even in the grammatical
conditions, but in these conditions there is no ef-
fect of surprisal. Thus, under a theory in which
similarity-based interference exerts its effects on
reading time through a surprisal bottleneck (Levy,
2008), no reading time differences are expected
here—even though the underlying representations
and attention patterns may reflect the interference.

Preliminary corpus analysis of ungrammatical
subject-verb agreement sentences. One possi-
ble explanation for the observed facilitatory in-
terference effects is that GPT-2 was exposed to
ungrammatical sentences in the training data that
have precisely the interference patterns of the un-
grammatical sentences in our experiments. To
examine such possibility, we analyzed 241 sen-
tences randomly extracted from a Reddit corpus
(Chang et al., 2020) whose subjects and verbs do
not agree in number, and have either interfering or
non-interfering distractors in between. The results
shown in Table 2 suggest that interfering distrac-
tors occur about twice as often as non-interfering
distractors in the case of singular subjects with
an ungrammatical plural verb, consistent with our
expectations that agreement-attraction errors in pro-
duction may be evident in un-edited corpora.

But it seems unlikely that this 2:1 ratio, which

singular subj plural subj
interfering 80 71

non-interfering 39 51

Table 2: Results from a preliminary corpus analysis
of patterns of ungrammatical subject-verb agreement.
In the key case of a singular subject and a plural verb,
the number of an intervening distractor is about twice
as likely to be plural (interfering) rather than singular
(non-interfering). See text for a discussion.

corresponds to about a 1 bit difference in surprisal,
is sufficient alone to explain the observed surprisal
differences. For example, in the Wagers et al Exper-
iment 4–6, we observed about a 3 bit difference in
surprisal, a 2 bit or 4x difference in probability rel-
ative to what would be expected on the basis of the
corpus counts. More extensive corpus analysis is
necessary to confidently rule out this explanation.

5 Reflexive Agreement Experiments

To examine whether the prediction of GPT-2 are
consistent with the null interference effects argued
for by Dillon et al. (2013), or show facilitatory in-
terference effects as in the large scale Jäger et al.
(2020) replication, we conducted an experiment us-
ing the same methodology as described above for
the subject-verb experiments, but using the reflex-
ive materials in Dillon et al. (2013), and focusing
the attention analyses on the head most specialized
for reflexive anaphor resolution. Examples of the
materials are shown in Table 3.

Results of the surprisal analyses. Summaries
of the surprisal (and attention metrics) measured at
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(a) Wagers et al. 2009 (Exp 4–6)

(b) Dillon et al. 2013 (Exp 1)

(c) Wagers et al. 2009 (Exp 3, singular subject)

(d) Wagers et al. 2009 (Exp 3, plural subject)

Figure 6: Metrics quantifying attention patterns of the attention head most specialized for subject-verb relations,
computed at the verb in the subject-verb agreement experiments.

reflexive anaphora are provided in Figure 7. Con-
sistent with the large scale replication of Dillon
et al. (2013) conducted by Jäger et al. (2020) (but
inconsistent with the null results reported by Dillon
et al), we found lower surprisal values in the un-
grammatical interfering conditions, consistent with
a facilitatory interference effect.

Results of the attention analyses. We found lit-
tle or no differences between interfering and non-
interfering cases in the two attention metrics at-

tention entropy and attention to target. It is possi-
ble that this is because the attention head head1_5
that we found to be partly specialized for reflexive
anaphora resolution is actually not as specialized in
reflexive anaphora resolution as head4_3 special-
ized in nsubj dependency resolution. We cannot
conclude yet whether there exist heads that serve
this function better (that are not detected by the
method of Voita et al. (2019)), whether GPT-2 is
not reliably resolving the reflexive anaphora, or
whether GPT-2 is doing so in a way that is dis-
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Interference Grammaticality Example sentences
int gram The basketball coach who trained the star player

usually blamed himself for the ...
non-int gram The basketball coach who trained the star players

Dillon 2013 usually blamed himself for the ...
Exp 1 reflexive int ungram *The basketball coach who trained the star players

usually blamed themselves for the ...
non-int ungram *The basketball coach who trained the star player

usually blamed themselves for the ...

Table 3: Examples from Dillon et al. (2013), used in the GPT-2 experiment on reflexive pronoun agreement.

Figure 7: Results of the GPT-2 reflexive agreement ex-
periment using materials from Dillon et al. (2013).

tributed across many attention heads.

6 Discussion and Future Directions

Effects of similarity-based interference have been
the province of models of noisy memory rather
than models of probabilistic expectations, because
in standard probabilistic grammars the expectation
for the agreement features of a licensor such as a
verb or pronoun should not be conditioned upon
the agreement features of constituents other than
the target licensee. But we show here that a large-
scale Transformer language model, GPT-2, trained
only to predict the next word, nevertheless yields

surprisal values that are consistent with facilitatory
interference effects due to distractor noun phrases
that do not participate in the agreement relations.
We also confirmed that two metrics that are easily
computed from the Transformers’ attention mech-
anism, attention entropy and attention to target,
show patterns in the subject-verb experiments that
are consistent with cue-based retrieval models.

Our results are suggestive of a possible interest-
ing link between surprisal and noisy memory repre-
sentations. The attention patterns that we have dis-
covered must reflect similarity between the repre-
sentations of the target and distractor noun phrases.
This representational similarity is the source of
great generalization power, but this generalization
can lead to linguistic expectations that are not de-
rived by conventional grammatical analyses.

One limitation of our analyses of attention is that
they depend on methods for identifying specialized
heads for specific dependency types. It is not clear
that we understand enough about Transformer mod-
els to do this reliably. But our results suggest that
for at least some dependencies, these simple atten-
tion metrics and head selection methods can yield
interesting insights.

The approach outlined may provide an impor-
tant way to combine surprisal and noisy memory
accounts, maintaining a surprisal bottleneck. Us-
ing trained Transformers has the significant theo-
retical advantage that the memory representations,
the attention/retrieval cues, and thus the predicted
similarity effects are learned via a self-supervised
prediction task. And so such models naturally yield
experience-driven sources of noisy representations
that are independent of the process noise assumed
in existing memory-based models. Combining the
process- and experience-based noise in a single
model is an important goal for psycholinguistic
theory.
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Abstract

Eye-tracking data from reading represent an
important resource for both linguistics and nat-
ural language processing. The ability to ac-
curately model gaze features is crucial to ad-
vance our understanding of language process-
ing. This paper describes the Shared Task
on Eye-Tracking Data Prediction, jointly orga-
nized with the eleventh edition of the Work-
shop on Cognitive Modeling and Computa-
tional Linguistics (CMCL 2021). The goal of
the task is to predict 5 different token-level eye-
tracking metrics from the Zurich Cognitive
Language Processing Corpus (ZuCo). Eye-
tracking data were recorded during natural
reading of English sentences. In total, we re-
ceived submissions from 13 registered teams,
whose systems include boosting algorithms
with handcrafted features, neural models lever-
aging transformer language models, or hybrid
approaches. The winning system used a range
of linguistic and psychometric features in a
gradient boosting framework.

1 Introduction/Overview

The ability of accurately modeling eye-tracking
features is crucial to advance the understanding
of language processing. Eye-tracking provides
millisecond-accurate records on where humans
look, shedding lights on where they pay attention
during their reading and comprehension phase (see
the example in Figure 1). The benefits of utilizing
eye movement data have been noticed in various
domains, including natural language processing
and computer vision. Not only can it reveal the
workings of the underlying cognitive processes
of language understanding, but the performance
of computational models can also be improved if
their inductive bias is adjusted using human cog-
nitive signals such as eye-tracking, fMRI, or EEG

The film often achieves a mesmerizing poetry.

Figure 1: Example sentence from the ZuCo corpus read
by a single reader. The blue dots mark fixations on the
corresponding words above, a wider diameter represent
a longer fixation duration.

data (Barrett et al., 2016; Hollenstein et al., 2019;
Toneva and Wehbe, 2019). Thanks to the recent
introduction of a standardized dataset (Hollenstein
et al., 2018, 2020), it is now possible to compare
the capabilities of machine learning approaches to
model and analyze human patterns of reading.

In this shared task, we present the challenge of
predicting eye word-level tracking-based metrics
recorded during English sentence processing. We
encouraged submissions concerning both cognitive
modeling and linguistically motivated approaches
(e.g., language models). All data files are available
on the competition website.1

2 Related Work

Research on naturalistic reading has shown that
fixation patterns are influenced by the predictabil-
ity of words in their sentence context (Ehrlich
and Rayner, 1981). In natural language process-
ing and psycholinguistics, the most influential ac-
count of the phenomenon is surprisal theory (Hale,
2001; Levy, 2008), which claims that the process-
ing difficulty of a word is proportional to its sur-
prisal, i.e., the negative logarithm of the probabil-

1https://competitions.codalab.org/
competitions/28176
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ity of the word given the context. Surprisal theory
was the reference framework for several studies
on language models and eye-tracking data predic-
tion (Demberg and Keller, 2008; Frank and Bod,
2011; Fossum and Levy, 2012). These studies use
the data from the Dundee Corpus (Kennedy et al.,
2003), which consists of sentences from British
newspapers with eye-tracking measurements from
10 participants, as one of the earliest and most pop-
ular benchmarks.

Later work on the topic found that the perplexity
of a language model is the primary factor determin-
ing the fit to human reading times (Goodkind and
Bicknell, 2018), a result that was confirmed also by
the recent investigations involving neural language
models such as GRU networks (Aurnhammer and
Frank, 2019) and Transformers (Merkx and Frank,
2020; Wilcox et al., 2020; Hao et al., 2020). Us-
ing an alternative approach, Bautista and Naval
(2020) obtained good results for the prediction of
eye movements with autoencoders.

In addition to the ZuCo corpus used for this
shared task (see Section 4), there are several other
resources of eye-tracking data for English. The
Ghent Eye-Tracking Corpus (GECO; Cop et al.,
2017) is composed of the entire Agatha Christie’s
novel The Mysterious Affair at Styles, for a to-
tal of 54, 364 tokens, it contains eye-tracking data
from 33 subjects, both English native speakers (14)
and bilingual speakers of Dutch and English (19),
and comes with the Dutch counterpart. The Provo
corpus (Luke and Christianson, 2017) contains 55
short English texts about various topics, with 2.5
sentences and 50 words on average, for a total of
2, 689 tokens, and eye-tracking measures collected
from 85 subjects. Annotated eye-tracking corpora
are also available for other languages, including
German (Kliegl et al., 2006), Hindi (Husain et al.,
2015), Japanese (Asahara et al., 2016) and Russian
(Laurinavichyute et al., 2019), among others.

3 Task Description

In this shared task, we present the challenge of pre-
dicting eye-tracking-based metrics recorded during
English sentence processing. The task is formu-
lated as a regression task to predict the following 5
eye-tracking features for each token in the context
of a full sentence:

1. NFIX (number of fixations): total number of
fixations on the current word.

Feature min max mean (std)

NFIX 0.0 7.25 1.1 (0.7)
FFD 0.0 296.8 77.3 (34.4)
GPT 0.0 2424.9 154.1 (143.6)
TRT 0.0 996.2 128.8 (88.6)
FIXPROP 0.0 1.0 0.67 (0.26)

Table 1: Minimum, maximum, mean and standard devi-
ation of the feature values before scaling in both train-
ing and test data, after averaging across readers.

Feature min max mean (std)

NFIX 0.0 100.0 15.1 (9.5)
FFD 0.0 12.2 3.2 (1.4)
GPT 0.0 100.0 6.4 (5.9)
TRT 0.0 41.1 5.3 (3.7)
FIXPROP 0.0 100.0 67.1 (26.0)

Table 2: Minimum, maximum, mean and standard de-
viation of the scaled feature values in both training and
test data, after averaging across readers.

2. FFD (first fixation duration): the duration of
the first fixation on the prevailing word.

3. TRT (total reading time): the sum of all fixa-
tion durations on the current word, including
regressions.

4. GPT (go-past time): the sum of all fixations
prior to progressing to the right of the current
word, including regressions to previous words
that originated from the current word.

5. FIXPROP (fixation proportion): the proportion
of participants that fixated the current word
(as a proxy for how likely a word is to be
fixated).

The goal of the task is to train a model which
predicts these five eye-tracking features for each
token in a given sentence.

4 Data

We use the eye-tracking data recorded during nor-
mal reading from the freely available Zurich Cog-
nitive Language Processing Corpus (ZuCo; Hol-
lenstein et al., 2018, 2020). ZuCo is a combined
eye-tracking and EEG brain activity dataset, which
provides anonymized records in compliance with
an ethical board approval and as such it does not
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(b) Test data.

Figure 2: Boxplot showing the feature value distributions of both training and test sets. Below each box is the
median value of each feature.

contain any information that can be linked to the
participants.

The eye-tracking data was recorded with an Eye-
Link 1000 system in a series of naturalistic reading
experiments. Full sentences were presented at the
same position on the screen one at a time. The
participants read each sentence at their own read-
ing speed. The reading material included sentences
from movie reviews from the Stanford Sentiment
Treebank (Socher et al., 2013) and a Wikipedia
dataset (Culotta et al., 2006). For a detailed de-
scription of the data acquisition, please refer to
the original publications. An example sentence is
presented in Figure 1.

We use the normal reading paradigms from
ZuCo, i.e, Task 1 and Task 2 from ZuCo 1.0, and
all tasks from ZuCo 2.0. We extracted the eye-
tracking data from all 12 subjects from ZuCo 1.0
and all 18 subjects from ZuCo 2.0. The dataset con-
tains 990 sentences. All sentences were shuffled
randomly before splitting into training and test sets.
The training data contains 800 sentences, and the
test data 190 sentences.

4.1 Preprocessing

Tokenization The tokens in the sentences are
split in the same manner as they were presented
to the participants during the reading experiments.
Hence, this does not necessarily follow a linguis-
tically correct tokenization. For example, the se-
quences “(except,” and “don’t” were presented as
such to the reader and not split into “(”, “except”, “,”
and “do”, “n’t” as a tokenizer would do. Sentence

endings are marked with an <EOS> symbol added
to the last token.

Feature Extraction The eye-tracking feature
values are scaled between 0 and 100 to facilitate
evaluation via the mean absolute error. The features
NFIX and FIXPROP are scaled separately, while
FFD, GPT and TRT are scaled together since these
are all dependent and measured in milliseconds.
The features are averaged across all readers. The
data was scaled and randomly shuffled before split-
ting into training and test data. Tables 1 and 2 show
the ranges of the eye-tracking features before and
after scaling. Figure 2 depicts the feature value
distributions in both training and test sets, showing
that the distributions are very similar in both splits.

5 Evaluation

In this section, we describe the evaluation proce-
dure used to assess the submitted predictions of the
participating teams.

Any additional data source was allowed to train
the models, as long as it is freely available to the
research community. For example, additional eye-
tracking corpora, additional features such as brain
activity signals, pre-trained language models, etc.

5.1 Scoring Metric

The submitted predictions are evaluated against the
real eye-tracking feature values using the mean ab-
solute error (MAE) metric, a measure of errors be-
tween paired observations including comparisons
of predicted (y) versus observed (x) values for each
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Rank Team Name MAE NFIX FFD GPT TRT FIXPROP Reference

1 LAST 3.813 3.879 0.655 2.197 1.524 10.812 Bestgen (2021)
2 TALEP 3.833 3.761 0.662 2.180 1.486 11.076 Dary et al. (2021)
3 TorontoCL 3.929 3.944 0.671 2.227 1.516 11.286 Li and Rudzicz (2021)
4 LangResearchLab_NC 3.949 4.039 0.674 2.248 1.568 11.216 Agarwal and Chatterjee (2021)
5 CogNLP-Sheffield 3.957 3.956 0.689 2.260 1.529 11.349 Vickers et al. (2021)
6 OSU 3.977 3.987 0.682 2.364 1.540 11.311 Oh (2021)
7 MTL782_IITD 4.064 4.115 0.719 2.264 1.622 11.599 Choudhary et al. (2021)
8 KonTra 4.216 4.263 0.698 2.756 1.682 11.683 Yu et al. (2021)
9 Sabhay_Jain 4.257 4.264 0.848 2.476 1.721 11.974 -
10 ReadMe 4.383 4.363 0.741 2.502 1.761 12.549 Balkoca et al. (2021)
11 PIHKers 4.388 4.335 0.715 3.059 1.713 12.118 Salicchi and Lenci (2021)
12 ChiSquareX 4.676 4.557 1.281 2.810 2.289 12.445 -

- MEAN BASELINE 7.357 7.303 1.149 3.782 2.778 21.775 -

13 IIIT_DWD 9.762 8.845 1.589 4.633 3.296 30.446 -

Table 3: Overall results showing the best submission per team and the mean baseline. The teams are ranked by the
MAE averaged across all five eye-tracking features (third column).

word in the test set:

MAE =

∑n
i=1 |yi − xi|

n
(1)

The winning system is defined as the one with the
lowest average MAE across all 5 eye-tracking fea-
tures.

5.2 Mean Baseline

We use the mean central tendency as a baseline for
this regression problem, i.e., we calculate the mean
value for each feature from the training data and
use it as a prediction for all words in the test data.
Table 3 shows the MAE scores achieved by this
mean baseline for each eye-tracking feature.

6 Participating Teams & Systems

13 teams and a total of 42 participants registered on
the competition website. All 13 teams, including
26 registered participants, submitted their predic-
tions during the evaluation phase. Each team was
allowed three submissions during the evaluation
phase. Finally, 10 teams published system descrip-
tion papers outlining their approach (see Table 3
for all references).

Methods The participating teams submitted
predictions generated from various approaches.
Mainly two methods were used: (1) Boosting meth-
ods using tree-based algorithms with extensive fea-
ture extraction (e.g., CatBoost2 or LightGBM3),

2https://catboost.ai/
3https://lightgbm.readthedocs.io/en/

latest/

and (2) neural network based approaches for re-
gression such as fine-tuning transformer-based lan-
guage models (Vaswani et al., 2017). Most teams
achieved their best performance using an ensemble
of predictors. Moreover, some teams also trained
hybrid systems including both feature-based ap-
proaches and state-of-the-art language models.

Features The features included for training the
systems include surface features (e.g., word length,
sentence length, word positions in the sentence),
lexical features (e.g., lemmas, named entities) to-
ken probability features (word frequency and n-
gram metrics), syntactic features (e.g., part-of-
speech tags and dependency parsing), text com-
plexity metrics, behavioral measures, (e.g., con-
creteness, familiarity, age of acquisition), context
features (i.e., information about the preceding and
following tokens) as well as representations from
state-of-the-art language models, such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and XLNet (Yang et al., 2019).

Additional data Only one team (Li and Rudzicz,
2021) used external eye-tracking data, leveraging
the Provo corpus (Luke and Christianson, 2017) for
additional word-level eye movement samples.

7 Results

In this section, we describe the prediction perfor-
mance achieved by the participating teams. The
official results of this shared task are presented
in Table 3. The best results were achieved by a
linguistic feature-based approach (Bestgen, 2021).
As described above, other teams opted for neural
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approaches (e.g., Li and Rudzicz, 2021 and Oh,
2021) or hybrid approaches (e.g., Yu et al., 2021
and Choudhary et al., 2021), combining linguistic
features and state-of-the-art language representa-
tions.

The difficulty of predicting the individual eye-
tracking features is analogous in all submitted sys-
tems. FFD is the most accurately predicted feature.
This seems to suggest that the models are more ca-
pable to capture early processing stages of lexical
access compared to late-stage semantic integration,
indexed by TRT and NFIX.

Generally, the error for the three features repre-
senting reading times in milliseconds (FFD, GPT,
and TRT), is much lower than for NFIX and FIX-
PROP. The latter are the features with the most
variance. The mean baseline results also reveal the
same patterns. The features with lower variance
achieve lower MAEs. The FIXPROP feature, rep-
resenting how likely a word is to be fixated, might
be more challenging to predict since it is more
dependent on subject-specific characteristics. Nev-
ertheless, when comparing the MAEs of each eye-
tracking feature to the mean baseline, the systems
achieve the largest improvement on this feature.

8 Outlook & Conclusion

We presented the results of the first shared task
on predicting token-level eye-tracking features
recorded during natural sentences reading. We
hope the CMCL Shared Task makes a lasting contri-
bution to the field of linguistic cognitive modelling
by providing researchers with a standard evalua-
tion framework and a high quality dataset. Despite
the limited size of the test set, many previously
reached conclusions can now be tested more thor-
oughly and future models can be compared on a
shared benchmark.

For future editions of this shared task, we see the
following improvement opportunities: (1) provid-
ing an official development set during the training
phase; (2) using additional metrics for assessment,
such as R2 to achieve a better understanding of
the submitted models; (3) extending the dataset
to include additional eye-tracking data from other
English corpora, as well as including data from
other languages such as Dutch or Russian (e.g.,
Cop et al., 2017 or Laurinavichyute et al., 2019).
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Abstract

Analysis of gaze data behaviour has gained
momentum in recent years for different NLP
applications. The present paper aims at mod-
elling gaze data behaviour of tokens in the
context of a sentence. We have experimented
with various Machine Learning Regression Al-
gorithms on a feature space comprising the lin-
guistic features of the target tokens for predic-
tion of five Eye-Tracking features. CatBoost
Regressor performed the best and achieved
fourth position in terms of MAE based accu-
racy measurement for the ZuCo Dataset.

1 Introduction

Eye-Tracking data or Gaze data compiles
millisecond-accurate records about where humans
look while reading. This yields valuable insights
into the psycho-linguistic and cognitive aspects of
various tasks requiring human intelligence. Eye-
Tracking data has been successfully employed for
various downstream NLP tasks, such as part of
speech tagging (Barrett et al., 2016), named entity
recognition (Hollenstein et al., 2018), sentiment
analysis (Mishra et al., 2018), text simplification
(Klerke et al., 2016), and sequence classification
(Barrett and Hollenstein, 2020) among others. De-
velopment of systems for automatic prediction of
gaze behaviour has become an important topic of
research in recent years. For example, Klerke et al.
(2016) and Mishra et al. (2017) used bi-LSTM and
CNN, respectively for learning different gaze fea-
tures. In the present work, Eye-Tracking features
for words/tokens of given sentences are learned
using Tree Regressors trained on a feature space
comprising the linguistic properties of the target
tokens. The proposed feature engineering scheme
aims at encoding shallow lexical features, possible
familiarity with the readers, interactions of a target
token with other words in its context, and statistical
language model features.

2 Task Setup

The shared task is designed to predict five Eye-
Tracking features namely, number of fixations (nF),
first fixation duration (FFD), total reading time
(TR), go-past time (GP) and, fixation proportion
(fxP). ZuCo Eye-Tracking dataset is used for the
present task (Hollenstein et al., 2021, 2020, 2018).
The dataset contains three subsets corresponding
to Train, Trial and Test which contains 700, 100,
and 191 sentences, respectively. Their respective
token counts are 13765, 1971, and 3554. Each
input token is uniquely represented by a tuple
< sid, wid >, where sid is the sentence_id and
wid is the word_id. Mean Absolute Error (MAE)
is used for evaluation.

3 Feature Engineering

For the above-mentioned task, linguistic features
for a given input token are extracted in order to
encode the lexical, syntactic, and contextual prop-
erties of the input token. Additionally, familiarity
of the input token and its collocation with surround-
ing words is also modelled as explained below.

3.1 Shallow Lexical Features

It is intuitive that the lexical properties of a given
input token have an effect on the amount of time
spent on reading the word. Features, such as Num-
ber of letters (Nlets), vowels (Nvow), syllables
(Nsyl), phonemes (Nphon), morphemes (Nmorph),
and percentage of upper case characters (PerUp) in
the input token are used to model shallow lexical
characterstics of the target token. A feature (Is-
Named) is used to indicate whether the input token
is a Named Entity. The language of etymological1

origin, e.g., Latin, French of the target token is also
considered as a feature, named EtyOrig.

In addition, several Boolean features have been
used for characterization of the input token. The

1https://pypi.org/project/ety/
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input tokens, which are the last words of the respec-
tive sentences, are suffixed by the string <EOS>.
These are identified by a Boolean feature (IsLast).
The <EOS> string is removed for further feature
extraction. Two Boolean features (IsNumber, Hy-
phen) are used to indicate whether the input token
is numeric, and whether the target token contains
multiple words connected using hyphens, respec-
tively. To indicate that the input token is a possesive
word, a Boolean feature is used (IsPossessive). The
identification has been done with the help of POS
tag of SpaCy library and presence of apostrophe.
A Boolean feature (StartPunct) is used to identify
inputs starting with a puntuation character, these
punctuations are removed for further feature ex-
traction. Furthermore, we have considered two
sentence level features namely, the total number of
tokens in the sentence (LenSent), and the relative
position (Relpos) of the input token in the sentence.

3.2 Modelling Familiarity
In the present work, the familiarity of a token is
modelled using various frequency based features
as described below.

A Boolean feature (IsStopword) is used to indi-
cate whether the token is a stopword or not. It
has been observed that the gaze time for stop-
words, such as a, an, of, is much less in compari-
son with uncommon words, such as grandiloquent
< 457, 20 >, and contrivance < 715, 4 >. This
feature has been extracted using NLTK’s list of
English stopwords.

Corpus based features are used to indicate the
common usage of input tokens. A Boolean fea-
ture (InGoogle) indicates whether the input token
belongs to the list of the 10,000 most common En-
glish words, as determined by n-gram frequency
analysis of the Google’s Trillion Word Corpus2.
Similarly, to indicate the presence of input tokens
in the list of 1000 words included in Ogden’s Basic
English3, a Boolean feature (InOgden) is used.

Frequency based features are also used to model
the familiarity of input tokens. The following
features are used: Frequency of input token in
Ogden’s Basic English (OgdenFreq), Exquisite
Corpus (ECFreq) and, SUBTLEX (SUBTFreq).
Exquisite Corpus4 compiles texts from seven dif-
ferent domains. SUBTLEX contains frequency of
51 million words calculated on a corpus of Movie

2https://github.com/first20hours/google-10000-english
3http://ogden.basic-english.org
4https://pypi.org/project/wordfreq/

Subtitles. Contextual Diversity (ConDiversity) re-
ported in SUBTLEX is also used as a feature. Con-
textual Diversity is computed as the percentage of
movies in which the word appears. Furthermore,
frequency of the input tokens given in the L count
of (Thorndike and Lorge, 1944), and London-Lund
Corpus of English Conversation by (Brown, 1984)
are also used as features (TLFreq, BrownFreq).

The probability of the input token calculated
using a bigram and trigram character language
models are also considered as feature (CharProb2,
CharProb3). The probability is lower for words
where letters have unusual ordering. For ex-
ample, consider the tokens crazy < 350, 3 >
and czar < 525, 28 >, CharProb2(crazy) >
CharProb2(czar) because the letter bigram cr
(cry, crazy, create, cream, secret) is more common
than bigram cz (czar, eczema) amongst English
words. The letter bigram and trigram probabilities
are calculated using letter counts from Google’s
Trillion Word Corpus5. Suppose a word W consist
of N letters W = l1 . . . lN then, the corresponding
feature value is calculated as:

CharProb2(W ) =
1

N − 1

N−1∑

i=1

log10P (lili+1)

CharProb3(W ) =
1

N − 2

N−2∑

i=1

log10P (lili+1li+2)

3.3 Modelling Context
There is a significant variation in the amount of
time spent on comprehending the semantics of a
word in different sentences. Variation in fixation
time for the token early in different sentences is
presented in Table 1. To model this variation, it
is important to include features with respect to the
context of the input word. Both simple Universal
POS tag (UniTag) and detailed Penn POS tag (Pen-
nTag) of the input token extracted using SpaCy
are considered as features. The POS of a target
word depends on the context in which it appears as
shown in Table 2.

Number of synsets (Nsyn), hyponyms (Nhypo)
and hypernyms (Nhyper) extracted from NLTK
WordNet are also used as features. These features
are calculated considering the synsets having the
same POS tag as the input token. The Dependency
tree of a sentence helps to understand the relation-
ship between different words of a given sentence.

5http://norvig.com/ngrams/count_2l.txt,
http://norvig.com/ngrams/count_3l.txt
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id nF FF GP TR fxP
< 252, 3 > 21.91 4.44 7.55 7.08 100
< 618, 5 > 15.33 4.18 4.18 5.28 83.3
< 533, 15 > 9.19 3.03 3.22 3.22 61.1

Table 1: Variation in fixation time for the token early

sid Sentence Uni/Penn
366 After the show was cancelled,

he played a handyman on the NOUN/
series The Facts of Life. NN

460 A classy item by a legend who
may have nothing left to prove VERB/
but still has the chops and VB
drive to show how its done.

Table 2: POS feature for the token show

In this respect, the dependency tag of the input to-
ken with its syntactical head (DepTag) and, POS
tag of the head (HeadPOS) are considered as fea-
tures. Additionally, two features are extracted from
the dependency tree, namely, depth of the input
token in the tree (TokDepth), and the number of
children of the input token (NChild).

3.4 Language Model Features

Statistical n-gram language models help to model
collocation of words in sentences, and to deter-
mine the probability of a sequence of words. In
the present work, we use a trigram language model
trained on the Gigaword corpus6 to extract two fea-
tures (FragScore3, FragScore5) which measure the
language model score of a word sequence contain-
ing the input token and the context words in the
sentence in a window of 3 and 5, respectively.

Suppose the input sentence is denoted by S =
w1w2 . . . wN and wn is the target token where n ∈
1, 2, . . . N . Let P3 denote the trigram language
model probability then,

FragScore3(wn) = log10P3(wj . . . wn . . . wk)

FragScore5(wn) = log10P3(wr . . . wn . . . wt)

where j = max(1, n− 3), k = min(N,n+3),
r = max(1, n− 5) and t = min(N,n+ 5).

We use an n-gram language model to calculate
the conditional probability of a word given the pre-
ceding n-1 words. In particular, two features cor-
responding to the average conditional probabilities

6lm_giga_64k_nvp_3gram.zip

(AvgCondP3,AvgCondP2) have been extracted us-
ing the aforementioned trigram language model
and a bigram model trained on Google’s Trillion
Word Corpus7. For words near the sentence bound-
ary, the average is adjusted accordingly. If P2 de-
notes the bigram language model probability then,

AvgCondP3(wn) =
1

3

n+2∑

k=n

P3(wk | wk−1, wk−2)

AvgCondP2(wn) =
1

2

n+1∑

k=n

P2(wk | wk−1)

Sentences with higher perplexity have uncom-
mon word sequences which may require more time
to comprehend. Perplexity of the sentence calcu-
lated using tri-gram language model is also consid-
ered as a feature (Perplexity).

Perplexity(S) = N

√
1/P3(w1w2 . . . wN )

4 Description of Algorithms

Experiments were conducted using the following
machine learning regression algorithms:

• Partial Least Square Regression (PLS): This
method aims at fitting a linear regression
model by projecting the dependent and inde-
pendent variables into a new space.

• Neural Network (NN): NN based regression
method aims at predicting the value of the
dependent variable as a function of input vari-
ables via a collection of interconnected nodes.

• Decision Tree (DT): The regression model is
built in the form of a tree structure by breaking
the dataset into smaller subsets.

• Random Forest (RF): RF regressor fits a multi-
tude of decision trees on various sub-samples
of the dataset, and uses averaging to improve
accuracy and control over-fitting.

• XGBoost (XG) : Here, weakly learned deci-
sion trees are turned into strong learners by
training upon residuals instead of aggregation
(Chen and Guestrin, 2016).

• Light Gradient Boosting Machine (LG) : This
method uses a histogram-based boosting algo-
rthim which uses a specialised Gradient-based
one-sided sampling of data points of large gra-
dients (Ke et al., 2017).

7http://norvig.com/ngrams/
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• CatBoost (CB): This method takes advantage
of the categorical features which are otherwise
converted to numerical features in traditional
gradient boosting algorithms. CB uses oblivi-
ous trees as base predictors which uses same
splitting criterior accross the entire level of the
tree, and hence are less prone to overfitting
(Prokhorenkova et al., 2018).

Since five target Eye-Tracking metrics had to be
predicted, Multioutput (MO) and Regressor Chain
(RC) algorithms were deployed using sklearn.

5 Experimental Details

The input tokens containing only punctuations were
removed. The Eye-Tracking feature for token ‘&’
is assigned a fixed value 8. For all other punctu-
ation tokens, the assigned Eye-Tracking feature
value is 0. SpaCy9 is used for POS tagging, lemma-
tization, dependency parsing and NER. Stopword
feature, Corpus features and Frequency features as
described in Section 3.2 were extracted after lower
casing and lemmatizing the input token. For RC
the order is tuned between the 120 possibilities and
the max_depth denoted as d, is tuned between 1
to 15. For NN the number of intermediate dense
layers is tuned between 1 to 4, the layer dimension
is tuned between {10, 25, 50, 100, 150, 200, 250,
300, 500} and dropouts is tuned randomly between
0 to 1. ReLU activation function is used in the
intermediate dense layers, batch size is set to 32,
learning rate is set to 0.005, and MAE is minimized
using Adam optimizer (Kingma and Ba, 2015).

6 Results

The individual MAE for the five predicted features
along with overall MAE for various regression tech-
niques are reported in Table 3. For NN, two dense
layers with dimension 100 and 200, respectively
and corresponding dropouts 0.13 and 0.02, respec-
tively were used. In the present work, CB outper-
forms other regression algorithms. This can be at-
tributed to the permutation-driven ordered boosting
technique of CB and effective use of categorical fea-
tures. It can be observed that CB+MO performed
the best on the Test Dataset. CB+RC with order
(0,4,1,2,3) improved the performance for the Trial
Dataset however, it did not have the same effect for
the Test Data. The MAE of the proposed system is
within 0.14 of the top performer.

8mean of Eye-Tracking values of ‘&’ in the training set
9https://spacy.io/

7 Analysis

System predictions are presented in Table 4. The
model had the highest MAE for the token <
824, 16 > which contained alphanumeric charac-
ters because the features failed to capture its proper-
ties. For the token < 900, 9 >, the gold labels are
0, but the system predicts positive values. The true
gaze features nF, GP, and TR for multi-hyphenated
and repeated token, viz. < 874, 20 > is found to
be higher than the predicted values. However, the
prediction of the system for the tokens < 951, 5 >
and < 976, 26 > are close to the true values. The
MAE for the token ‘with’ in sentence 828 is very
low while in sentence 933, it is very high. This
is because there is large variation in the true Eye-
Tracking values while the variation is low in the
predicted values.

To analyze the importance of each feature,
the corresponding feature is eliminated and the
CB+MO model is trained on the reduced feature
space. It was observed that elimination of each in-
dividual feature increased the error and thus, each
feature plays an important role in the overall per-
formance of the system. The MAE on the Trial Set
corresponding to individual features are reported
in Table 5. The feature Relpos, which indicates the
relative position of token in the sentence, emerged
as the most important feature.

8 Conclusion and Future Work

Automatic prediction of Gaze features without hu-
man intervention is important for scalability of
these features for tasks involving large datasets.
The Shared Task aims at prediction of five Eye-
Tracking features for each token of a given sen-
tence. In the present work, a set of linguistic fea-
tures focused on representing the shallow lexical
characteristics of the token, rarity of the token, and
interaction and collocation of the target token with
its context are extracted. CB+MO regressor trained
on the above feature space secured fourth rank on
the Shared Task. Error analysis indicates that there
is high variation of Eye-Tracking features for the
same words in different contexts. However, the
proposed system does not capture this variation. In
future we would like to incorporate more features
in order to represent the context of the target token
more effectively.
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Trial Test
Technique d nF FF GP TR fxP MAE nF FF GP TR fxP MAE
CB+RC 6 3.92 0.64 2.25 1.49 10.7 3.79 4.04 0.68 2.27 1.56 11.3 3.98
(0,4,1,2,3)
CB+MO 6 3.92 0.63 2.27 1.51 10.7 3.81 4.04 0.67 2.25 1.57 11.2 3.95
RF+MO 11 4.03 0.64 2.41 1.56 10.9 3.90 4.21 0.69 2.37 1.64 11.4 4.06
LG+MO 4.04 0.64 2.43 1.56 10.8 3.90 4.10 0.67 2.35 1.59 11.2 3.99
XG+ MO 4.05 0.65 2.40 1.57 10.9 3.92 4.21 0.69 2.40 1.63 11.5 4.09
DT+MO 7 4.32 0.68 2.58 1.70 11.6 4.18 4.51 0.73 2.53 1.78 12.3 4.37
NN 4.65 0.75 2.55 1.77 12.9 4.52 4.90 0.78 2.65 1.89 13.9 4.82
PLS+MO 4.79 0.73 3.10 1.85 13.2 4.74 4.95 0.78 3.21 1.93 13.8 4.93

Table 3: Mean Absolute Error values

Predicted Gold
id word nF FF GP TR fxP nF FF GP TR fxP MAE

< 824, 16 > 111Senator 24.9 4.1 8.7 8.2 88.3 97.7 5.8 33.4 41.1 100 28.8
< 900, 9 > counts.<EOS> 13.6 3.7 16.5 5.3 71.3 0.0 0.0 0.0 0.0 0.0 22.1
< 874, 20 > great-great- 37.8 4.7 17.2 14.8 96.1 86.1 3.8 30.8 31.1 89.7 17.1

great-great-great
< 951, 5 > side-splittingly 42.5 4.9 12.1 15.3 99.8 42.5 4.3 14.3 14.8 100 0.69
< 976, 26 > Rice’s 17.8 4.0 6.4 6.5 83.4 17.2 4.4 6.4 6.4 83.3 0.23
< 828, 9 > with 10.6 2.4 3.2 3.2 56.7 10.3 2.1 3.2 2.7 58.3 0.55
< 933, 5 > with 11.0 2.5 3.4 3.5 58.3 14.9 3.2 7.0 5.1 75.0 5.31

Table 4: System predictions

Feature Group Feature Space MAE Feature Group Feature Space MAE

Shallow Lexical

w/o Nlets 3.8474

Familiarity

w/o IsStopword 3.8158
w/o Nvow 3.8169 w/o InGoogle 3.8190
w/o Nsyl 3.8264 w/o InOgden 3.8177
w/o Nphon 3.8231 w/o OgdenFreq 3.8256
w/o Nmorph 3.8255 w/o ECFreq 3.8173
w/o PerUp 3.8206 w/o SUBTFreq 3.8161
w/o IsNamed 3.8180 w/o ConDiversity 3.8154
w/o EtyOrig 3.8214 w/o TLFreq 3.8118
w/o IsLast 3.8243 w/o BrownFreq 3.8160
w/o IsNumber 3.8209 w/o CharProb2 3.8203
w/o Hyphen 3.8261 w/o CharProb3 3.8236
w/o IsPossesive 3.8176

Context

w/o UniTag 3.8112
w/o StartPunct 3.8183 w/o PennTag 3.8186
w/o LenSent 3.8388 w/o NSyn 3.8194
w/o RelPos 3.8725 w/o Nhypo 3.8201

Language Model

w/o FragScore3 3.8166 w/o Nhyper 3.8233
w/o FragScore5 3.8313 w/o DepTag 3.8206
w/o AvgCondP2 3.8263 w/o HeadPOS 3.8192
w/o AvgCondP3 3.8190 w/o TokDepth 3.8247
w/o Perplexity 3.8169 w/o NChild 3.8178

Table 5: MAE scores for individual feature elimination
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Abstract

Eye movement data during reading is a useful
source of information for understanding lan-
guage comprehension processes. In this paper,
we describe our submission to the CMCL 2021
shared task on predicting human reading pat-
terns. Our model uses RoBERTa with a regres-
sion layer to predict 5 eye-tracking features.
We train the model in two stages: we first fine-
tune on the Provo corpus (another eye-tracking
dataset), then fine-tune on the task data. We
compare different Transformer models and ap-
ply ensembling methods to improve the perfor-
mance. Our final submission achieves a MAE
score of 3.929, ranking 3rd place out of 13
teams that participated in this shared task.

1 Introduction

Eye-tracking data provides precise records
of where humans look during reading, with
millisecond-level accuracy. This type of data
has recently been leveraged for uses in natural
language processing: it can improve perfor-
mance on a variety of downstream tasks, such
as part-of-speech tagging (Barrett et al., 2016),
dependency parsing (Strzyz et al., 2019), and
for cognitively-inspired evaluation methods for
word embeddings (Søgaard, 2016). Meanwhile,
Transformer-based language models such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) have been applied to achieve state-of-the-art
performance on many natural language tasks.
The CMCL 2021 shared task aims to add to our
understanding of how language models can relate
to eye movement features.

In this paper, we present our submission to this
shared task, which achieves third place on the
leaderboard. We first explore some simple base-
lines using token-level features, and find that these
are already somewhat competitive with the final
model’s performance. Next, we describe our model
architecture, which is based on RoBERTa (Figure

Figure 1: Our model consists of RoBERTa with a re-
gression head on each token, which is a linear layer
that predicts the 5 output features from the last layer’s
embeddings. The model is initialized from pretrained
weights and fine-tuned on the task data.

1). We find that model ensembling offers a substan-
tial performance gain over a single model. Finally,
we augment the provided training data with the pub-
licly available Provo eye-tracking corpus and com-
bine them using a two-stage fine-tuning procedure;
this results in a moderate performance gain. Our
source code is available at https://github.
com/SPOClab-ca/cmcl-shared-task.

2 Task Description

The shared task format is described in Hollenstein
et al. (2021), which we will briefly summarize here.
The task data consists of sentences derived from
the ZuCo 1.0 and ZuCo 2.0 datasets; 800 sentences
(15.7 tokens) were provided as training data and
191 sentences (3.5k tokens) were held out for eval-
uation. The objective is to predict five eye-tracking
features for each token:

• Number of fixations on the current word
(nFix).
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Model nFix FFD GPT TRT fixProp All (Dev)
Median 7.208 1.162 3.547 2.732 21.179 7.165
Linear regression 4.590 0.795 2.995 1.812 13.552 4.749
SVR (RBF kernel) 4.440 0.723 2.728 1.728 12.077 4.339

Table 1: Baseline results: ‘Median’ is a model that always predicts the median of the training data; the linear
regression and SVR models use 4 token-level surface features described in Section 3.1.

Model nFix FFD GPT TRT fixProp All (Dev)
BERT-base 4.289 0.704 2.645 1.678 11.155 4.094
BERT-large 4.150 0.682 2.493 1.616 11.013 3.991
RoBERTa-base 4.066 0.681 2.443 1.570 10.981 3.930
RoBERTa-large 4.156 0.681 2.468 1.623 11.047 3.995

Table 2: MAE using BERT and RoBERTa models with fine-tuning.

• First fixation duration of the word (FFD).

• Go-past time: the time from the first fixation
of a word until the first fixation beyond it
(GPT).

• Total reading time of all fixations of the word,
including regressions (TRT).

• Proportion of participants that fixated on the
word (fixProp).

The features are averages across multiple partic-
ipants, and each feature is scaled to be in the range
[0, 100]. The evaluation metric is the mean abso-
lute error (MAE) between the predicted and ground
truth values, with all features weighted equally.

Since each team is allowed only a small num-
ber of submissions, we define our own train and
test split to compare our models’ performance dur-
ing development. We use the first 600 sentences
as training data and the last 200 sentences for
evaluation during development. Except for the
submission results (Table 4), all experimental re-
sults reported in this paper are on this development
train/test split.

3 Our Approach

3.1 Baselines

We start by implementing some simple baselines
using token-level surface features. Previous re-
search in eye tracking found that longer words and
low-frequency words have higher probabilities of
being fixated upon (Rayner, 1998). We extract the
following features for each token:

• Length of token in characters.

• Log of the frequency of token in English text,
retrieved using the wordfreq1 library.

• Boolean of whether token contains any upper-
case characters.

• Boolean of whether token contains any punc-
tuation.

Using these features, we train linear regression
and support vector regression models separately for
each of the 5 output features (Table 1). Despite the
simplicity of these features, which do not use any
contextual information, they already perform much
better than the median baseline. This indicates that
much of the variance in all 5 eye-tracking features
are explained by surface-level cues.

3.2 Fine-tuning Transformers
Our main model uses RoBERTa (Liu et al., 2019)
with a linear feedforward layer to predict the 5
output features simultaneously from the last hidden
layers of each token. In cases where the original
token is split into multiple RoBERTa tokens, we
use the first RoBERTa token to make the prediction.
The model is initialized with pretrained weights
and fine-tuned on the task data to minimize the
sum of mean squared errors across all 5 features.

As the task data is relatively small, we found
that the model needs to be fine-tuned for 100-150
epochs to reach optimal performance, far greater
than the recommended 2-4 epochs (Devlin et al.,
2019). We trained the model using the AdamW op-
timizer (Loshchilov and Hutter, 2018) with learn-
ing rates of {1e-5, 2e-5, 5e-5, 1e-4} and batch sizes
of {8, 16, 32}; all other hyperparameters were left

1https://github.com/LuminosoInsight/
wordfreq/

86



Model nFix FFD GPT TRT fixProp All (Dev)
Single Model 4.066 0.681 2.443 1.570 10.891 3.930
Ensemble of 2 3.978 0.671 2.350 1.534 10.714 3.849
Ensemble of 5 3.944 0.669 2.321 1.521 10.665 3.824
Ensemble of 10 3.943 0.666 2.316 1.522 10.660 3.821

Table 3: Ensembles of RoBERTa-base model, obtained by taking a simple mean of the predictions of individ-
ual models. This improves our overall performance by about 0.09 MAE compared to a single model, but with
diminishing returns past 5 models.

Training Data nFix FFD GPT TRT fixProp All (Dev) Submission
Task Only (Single) 4.066 0.681 2.443 1.570 10.891 3.930 n/a
Provo + Task (Single) 3.984 0.713 2.424 1.556 10.781 3.892 n/a
Task Only (Ensemble) 3.943 0.666 2.316 1.522 10.660 3.821 3.974
Provo + Task (ensemble) 3.888 0.664 2.306 1.499 10.586 3.789 3.929

Table 4: Comparison of model trained using the provided versus two-stage fine-tuning using Provo data. The
additional pretraining improved overall performance by about 0.04 MAE. Our best submission is an ensemble of
10 RoBERTa-base models with two-stage fine-tuning.

at their default settings using the HuggingFace li-
brary (Wolf et al., 2020).

In addition to RoBERTa, we experiment with
BERT (Devlin et al., 2019); we try both the base
and large versions of BERT and RoBERTa, using a
similar range of hyperparameters for each (Table
2). RoBERTa-base performed the best in our vali-
dation experiments; surprisingly, RoBERTa-large
had worse performance.

3.3 Model Ensembling

We use a simple approach to ensembling: we train
multiple versions of an identical model using dif-
ferent random seeds and make predictions on the
test data. These predictions are the averaged to
obtain the final submission. In our experiments
(Table 3), ensembling greatly improves our perfor-
mance, but with diminishing returns: the MAE of
the 10-model ensemble is only marginally better
than the 5-model ensemble. We use ensembles of
10 models in our final submission.

3.4 Domain Adaptation from Provo

In addition to the task data provided, we also use
data from the Provo corpus (Luke and Christian-
son, 2018). This corpus contains eye-tracking data
from 84 participants reading 2.6k words from a
variety of text sources. The corpus also provides
predictability norms and extracted syntactic and
semantic features for each word, which we do not
use.

We process the Provo data to be similar

to the task data so that they can be com-
bined. First, we identify the Provo features
that are most similar to each of the output
features: we map IA_FIXATION_COUNT to
nFix, IA_FIRST_FIXATION_DURATION to FFD,
IA_REGRESSION_PATH_DURATION to GPT,
and IA_DWELL_TIME to TRT, taking the mean
across all participants for each feature. For the
fixProp feature, we calculate the proportion of par-
ticipants where IA_DWELL_TIME > 0 for
each word. Finally, we scale all five features to
have the same mean and standard deviation as the
task data, and verify that their distributions and
pairwise scatterplots are similar (Figure 2).

We use two-stage fine-tuning to combine the
Provo data with the task data. In two-stage fine-
tuning, the entire model is fine-tuned on an aux-
iliary task before fine-tuning on the target task –
this often yields a performance improvement, espe-
cially when the target task has a small amount of
data (Pruksachatkun et al., 2020). In our case, we
fine-tune the RoBERTa-base model for 100 epochs
on the Provo data, then fine-tune for another 150
epochs on the task data. This gave a considerable
improvement on both the development and submis-
sion scores (Table 4). Our best final submission
is an ensemble of 10 identical models trained this
way with different random seeds.

4 Conclusion and Future Work

We propose a simple approach to predict eye-
tracking features using the RoBERTa model cus-
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Figure 2: Distributions and pairwise scatterplots of the task data (left) and Provo data processed to match the mean
and standard deviation of the task data (right).

tomized with a per-token regression head. Our ini-
tial model uses the standard fine-tuning procedure;
experiments show that the performance is further
improved by model ensembling and domain adap-
tation by two-stage fine-tuning on an intermediate
eye-tracking task. Our best model achieves third
place on the leaderboard.

In future work, several avenues may be explored
to further improve performance. First, we did not
combine our feature engineering baseline with the
RoBERTa model – engineered features (such as fre-
quency statistics or neurolinguistic norms) would
provide the model with information not contained
in RoBERTa. Second, we only experimented with
a small subset of features from the Provo corpus for
domain adaptation, whereas it is not actually nec-
essary for the auxiliary fine-tuning task to match
the target task. Thus, it may be possible to achieve
better performance by fine-tuning on a different set
of Provo features, or a different dataset entirely.
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Abstract

A LightGBM model fed with target word lex-
ical characteristics and features obtained from
word frequency lists, psychometric data and
bigram association measures has been opti-
mized for the 2021 CMCL Shared Task on
Eye-Tracking Data Prediction. It obtained the
best performance of all teams on two of the
five eye-tracking measures to predict, allowing
it to rank first on the official challenge criterion
and to outperform all deep-learning based sys-
tems participating in the challenge.

1 Introduction

This paper describes the system proposed by the
Laboratoire d’analyse statistique des textes (LAST)
for the Cognitive Modeling and Computational Lin-
guistics (CMCL) Shared Task on Eye-Tracking
Data Prediction. This task is receiving more and
more attention due to its importance in model-
ing human language understanding and improving
NLP technology (Hollenstein et al., 2019; Mishra
and Bhattacharyya, 2018).

As one of the objectives of the organizers is to
“compare the capabilities of machine learning ap-
proaches to model and analyze human patterns of
reading” (https://cmclorg.github.io/
shared_task), I have chosen to adopt a generic
point of view with the main objective of determin-
ing what level of performance can achieve a sys-
tem derived from the one I developed to predict
the lexical complexity of words and polylexical ex-
pressions (Shardlow et al., 2021). That system was
made up of a gradient boosting decision tree predic-
tion model fed with features obtained from word
frequency lists, psychometric data, lexical norms
and bigram association measures. If there is no
doubt that predicting lexical complexity is a differ-
ent problem, one can think that the features useful
for it also play a role in predicting eye movement
during reading.

The next section summarizes the main character-
istics of the challenge. Then the developed system
is described in detail. Finally, the results in the
challenge are reported along with an analysis per-
formed to get a better idea of the factors that affect
the system performance.

2 Data and Task

The eye-tracking data for this shared task were
extracted from the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo 1.0 and ZuCo 2.0, Hollen-
stein et al., 2018, 2020). It contains gaze data for
991 sentences read by 18 participants during a nor-
mal reading session. The learning set consisted in
800 sentences and the test set in 191 sentences.

The task was to predict five eye-tracking fea-
tures, averaged across all participants and scaled
in the range between 0 and 100, for each word of
a series of sentences: (1) the total number of fix-
ations (nFix), (2) the duration of the first fixation
(FFD), (3) the sum of all fixation durations, includ-
ing regressions (TRT), (4) the sum of the duration
of all fixations prior to progressing to the right, in-
cluding regressions to previous words (GPT), and
(5) the proportion of participants that fixated the
word (fixProp). These dependent variables (DVs)
are described in detail in Hollenstein et al. (2021).
The submissions were evaluated using the mean
absolute error (MAE) metric and the systems were
ranked according to the average MAE across all
five DVs, the lowest being the best.

As the DVs are of different natures (number, pro-
portion and duration), their mean and variance are
very different. The mean of fixProp is 21 times
greater than that of FFD and its variance 335 times.
Furthermore, while nFix and fixProp were scaled
independently, FFD, GPT and TRT were scaled to-
gether. For that reason, the mean and dispersion of
these three measures are quite different: FFD must
necessarily be less than or equal to TRT and GPT1.

1The relation between TRT and GPT is not obvious to me
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These two factors strongly affect the importance of
the different DVs in the final ranking.

3 System

3.1 Procedure to Build the Models

The regression models were built by the 2.2.1 ver-
sion of the LightGBM software (Ke et al., 2017), a
well-known implementation of the gradient boost-
ing decision tree approach. This type of model has
the advantage of not requiring feature preprocess-
ing, such as a logarithmic transformation, since it
is insensitive to monotonic transformations, and
of including many parameters allowing a very ef-
ficient overfit control. It also has the advantage of
being able to directly optimize the MAE.

Sentence preprocessing and feature ex-
traction as well as the post-processing of
the LightGBM predictions were performed
using custom SAS programs running in
SAS University (still freely available for re-
search at https://www.sas.com/en_us/
software/university-edition.html).
Sentences were first lemmatized by the TreeTagger
(Schmid, 1994) to get the lemma and POS-tag of
each word. Special care was necessary to match
the TreeTagger tokenization with the Zuco original
one. Punctuation marks and other similar symbols
(e.g., "(" or "$") were simply disregarded as they
were always bound to a word in the tokens to
predict. The attribution to the words of the values
on the different lists was carried out in two stages:
on the basis of the spelling form when it is found
in the list or of the lemma if this is not the case.

The features used in the final models as well
as the LightGBM parameters were optimized by
a 5-fold cross validation procedure, using the sen-
tence and not the token as the sampling unit. The
number of boosting iterations was set by using the
LightGBM early stopping procedure which stops
training when the MAE on the validation fold does
not improve in the last 200 rounds. The predicted
values which were outside the [0, 100] interval
were brought back in this one, which makes it pos-
sible to improve the MAE very slightly.

3.2 Features

To predict the five DVs, five different models were
trained. The only differences between them were
in the LightGBM parameters. There were thus

since one can be larger or smaller than the other in a significant
number of cases.

all based on exactly the same features, which are
described below.

Target Word Length. The length in characters
of the preceding word, the target word and the
following one.

Target Word Position. The position of the word
in the sentence encoded in two ways: the rank of
the word going from 1 to the sentence total number
of words and the ratio between the rank of the word
and the total number of words.

Target Word POS-tag and Lemma. The POS-
tag and lemma for the target word and the preced-
ing one.

Corpus Frequency Features. Frequencies in
corpora of words were either calculated from a
corpus or extracted from lists provided by other re-
searchers. The following seven features have been
used:

• The (unlemmatized) word frequencies in the
British National Corpus (BNC, http://
www.natcorp.ox.ac.uk/).

• The Facebook frequency norms for American
English and British English in Herdagdelen
and Marelli (2017).

• The Rovereto Twitter Corpus frequency
norms (Herdagdelen and Marelli, 2017).

• The USENET Orthographic Frequencies from
Shaoul and Chris (2006).

• The Hyperspace Analogue to Language
(HAL) frequency norms provided by (Balota
et al., 2007) for more that 40,000 words.

• The frequency word list derived from
Google’s ngram corpora available at
https://github.com/hackerb9/
gwordlist.

Features from Lexical Norms. The lexical
norms of Age of Acquisition and Familiarity were
taken from the Glasgow Norms which contain
judges’ assessment of 5,553 English words (Scott
et al., 2019).

Lexical Characteristics and Behavioral Mea-
sures from ELP. Twenty-three indices were ex-
tracted from the English Lexicon Project (ELP,
Balota et al., 2007; Yarkoni et al., 2008), a database
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that contains, for more than 40,000 words, reac-
tion time and accuracy during lexical decision and
naming tasks, made by many participants, as well
as lexical characteristics (https://elexicon.
wustl.edu/). Eight indices come from the be-
havioral measures, four for each task: average re-
sponse latencies (raw and standardized), standard
deviations, and accuracies. Fourteen indices come
from the “Orthographic, Phonological, Phono-
graphic, and Levenshtein Neighborhood Metrics”
section of the dataset. These are all the met-
rics provided except Freq_Greater, Freq_G_Mean,
Freq_Less, Freq_L_Mean, and Freq_Rel. These
are variables whose initial analyzes showed that
they were redundant with those selected. The last
feature is the average bigram count of a word.

Bigram Association Measures. These features
indicate the degree of association between the tar-
get word and the one that precedes it according to
a series of indices calculated on the basis of the
frequency in a reference corpus (i.e., the BNC) of
the bigram and that of the two words that compose
it, using the following association measures (AMs):
pointwise mutual information and t-score (Church
and Hanks, 1990), z-score (Berry-Rogghe, 1973),
log-likelihood Chi-square test (Dunning, 1993),
simple-ll (Evert, 2009), Dice coefficient (Kilgar-
riff et al., 2014) and the two delta-p (Kyle et al.,
2018). Most of the formulas to compute these AMs
are also provided in Evert (2009) and in Pecina
(2010). As these features mix together the assets of
both collocations (by using association scores) and
ngrams (by using contiguous pairs of words), Best-
gen and Granger (2014) refer to them as collgrams.
They make it possible not to rely exclusively on the
frequency of the bigram in the corpus, which can
be misleading because a bigram may be observed
frequently, not because of its phraseological nature,
but because it is made up of very frequent words
(Bestgen, 2018). Conversely, a relatively rare bi-
gram, composed of rare words, may be typical of
the language. Since word frequency is already ac-
counted for by the corpus frequency features, it was
desirable to employ indices that reduce the impact
of this factor. Originating in works in lexicography
and foreign language learning (Church and Hanks,
1990; Durrant and Schmitt, 2009; Bestgen, 2017,
2019), they have recently shown their usefulness
in predicting the lexical complexity of multi-word
expressions (Bestgen, 2021). In the present case, it
is assumed that these indices can serve as a proxy

Parameters Run 1 Run 2

bagging_fraction 0.66 0.70
bagging_freq 5 5
feature_fraction 0.09 0.85
learning_rate 0.0095 0.0050
max_depth 11 no limit
max_bin 64 64
min_data_in_bin 2 5
max_leaves 11 30
min_data_in_leaf 7 5
n_iter 4800 (see text)

Table 1: LightGBM parameters for the first two runs.

of the next word predictability (Kliegl et al., 2004).

Feature coverage. Some words to predict are not
present in these lists and the corresponding score
is thus missing. Based on the complete dataset
provided by the organizers, it happens in:

• 1% (Google ngram) to 17% (Facebook and
Twitter) of the tokens for the corpus frequency
features,

• 9% for the ELP Lexical Characteristics, but
a few features have as much as 41% missing
values,

• 11% for the ELP Behavioral Measures,

• 18% for the Bigram AMs.

In total, sixteen tokens have missing values for
all these features (Corpus Frequency, Lexical Char-
acteristics and Behavioral Measures from ELP, and
Bigram Association Measures). These tokens have
however received values for the length and position
features. All the missing values were handled by
LightGBM default procedure.

4 Analyses and Results

4.1 Models Submitted to the Challenge

During the test phase, teams were allowed to sub-
mit three runs. My three submissions were all
based on the features described above, the only
differences between them resulting from changes
in the LigthGBM parameters. They were set at
their default values except those shown in Table 1.
The official performances of the top five challenge
submissions are given in Table 2.
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Team Run Mean nFix FFD GPT TRT fixProp

LAST 3 3.8134 3.879 0.655 2.197 1.524 10.812
LAST 2 3.8159 3.886 0.655 2.199 1.523 10.817
TALEP 1 3.8328 3.761 0.662 2.180 1.486 11.076
LAST 1 3.8664 3.943 0.662 2.237 1.545 10.944
TorontoCL 2 3.9287 3.944 0.671 2.227 1.516 11.286

Table 2: Performance (MAE) for the five best runs submitted to the challenge. Best scores are bolded.

The first submission was based on the param-
eters selected during the development phase.
They were identical for the five DVs. For the
other two submissions, a random grid search
coded in python was used to try optimizing
the parameters independently for each DV. The
parameter space for this first random search is
provided in Appendix A. As the measure of the
challenge is the MAE averaged across the five
DVs and as the system MAE for fixProp was up
to 15 times higher than that of the other DVs,
the optimized parameters for this variable were
selected. Additional analyzes showed that they
also made it possible to improve performance
on the four other DVs. Their values are given in
Table 1. Certain initial choices were only slightly
modified. The value of other parameters such as
the maximum number of leaves and the feature
fraction were markedly increased, suggesting
that the risk of overfit was relatively low (see
https://lightgbm.readthedocs.io/
en/latest/Parameters-Tuning.html).
In this system, the number of iterations was
optimized (thanks to the early stopping procedure)
for each DV and sets at the fourth highest value:
3,740 for nFix, 3,829 for TRT, 2,861 for GPT,
3,497 for FFD, and 3,305 for fixProp.

For the third submission, a new round of random
optimization was conducted by evaluating parame-
ter values close to those selected for Run 2, inde-
pendently for each DV. As it only got slightly better
performance than Run 2, these parameter values
are not shown to save space.

As shown in Table 2, Runs 2 and 3 ranked at
the first 2 places of the challenge. This result was
largely due to their better performance for fixProp
since the TALEP system, second in the challenge,
achieved significantly better performance for three
of the five DVs, but these have less impact on the
official measurement. An analysis, carried out after
the end of the challenge, showed that the system

would not have been more effective (average MAE
of 3.8138) if, during the first optimization step, a
specific model for each DV had been selected.

Using Pearson’s linear correlation coefficient as
a measure of effectiveness, which is unaffected by
the differences in means and variability between
the five DVs, Run 3 obtains an average r of 0.812
on the test set (min = 0.792 for GPT; max = 0.838
for fixProp). This value is relatively high, but it can
only really be interpreted by taking into account the
reliability of the average real eye-tracking feature
values.

4.2 Feature Usefulness

The first part of Table 3 presents the main results of
an ablation procedure aimed at examining the im-
pact of the different types of features on the system
performance. It gives the average MAE as well as
the difference in percentage between each system
and the best run for the average MAE and for the
five DVs. It must be first stressed that all features
based on lemmas and POS-tag, the two Glasgow
norms and the length of the token that follows the
target are useless for predicting the test set since
without them the system achieves a MAE of 3.8134.
They are thus discarded in all the ablation analyses.
The target’s positions in the sentence and the length
features are clearly essential. Among the features
resulting from corpora and behavioral data, it is the
bigram association measures and the frequencies
in the corpora that are the most useful.

Generally speaking, the feature sets have com-
parable utility for all DVs. However, we observe
that the position in the sentences is particularly im-
portant for predicting GPT while the length of the
target is more useful for nFix.

The second part of Table 3 presents an analysis
of the utility of optimizing the LightGBM parame-
ters, based on the best system. Optimizing RMSE
instead of MAE is especially penalizing for GPT.
Using the default values of the LightGBM param-
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Models MAE %MAE %nFix %FFD %GPT %TRT %fixProp

W/o behavioral data 3.849 -0.93 -0.69 -1.30 -0.75 -0.78 -1.05
W/o ELP charact. 3.859 -1.19 -0.54 -1.36 -0.95 -0.59 -1.55
W/o frequencies 3.880 -1.74 -1.38 -1.68 -1.88 -1.55 -1.87
W/o bigram AM 3.881 -1.78 -2.05 -2.32 -1.39 -1.94 -1.70
W/o length feat. 3.979 -4.35 -5.95 -2.92 -3.17 -4.43 -4.08
W/o position feat. 4.095 -7.39 -7.68 -4.44 -22.88 -7.48 -4.30

RMSE optimization 3.847 -0.87 -0.43 0.46 -4.73 -0.09 -0.43
Default Param + MAE 3.902 -2.32 -2.34 -1.54 -3.52 -2.12 -2.15
Default Param + RMSE 4.141 -8.59 -7.67 -7.65 -12.62 -7.43 -8.31

Linear Regression 4.268 -10.64 -9.04 -7.88 -24.09 -9.47 -8.26
LGBM on Length + Position 4.219 -10.63 -10.7 -11.4 -8.18 -12.1 -10.85

Table 3: Performance (MAE) of different system versions and deviation (%) from the best run (MAE = 3.813).
Minimum and maximum values across DVs for each row are bolded.

eters is particularly penalizing when RMSE is the
criterion.

A final question concerns the benefits of em-
ploying LightGBM instead of another regression
algorithm when the proposed features are used. To
try to provide at least a partial answer, I trained
a multiple linear regression model on the basis of
the features used, while adding for each feature,
for which the calculation was possible, a second
feature containing the logarithm of the initial value.
I replaced the missing data with 0, which is proba-
bly not optimal. A stepwise regression procedure
with a threshold to enter sets at p = 0.01 and a
threshold to exit sets at p = 0.05 was employed
to construct for each DV a model on the learning
set and apply it to the test set. The results obtained
are given in the second to last row of Table 3. The
performances are clearly less good. It is even worse
than the performance level of a LightGBM model
based only on the length and position features (see
the last row of Table 3). This regression system
would have been ranked 10th in the challenge.

5 Conclusion

The system proposed for the 2021 CMCL Shared
Task on Eye-Tracking Data Prediction was particu-
larly effective, obtaining the first place in the chal-
lenge, but it must be kept in mind that the system
that came second is superior to it for three of the
five DVs. The analyzes carried out to understand
its pros and cons indicate that optimizing the Light-
GBM parameters is quite beneficial to it as well as
the different sets of features derived from corpora

and behavioral data, including bigram AMs which,
to my knowledge, have never been employed for
this type of task.

It would have been interesting to relate these
observations to the psycholinguistic literature on
the factors that influence eye fixations, but this is
unfortunately not possible here, for lack of space.
In addition, this would first require deepening the
ablation analyzes by simultaneously considering
several feature sets. For instance, the lack of use-
fulness of the POS-tags could simply result from
the links (at least partial) between them and the fre-
quency and length of the tokens. Likewise, some of
the bigram AMs are relatively sensitive to the fre-
quency of the words that compose them (e.g., the
t-score favors frequent bigrams which are usually
composed of frequent words). It is thus highly prob-
able that some of the features in the different sets
(frequencies, behavioral data...) are redundant and
can be removed without impairing the performance
of the system. This is a potential development path.
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A Appendix

At the request of a reviewer, the parameter space for
the first random search is provided below. Those
for the second random search are not provided as
they did not allow to really improve the perfor-
mances.

param_grid = {
’max_bin’: [16,32,48,64,80,96,112,128,

160,192,224,256],
’min_data_in_bin’:[2,3,4,5,6,8,10,12,

15,20],
’num_leaves’: [4,5,6,7,8,9,10,11,12,13,

15,18,21,25,30],
’learning_rate’: [0.005,0.007,0.009,

0.011,0.014,0.018,0.022,0.026,0.03,
0.035,0.05],

’min_data_in_leaf’: [2,3,4,5,6,7,8,9,10,
11,12,13,15,18,21,25,30],

’max_depth’: [3,4,5,6,7,8,9,10,11,12,13,
-1],

’feature_fraction’: list(np.linspace(
0.01, 0.90, 91)),

’bagging_freq’: list(range(3, 7, 1)),
’bagging_fraction’: list(np.linspace(

0.50, 0.90, 9))
}
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Abstract

This paper describes Team Ohio State’s ap-
proach to the CMCL 2021 Shared Task, the
goal of which is to predict five eye-tracking
features from naturalistic self-paced reading
corpora. For this task, we fine-tune a pre-
trained neural language model (RoBERTa; Liu
et al., 2019) to predict each feature based
on the contextualized representations. More-
over, motivated by previous eye-tracking stud-
ies, we include word length in characters and
proportion of sentence processed as two addi-
tional input features. Our best model strongly
outperforms the baseline and is also competi-
tive with other systems submitted to the shared
task. An ablation study shows that the word
length feature contributes to making more ac-
curate predictions, indicating the usefulness of
features that are specific to the eye-tracking
paradigm.

1 Introduction

Behavioral responses such as eye-tracking data pro-
vide valuable insight into the latent mechanism
behind real-time language processing. Based on
the well-established observation that behavioral re-
sponses reflect processing difficulty, cognitive mod-
eling research has sought to accurately predict these
responses using theoretically motivated variables
(e.g. surprisal; Hale, 2001; Levy, 2008). Earlier
work in this line of research has introduced incre-
mental parsers for deriving psycholinguistically-
motivated variables (e.g. Roark et al., 2009; van
Schijndel et al., 2013), while more recent work has
focused on evaluating the capability of neural lan-
guage models to predict behavioral responses (Hao
et al., 2020; Wilcox et al., 2020).

The CMCL 2021 Shared Task on eye-tracking
data prediction (Hollenstein et al., 2021) provides
an appropriate setting to compare the predictive
power of different approaches using a standardized
dataset. According to the task definition, the goal

of the shared task is to predict five eye-tracking fea-
tures from naturalistic self-paced reading corpora,
namely the Zurich Cognitive Language Processing
Corpus 1.0 and 2.0 (ZuCo 1.0 and 2.0; Hollenstein
et al., 2018, 2020). These corpora contain eye-
tracking data from native speakers of English that
read select sentences from the Stanford Sentiment
Treebank (Socher et al., 2013) and the Wikipedia
relation extraction corpus (Culotta et al., 2006).
The five eye-tracking features to be predicted for
each word, which have been normalized to a range
between 0 and 100 and then averaged over partici-
pants, are as follows:

• Number of fixations (nFix): Total number of fix-
ations on the current word

• First fixation duration (FFD): The duration of the
first fixation on the prevailing word

• Total reading time (TRT): The sum of all fixation
durations on the current word

• Go-past time (GPT): The sum of all fixations
before progressing to the right of the current word

• Fixation proportion (fixProp): The proportion of
participants that fixated on the current word

In this paper, we present Team Ohio State’s ap-
proach to the task of eye-tracking data prediction.
As the main input feature available from the dataset
is the words in each sentence, we adopt a transfer
learning approach by fine-tuning a pre-trained neu-
ral language model to this task. Furthermore, we
introduce two additional input features motivated
by previous eye-tracking studies, which measure
word length in characters and the proportion of
sentence processed. Our best-performing model
outperforms the mean baseline by a large margin
in terms of mean absolute error (MAE) and is also
competitive with other systems submitted to the
shared task.
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Car lu cci was deputy defense secretary

RoBERTa encoder (Liu et al., 2019)

Input
tokens
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Concatenate
wlen and prop

Prediction
from FFNN

Figure 1: Model architecture for eye-tracking feature prediction.

2 Model Description

Our model relies primarily on the Transformer-
based pre-trained language model RoBERTa (Liu
et al., 2019) for contextualized representations of
each word in the input sentence.1 However, since
RoBERTa uses byte-pair encoding (Sennrich et al.,
2016) to tokenize each sentence, there is a mis-
match between the number of output representa-
tions from RoBERTa and the number of words in
each sentence. In order to address this issue, the
model uses the representation for the first token
associated with each word to make predictions. For
example, if byte-pair encoding tokenizes the word
Carlucci into Car, lu, and cci, the represen-
tation for Car is used to make predictions for the
entire word Carlucci.2

Additionally, two input features based on previ-
ous eye-tracking studies are included in the model.
The first is word length measured in characters
(wlen), which captures the tendency of readers
to fixate longer on orthographically longer words.
The second feature is proportion of sentence pro-
cessed (prop), which is calculated by dividing the
current index of the word by the number of total
words in each sentence. This feature is intended
to take into account any “edge effects” that may

1Although other word representations could be used within
our model architecture, the use of RoBERTa was motivated
by its state-of-the-art performance on many NLP tasks. The
RoBERTabase and RoBERTalarge variants were explored in this
work, which resulted in two different models. We used the
implementation made available by HuggingFace (https:
//github.com/huggingface/transformers).

2Future work could investigate the use of more sophis-
ticated approaches, such as using the average of all token
representations associated with the word.

be observed at the beginning and the end of each
sentence, as well as any systematic change in eye
movement as a function of the word’s location
within each sentence. These two features, which
are typically treated as nuisance variables that are
experimentally or statistically controlled for in eye-
tracking studies (e.g. Hao et al., 2020; Rayner et al.,
2011; Shain, 2019), are included in the current
model to maximize prediction accuracy.3

A feedforward neural network (FFNN) with one
hidden layer subsequently takes these three features
(i.e. RoBERTa representation, wlen, and prop) as
input and predicts a scalar value. To predict the
five eye-tracking features defined by the shared
task, this identical model was trained separately
for each eye-tracking feature. An overview of the
model architecture is presented in Figure 1.4

3 Training Procedures

3.1 Data Partitioning

Following the shared task guidelines, 800 sentences
and their associated eye-tracking features from the
ZuCo 1.0 and 2.0 corpora (Hollenstein et al., 2018,
2020) provided the data for training the model.
However, a concern with using all 800 sentences
to fine-tune the RoBERTa language model as de-
scribed above is the tendency of high-capacity lan-

3Other variables typically examined in eye-tracking stud-
ies include frequency-based measures (e.g. token frequency)
and prediction-based measures (e.g. various instantiations of
surprisal). However, those variables were not included in
our models as input features, as it was thought that the high-
capacity RoBERTa model trained on a masked language mod-
eling objective would implicitly encode such information.

4Code for model training and evaluation is available at
https://github.com/byungdoh/cmcl21_st.
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Model Dev (MSE) Test (MAE)

nFix FFD GPT TRT fixProp nFix FFD GPT TRT fixProp

RoBERTabase 28.307 0.757 14.780 4.234 198.917 3.987 0.682 2.364 1.540 11.311
RoBERTalarge 28.023 0.762 14.669 4.502 200.352 4.079 0.668 2.407 1.544 11.210

Mean baseline 91.783 2.062 35.509 13.838 662.309 7.303 1.149 3.782 2.778 21.775

Table 1: MSE on the held-out dev set and MAE on the test set for the two models.

Model Test (MAE)

nFix FFD GPT TRT fixProp

Full model 3.987 0.682 2.364 1.540 11.311

-prop 3.987 0.681 2.364 1.540 11.315
-wlen 3.997 0.681 2.376 1.543 11.424

-prop,wlen 3.998 0.681 2.377 1.543 11.431

Table 2: MAE on the test set for full RoBERTabase
model and its ablated variants.

guage models to agressively overfit to the training
data (Howard and Ruder, 2018; Jiang et al., 2020;
Peters et al., 2019). To prevent such overfitting,
the last 80 sentences (10%; 1,546 words) were ex-
cluded from training as the dev set and were used
to conduct held-out evaluation. This partitioning
resulted in the final training set, which consists of
720 sentences (90%; 14,190 words).

3.2 Implementation Details

For each eye-tracking feature, the two models were
trained to minimize mean squared error (MSE,
Equation 1),

L(θ) = 1

N

N∑

i=1

(yi − f(xi; θ))
2 (1)

where f(·; θ) is the model described in Section 2,
xi is the concatenation of three input features, yi
is the target value associated with the eye-tracking
feature, and N is the number of training examples
in each batch. The AdamW algorithm (Loshchilov
and Hutter, 2019) with a weight decay hyperpa-
rameter of 0.01 was used to optimize the model
parameters. The learning rate was warmed-up over
the first 10% of training steps and was subsequently
decayed linearly. The number of nodes in the hid-
den layer of the FFNN was fixed to half of that of
the input layer. Additionally, dropout with a rate
of 0.1 was applied before both the input layer and
the hidden layer of the FFNN. Finally, to avoid
exploding gradients, gradients with a norm greater
than 1 were clipped to norm 1.

The optimal hyperparameters were found using
grid search based on MSE on the held-out dev
set. More specifically, the learning rate was ex-
plored within the set of {1× 10−5, 2× 10−5, 3×
10−5, 5 × 10−5}, batch size was explored within
the set of {4, 8, 16, 32, 64} sentences, and the max-
imum number of training epochs was explored
within the set of {8, 16, 32, 64, 128, 192}. During
training, the model was evaluated on the dev set
after every training epoch.

4 Results and Discussion

Table 1 shows the MSE on the dev set and MAE5

on the test set for the two models. Both models
strongly outperformed the baseline approach that
predicts the mean value of the training set, resulting
in a ∼40% decrease in MAE for all five features.
Additionally, although the difference is small, the
RoBERTabase model tended to perform better than
the RoBERTalarge model on the test set.6 This sug-
gests that models with higher capacity may not
necessarily be preferable for this task, especially in
light of the small amount of training data available.

To evaluate the contribution of the wlen and prop
features, an ablation study was conducted using
the RoBERTabase model. In addition to showing
how useful wlen and prop information is for pre-
dicting eye-tracking features, the analysis was also
thought to reveal whether or not such information
is already contained within the RoBERTa repre-
sentations. The two input features were ablated
by simply replacing them with zeros during infer-
ence, which allowed a clean manipulation of their
contribution to the final predictions.

The results in Table 2 show that the ablation of
the prop feature made virtually no difference in the
model predictions. This is most likely due to the
fact that the Transformer (Vaswani et al., 2017),
which the RoBERTa models are based on, includes
positional encodings that allow the model to be sen-

5The official evaluation metric, 1
N

∑N
i=1 |yi − f(xi; θ)|.

6The RoBERTabase model ranked 11th out of 29 submis-
sions on the shared task (6th out of 13 participating teams).
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sitive to the position of each token in the sequence.
Therefore, in order to fully examine the contribu-
tion of positional information on this task, a variant
of the current model using RoBERTa representa-
tions trained without positional encodings would
have to be evaluated.

The ablation of the wlen feature resulted in a
more notable difference in four out of five eye-
tracking features. This indicates that information
about orthographic length is both useful for eye-
tracking data prediction and also orthogonal to
the information captured by the RoBERTa rep-
resentations. This may partially be explained by
RoBERTa’s use of byte-pair encoding, which can
result in many short tokens for a given word (e.g. to-
kens Car, lu, cci for the word Carlucci).
Since only the first token was used by the current
models to represent each word, explicitly includ-
ing information about word length seems to have
contributed to making more accurate predictions.
More generally, this highlights the utility of incor-
porating features that are specific to eye-tracking,
which may not be inherent in high-capacity lan-
guage models trained for a different objective.

5 Conclusion

In this paper, we present our approach to the CMCL
2021 Shared Task on eye-tracking data prediction.
Our models primarily adopt a transfer learning ap-
proach by employing a feedforward neural network
to predict eye-tracking features based on contextu-
alized representations from a pre-trained language
model. Additionally, we include two input fea-
tures that have been known to influence eye move-
ment, which are word length in characters (wlen)
and proportion of sentence processed (prop). Our
best model based on RoBERTabase strongly outper-
forms the mean baseline and is also competitive
with other systems submitted to the shared task. A
follow-up ablation study shows that the wlen fea-
ture contributed to making more accurate predic-
tions, which indicates that explicitly incorporating
features specific to the eye-tracking paradigm can
complement high-capacity language models on this
task.
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Abstract

Eye-tracking psycholinguistic studies have re-
vealed that context-word semantic coherence
and predictability influence language process-
ing. In this paper we show our approach to
predict eye-tracking features from the ZuCo
dataset for the shared task of the Cogni-
tive Modeling and Computational Linguistics
(CMCL2021) workshop. Using both cosine
similarity and surprisal within a regression
model, we significantly improved the baseline
Mean Absolute Error computed among five
eye-tracking features.

1 Introduction

The shared task proposed by the organizers of the
Cognitive Modeling and Computational Linguis-
tics workshop (Hollenstein et al., 2021) requires
participant to create systems capable of predicting
eye-tracking data from the ZuCo dataset (Hollen-
stein et al., 2018). Creating systems to efficiently
predict biometrical data may be useful to make pre-
diction about linguistic materials for which we have
few or none experimental data, and to make new
hypothesis about the internal dynamics of cognitive
processes.

The approach we propose relies mainly on two
factors that have been proved to influence language
comprehension: i.) the semantic coherence of a
word with the previous ones (Ehrlich and Rayner,
1981) and ii.) its predictability from previous
context (Kliegl et al., 2004). We model the first
factor with the cosine similarity (Mitchell et al.,
2010; Pynte et al., 2008) between the distributional
vectors, representing the context and the target
word, produced by different Distributional Seman-
tic Models (DSM) (Lenci, 2018). We compared 10
state-of-the-art word embedding models, and two
different approaches to compute the context vector.
We model the predictability of a word within the
context with the word-by-word surprisal computed
with 3 of the above mentioned models (Hale, 2001;

Levy, 2008). Finally, cosine similarity and sur-
prisal are combined in different regression models
to predict eye tracking data.

2 Related Works

Different word embedding models (GloVe,
Word2Vec, WordNet2Vec, FastText, ELMo,
BERT) have been evaluated in the framework
proposed by Hollenstein et al. (2019). The
evaluation is based on the model capability to
reflect semantic representations in the human
mind, using cognitive data in different datasets for
eye-tracking, EEG, and fMRI. Word embedding
models are used to train neural networks on a
regression task. The results of their analyses show
that BERT, ELMo, and FastText have the best
prediction performances.

Regression models with different combinations
of cosine similarity and surprisal, to predict (and
further study the cognitive dynamics beneath) eye
movements have been created by Frank (2017),
who claims that, since word embeddings are based
on co-occurrences, semantic distance may actually
represent word predictability, rather than seman-
tic relatedness, and that previous findings showing
correlations between reading times and semantic
distance were actually due to a confound between
these two concepts. In his work, he uses linear
regression models testing different surprisal mea-
sures, and excluding it. The results show that when
surprisal is factored out, the effects of semantic sim-
ilarity on reading times disappear, proving thus the
existence of an interplay between the two elements.

3 Experimental Setting

3.1 Datasets

The shared task materials come from ZuCo (Hol-
lenstein et al., 2018), that includes EEG and eye-
tracking data, collected on 12 English speakers
reading natural texts. The data collection has been
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done in three different settings: two normal reading
tasks and one task-specific reading session. The
original dataset comprises 1, 107 sentences, and for
the shared task 800 sentences (15, 736 words) have
been used for the training data, while the test set in-
cluded about 200 sentences (3, 554 words). Since
the shared task focuses on eye-tracking features,
only this latter data were available. The training
dataset structure includes sentence number, word-
within-sentence number, word, number of fixations
(nFix), first fixation duration (FFD), total reading
time (TRT), go-past time (GPT), fixation propor-
tion (fixProp). The first three elements were part of
the test set too.

Our approach includes a preliminary step of fea-
ture selection. For this purpose we also used GECO
(Cop et al., 2017) and Provo (Luke and Christian-
son, 2018), two eye-tracking corpora containing
long, complete, and coherent texts. GECO is a
monolingual and bilingual (English and Dutch)
corpus composed of the entire Agatha Christie’s
novel The Mysterious Affair at Styles. GECO con-
tains eye-tracking data of 33 subjects (19 of them
bilingual, 14 English monolingual) reading the full
novel text, presented paragraph-by-paragraph on
a screen. GECO is composed of 54, 364 tokens.
Provo contains 55 short English texts about vari-
ous topics, for a total of 2, 689 tokens, and a vocab-
ulary of 1, 197 words. These texts were read by 85
subjects and their eye-tracking measures were col-
lected in an available on-line dataset. Similarly to
ZuCo, GECO and Provo data are recorded during
naturalistic reading on everyday life materials. For
every word in GECO and Provo, we extracted its
mean total reading time, mean first fixation dura-
tion, and mean number of fixations, by averaging
over the subjects.

3.2 Word Embeddings

Table 1 shows the embeddings types used in our
experiments, consisting of 6 non-contextualized
DSMs and 4 contextualized DSMs. The for-
mer include predict models (SGNS and FastText)
(Mikolov et al., 2013; Levy and Goldberg, 2014;
Bojanowski et al., 2017) and count models (SVD
and GloVe) (Bullinaria and Levy, 2012; Penning-
ton et al., 2014). Four DSMs are window-based
and two are syntax-based (synt). Embeddings have
300 dimensions and were trained on the same cor-
pus of about 3.9 billion tokens, which is a concate-
nation of ukWaC and a 2018 dump of Wikipedia.

Pre-trained contextualized embeddings include the
512-dimensional vectors produced by the three lay-
ers of the ELMo bidirectional LSTM architecture
(Peters et al., 2018), the 1, 024-dimensional vec-
tors in the 24 layers of BERT-Large Transform-
ers (BERT-Large, Cased) (Devlin et al., 2019), the
1, 600-dimensional vectors of GPT2-xl (Radford
et al.), and the 200-dimensional vectors produced
by the Neural Complexity model (van Schijndel
and Linzen, 2018).

3.3 Method

To predict eye tracking data we tested different re-
gression models and several features combinations.

Feature Selection. To select the features to be
used, for each word embedding model and lan-
guage model we carried out a preliminary investi-
gation computing Spearman’s correlation between
eye tracking features, and respectively surprisal and
cosine similarity: The features with the highest cor-
relation with biometrical data have been selected
for being used in the regression model.

For each target word w in GECO, Provo and
ZuCo, we measure the cosine similarity between
the embedding of w and the embedding of the con-
text c composed of the previous words in the same
sentence. We then compute the Spearman correla-
tion between the cosine and the eye-tracking data
for w. We test two different ways of computing the
context embedding:
Additive model (for every embedding type): The
context vector is the sum of all its word embed-
dings. Because of the bidirectional nature of
BERT, the input to this model needed a special
pre-processing. In order to prevent that the vectors
representing words within the context were com-
puted using the target word itself, we passed to
BERT a list of sub-sentences, each of which were
composed of context words only. So given the sen-
tence The dog chases the cat:
S[0] = ["The"]
S[1] = ["The dog"]
S[2] = ["The dog chases"]
S[3] = ["The dog chases the"]
S[4] = ["The dog chases the cat"]
Starting from the second sub-sentence, the cosine
similarity is computed between the last word vec-
tor and the sum of words vectors belonging to the
previous sub-sentence (list element). Therefore,
to compute the cosine similarity between cat and
the previous context, we select cat from S[4] and
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Model Hyperparameters
Non-contextualized DSMs
SVD.w2 count DSM with 345K window-selected context words, window of width 2, reduced with SVD
SVD.synt count DSM with 345K syntactically typed context words reduced with SVD
GloVe count DSM with context window of width 2, reduced with log-bilinear regression
SGNS.w2 Skip-gram with negative sampling, context window of width 2, 15 negative examples
SGNS.synt Skip-gram with negative sampling, syntactically-typed context words, 15 negative examples
FastText Skip-gram with subword information, context window of width 2, 15 negative examples
Contextualized DSMs
ELMo Pretrained ELMo embeddings on the 1 Billion Word Benchmark
BERT Pretrained BERT-Large embeddings on the concatenation of the Books corpus and Wikipedia
GPT2-xl Pretrained GPT2-xl embeddings on WebText
Neural Complexity Pretrained Neural Complexity embeddings on Wikipedia

Table 1: List of the embedding models used for the study, together with their hyperparameter settings.

The+ dog + chases+ the from S[3].
CLS: The context vector is the embedding pro-
duced by BERT for the special token [CLS]. As
for the additive model, BERT was fed with sub-
sentences, and for each target word the CLS-
context-vector was the one computed at the pre-
vious list element. So, looking at the previous
example, for cat as target word, we will use the
CLS vector representing all the S[3] elements.

Given the positive effect of semantic coherence
on language processing, we expect that the eye-
tracking data for w have a negative correlation with
its cosine similarity with c: The higher the cosine,
the lower the reading time of w measured by eye-
tracking.

We then used BERT, GPT2-xl and Neural Com-
plexity to compute word-by-word surprisal. As for
the cosine similarity, for BERT the input sentences
were organized in sub-sentences, and the last to-
ken, the target word, was replaced with the special
tag [MASK]. Finally, we compute the Spearman
correlation between the surprisal of w, and the
eye-tracking data for the target word. Differently
from the cosine, we expect the surprisal to be posi-
tively correlated with the word reading time: The
less predictable a word, the slower its processing.

The comparison has been done between 60 possi-
ble features: 6 values of cosine similarity between
non-contextualized vectors, 51 values of cosine
similarity between contextualized vectors (48 from
24 layers of BERT in two different ways to com-
pute the context vector, and 3 from ELMo, GPT2-xl
and Neural Complexity), 3 values of surprisal from
BERT, GPT2-xl, Neural Complexity. Based on
the correlation values, we selected one cosine sim-
ilarity feature and one surprisal feature, that have
been combined with two variables that are well-
known in the cognitive neuroscience literature for
influencing eye movements: word length and word

frequency, the last one computed on Wikipedia1.
Regression Model Selection. Taking into ac-

count the Spearman’s correlations, we selected one
word embedding model for cosine similarity and
one Language Model for surprisal. Then, different
kind of regression models from Scikit-learn have
been compared. More precisely, PLS Regression,
Multi-layer Perceptron Regressor, Random Forest
Regressor, Linear Regression, Ridge Regression,
Bayesian ridge regression, Epsilon-Support Vector
Regression, Linear regression with combined L1
and L2 priors as Regularizer, Gradient Boosting
Regressor. The metric used to evaluate different
models is the Mean Absolute Error on ZuCo’s eye
tracking features prediction. Once the model and
the features have been selected, the comparison
between 3 different regression settings has been
done: i) surprisal only; ii) cosine similarity only;
iii) surprisal + cosine similarity.
For the regression model selection, we used 2/3 of
the ZuCo training set to train the model, and 1/3 for
validation purposes. Once we found the best (i.e.
lower MAE among eye tracking data) combination
of features and regression model, the prediction on
test data has been done.

4 Results and Discussion

Spearman’s correlations between eye tracking fea-
tures and cosine similarity showed that best perfor-
mances are reached by vectors produced by BERT
layer 22 CLS context (mean correlation over eye
tracking features on the three datasets: −0.62),
while best correlations between eye tracking data
and surprisal are reached by GPT2-xl (mean cor-
relation over eye tracking features on the three
datasets: 0.40). These results led us to select as

1Using https://github.com/IlyaSemenov/wikipedia-word-
frequency
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Feature Model Regression model MAE
FFD BERTcos_GPTsurpr GBR 0.69
FFD GPTcos_GPTsurpr GBR 0.69
FFD BERTcos_GPTsurpr RF 0.74
FFD BASELINE RF 0.77

fixprop BERTcos_GPTsurpr GBR 11.64
fixprop GPTcos_GPTsurpr GBR 11.78
fixprop GPTcos_GPTsurpr RF 12.33
fixprop BASELINE RF 12.75

GPT BERTcos_GPTsurpr GBR 2.96
GPT GPTcos_GPTsurpr GBR 2.978
GPT BERTcos_GPTsurpr LR 3.08
GPT BASELINE BRR 3.09
nFix BERTcos_GPTsurpr GBR 4.21
nFix GPTcos_GPTsurpr GBR 4.37
nFix BERTcos_GPTsurpr LR 4.49
nFix BASELINE LR 4.67
TRT BERTcos_GPTsurpr GBR 1.64
TRT GPTcos_GPTsurpr GBR 1.67
TRT BERTcos_GPTsurpr RF 1.76
TRT BASELINE RF 1.84

Table 2: Best three MAEs for each eye-tracking feature + baseline.

features for regression model: cosine similarity
between vectors computed by BERT 22 CLS and
surprisal computed by GPT2-xl. We also tested
the cosine similarity between vectors computed by
GPT2-xl, to have a comparison with a regression
model with features produced by the same model.
While performing regression model selection com-
paring 9 models from Scikit-learn, we also tried
different combinations of features.

Table 2 shows the best 3 combinations of fea-
tures and models, compared with the baseline
created taking into account word frequency and
word lenght only. The lowest MAEs for each
eye-tracking feature were reached by a Gradient
Boosting Regressor (GBR) using both the cosine
similarity between vectors produced by BERT and
the surprisal computed by GPT2-xl. The average
MAE using the GBR model with BERT cosine and
GPT2-xl surprisal was 4.22 (mean improvement
compared with the baseline = 0.54), with one fea-
ture, fixProp, producing a MAE value significantly
higher than the other eye tracking features. Since
fixProp is "the proportion of participants that fix-
ated the current word" (i.e., the probability of the
word of being fixed), we hypothesized that the com-
bination of phenomena influencing the likelihood
of fixating a word could be captured by the other
4 eye tracking features, making them in turn good
predictors of fixProp.

Therefore, we tested again the 9 regression mod-
els with Scikit-learn, this time using nFix, FFD,
TRT, GPT, word lenght and word frequency as fea-
tures, in every possible permutation (one per time,
pairs of features, etc.). A lower MAE on fixProp

on training data has been obtained using a Random
Forest method with nFix, TRT, and GPT, reaching
a MAE of 3.15.

The improvements of the final model over the
baseline suggest that the information conveyed by
the cosine similarity and the surprisal contributes in
modeling the cognitive processing beneath reading.
Our results are consistent with Pynte et al. (2008)
and Mitchell et al. (2010) findings about the rela-
tion between cosine similarity and eye movements
data, as well as with Hale (2001) and Levy (2008),
who found surprisal to be useful in predicting read-
ing times.
Anyway, our model performance shows that taking
into account both the computational measures ben-
efits the modeling. Even if Frank (2017) rises an
interesting issue about the interplay between the
information included in word embeddings and the
one provided by the suprisal computed by language
models, our results keep us from fully agree with
his observations: since the joined model performed
better that the ones taking into account only cosine
similarity or only surprisal, it is obvious that the
two measures convey exclusive and useful infor-
mation, even if it is more than plausible that they
share some kind of information to some extent.

In summary, we used a two-step approach: i.)
the final model to predict nFix, FFD, GPT, and
TRT in test data was a Gradient Boosting Regres-
sor having as features the cosine similarity between
the CLS vector (BERT) and the target word embed-
ding, GPT2-xl surprisal, word length and word
frequency; ii.) the predicted values of nFix, GPT,
and TRT were used in a Random Forest to predict
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fixProp.
The shared task final results over the test data,

revealed that our model had an average MAE of
4.3877 over all eye tracking features (the baseline
was 7.3699, while the best model reached a MAE
of 3.8134).

5 Conclusions

In this paper we described the system we proposed
in the CMCL2021 "Shared Task: Predicting hu-
man reading patterns". We were required to create
a model capable of predicting number of fixations,
first fixation duration, total reading time, go-past
time, and fixation proportion of each word in the
ZuCo dataset. We proposed a regression model
using word length and word frequency, combined
with two elements that are proved to influence read-
ing processing: the semantic coherence and the
predictability of a word within the context. To com-
pute these last two regression features we used the
cosine similarity between the vector representing
the context and the word embedding of the target
word, and the surprisal computed by Language
Models, respectively. We selected the models to
produce the vectors and to compute the surprisal
calculating the Spearman correlation between the
cosine similarity and the eye tracking data, and
between the surprisal and the same data. We then
used the best cosine similarity and surprisal within
a regression model, selected among 9 possible mod-
els. Our results outperformed the baseline, with
a average MAE among eye tracking features just
0.5743 higher than the best model in the competi-
tion.
Our model may be improved exploring new types
of regressors and word embeddings, and including
new textual features such as sentence length and in-
formation regarding words immediately preceding
the target ones.
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Abstract
In this paper we describe our contribution to
the CMCL 2021 Shared Task, which consists
in predicting 5 different eye tracking variables
from English tokenized text. Our approach is
based on a neural network that combines both
raw textual features we extracted from the text
and parser-based features that include linguis-
tic predictions (e.g. part of speech) and com-
plexity metrics (e.g., entropy of parsing). We
found that both the features we considered as
well as the architecture of the neural model
that combined these features played a role in
the overall performance. Our system achieved
relatively high accuracy on the test data of the
challenge and was ranked 2nd out of 13 com-
peting teams and a total of 30 submissions.

1 Introduction

The CMCL 2021 Shared Task (Hollenstein et al.,
2021) aims at comparing different approaches to
the task of predicting eye tracking variables. Given
English text as a sequence of tokens, the goal is
to predict 5 behavioural metrics (averaged over 12
human subjects).

Our approach was based on two major steps.
First, we generated several features that either
proved successful in previous work or that reflected
our intuition about their potential in predicting eye
tracking data. Second, we proposed a way for an
optimal combination of these features using a sim-
ple neural network. Both steps proved to be useful
in our final predictions.

The paper is organized as follows. First, in sec-
tion 2, we list and describe the features we used to
predict the eye-tracking data. Then, in section 3,
we briefly describe the neural architecture of the
model we used to combine the features. Next, in
section 4, we report details about the model’s train-
ing and evaluation. Finally, in section 5, we analyze
and discuss the impact of each feature (as well as
the impact of each group of features) on the overall
performance of the model.

2 Features Generation

Before introducing the model (schematically de-
scribed in Figure 1), we thought useful to first list
and describe how we obtained the candidate pre-
dictive features from the original textual material
of the challenge as well as from secondary sources.
Our features are listed in Table 1, and can be orga-
nized into four categories: 1) Raw textual features
we extracted form the proposed text, 2) Frequency
values, 3) Linguistic features we obtained by an-
notating the proposed text in an automatic fashion,
and 4) Complexity measures produced by a parser
across several linguistic levels. Below are more
details on each of these categories of features.

2.1 Raw Textual Features
The eight features of this group were directly ex-
tracted from the textual material of the challenge.
These features are listed in Table 1 and they are
self-explanatory. They include, e.g., word length,
prefixes, and suffixes.

2.2 Frequencies
Every word in the text has been associated with
three frequency values: the frequency of the word
out of context (unigram), the frequencies of bi-
grams made of the current word and either the pre-
ceding or the next one. The values were computed
using the Google’s One billion words benchmark
for language modeling corpus (Chelba et al., 2013).

2.3 Linguistic Features
We enriched the original textual material with three
types of linguistic annotations (obtained automat-
ically): part of speech tags, morphological tags
and syntactic dependencies. Theses three types of
annotations were realized using an augmented (neu-
ral network based) version our software MACAON

(Nasr et al., 2011), where words in a sentence are
discovered then annotated one at a time (from left
to right). Annotation is based on classifiers that

108



take as input features about current word and its
context and produce as output a probability distri-
bution over a set of actions. Such actions posit
word boundaries on the raw text, associate part of
speech and morphological tags to words or link
words of a sentence with syntactic dependencies.
The actions that perform the prediction of syntactic
dependencies are based on the transition based pars-
ing framework (Nivre, 2003), which makes use of
a stack that stores words that should be connected
to words not yet discovered. The stack allows to
connect words that are not adjacent in the sentence.

The classifiers are organized in an incremental ar-
chitecture, i.e., once the tokenizer detected a word
boundary, control jumps to the part of speech tag-
ger, then to the morphological tagger and eventu-
ally to the syntactic parser, before going back to
the tokenizer. The behaviour of the whole system
is greedy, at every step, a single action is selected
and performed. The action selected is the one that
maximizes the probability distribution computed
by the classifier.

2.4 Complexity Metrics

Besides producing linguistic labels, MACAON also
produces numbers that reflect the difficulty associ-
ated with a given linguistic decision. We used these
numbers to instantiate several “complexity metrics”
that we used as a proxy to human difficulty to pro-
cess a word (Hale, 2001). We generated two types
of such complexity measures.

The first one is a measure of the “confidence”
with which the system selects a given action. This
confidence is based on the shape of the probabil-
ity distribution produced by the system at each
step. The measure used is simply the entropy of
the probability distribution. A low entropy distri-
bution corresponds to a high confidence and a high
entropy to a low one. Four different measures of
entropy were computed, one for every linguistic
level (see Table 1).

The second kind of complexity metrics is related
to the stack of the syntactic parser. One measure
we used was the height of the stack. The stack
has a tendency to grow when processing complex
sentences, e.g., when it involves several subordi-
nated clauses. A large value of the stack’s height
can therefore be interpreted as an indicator of a
syntactically complex linguistic configuration. The
second measure was the distance that separates in
the sentence the two words on the top of the stack.

f1 f2 f3 fn

wi−1wi w
i+1

nFix FFD TRT GPT FixProp

regressors

input layer

sentence

1600

5632

representation
Dense

Figure 1: Model Architecture: a sliding window reads
the sentence and encodes the features of the words (see
Table 1) in the input layer. An MLP compresses the
input layer using non linear functions. Five linear re-
gressors predict the values of the variables.

2.5 Implementation Details

The MACAON model was trained on the concate-
nation of the English corpora GUM, EWT, LinES
and ParTUT from Universal Dependencies (Zeman
et al., 2019), for a total of 29,916 sentences and
515,228 words. It was used to process the raw1 (un-
tokenized) text in the ZuCo corpus. This processing
yielded a tokenization of the text similar to the way
UD corpora are tokenized (punctuation marks are
tokens), where for each word we produced both
linguisitc labels and complexity metrics. These
measures were then aligned with the shared task
corpus using Levenshtein distances between words.
This alignment was necessary because the tokeniza-
tion is different between the linguistic model output
and the shared task material.

3 Features Combination

We used a simple neural network to perform a se-
ries of five regression tasks, one for each measure
to predict. The regressions were realized using the
architecture described in Figure 1. As is clear from
the figure, all regression tasks take as input a single
representation of the words being processed. This
representation is optimized for the five regression
tasks simultaneously. Perhaps the most complex
part of the model is the encoding of the input layer
because different kind of features require different
encoding methods.2

1Available in the task_materials directory of the ZuCo
distribution https://osf.io/q3zws/.

2The neural network was implemented in C++ using the
PyTorch library (Paszke et al., 2019). The same software is
used both to provide linguistic labels as in section 2 and to
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The model is composed of three parts, each part
taking as input the output of the preceding one
(Figure 1).

3.1 The Input Layer

The input of the Multilayer Perceptron is a large
vector that encodes all the features listed in Table 1.
It is made of the concatenation of all these feature
encodings for a span of three words centered on
the current word. The features were encoded dif-
ferently depending on their nature. For numeric
values, such as word lengths or frequencies, we
directly input them into our neural network. As
for discrete values, such as part of speech tags,
we used a dictionnary mapping each label to an
embedding. Such embeddings (of size 64),3 are
learnable parameters of the model. They are ran-
domly initialized, except for the FORM feature (see
Table 1) where the embeddings were initialized on
the train section of the shared task material using
GloVe4 (Pennington et al., 2014). We associated
each feature with a bi-LSTM taking as input the
sequence of values indicated in the Span column
of Table 1, which define a window of width 1,2 or
three, centered on the current word. The outputs
of all such bi-LSTMs were concatenated, yielding
a single embedding of size 5632. A dropout layer
is then applied to the whole input vector, where
during training 30% of the neurons are set to 0,
making the network less prone to over-fitting.

3.2 The Multilayer Perceptron

It is composed of 2 linear layers (with bias), each
one of size 1600. The ReLU function was applied
to each layer output, and no dropout was used. The
goal of the Multilayer Perceptron is to build a com-
pact representation of the input layer that is opti-
mized for the regression tasks.

3.3 The Decision Layer

The decision layer is simply a linear layer (with
bias) of input size 1600 and output size 1. There are
5 different decision layers (one for each value to
predict). Parameter of this linear layer are the only
one that were not shared between the 5 predictions
tasks.

predict the challenge’s five oculometric measures, but with
different models. The software used to train our model is
available online: https://gitlab.lis-lab.fr/franck.dary/macaon/

3See section 4 about hyperparameters selection.
4Implementation: https://github.com/stanfordnlp/GloVe.

Words with less than 2 occurrences were treated as unknown
words, thus producing an unknown words embedding.

4 Training and Evaluation

In this section, we will describe how we trained the
neural network presented in section 3 to predict all
five shared task oculometric measures (nFix, FFD,
TRT, GPT, fixProp), and how we proceeded for the
choice of its hyperparameters such as number of
layers, size of layers, size of embeddings.

During the training phase of the shared task,
we decided to split the training material into
train/dev/test parts of the following respective sizes
70%/15%/15%. This allowed us to use the dev
part for early stopping and the test part to compare
competing models on the basis of their generaliza-
tion capability. We used absolute error as our loss
function, and used Adagrad as our optimizer.

To decide on the values of the hyperparameters,
we trained different models (changing one hyper
parameter at a time) for 40 epochs on the train part
of our split. As a form of early stopping, we only
saved a model when its performance was the best
on the dev set. Finally, we used performance on the
test part of our split to compare models and decide
which hyperparameter values were the best.

To train our final model, we ditched our custom
split and used the entire shared task training ma-
terial for a total of 7 epochs to avoid overfitting,
achieving an MAE of 3.83 (the best team obtained
3.81). In Table 1 we reported that our best model
had an MAE of 3.73, indicating that ditching the
train/dev split was not a good idea.

5 Results and Discussion

Table 1 lists all the predictive features used in the
current work and their impact on the Mean Abso-
lute Error (MAE) — averaged over the five target
measures of the challenge — both at the individual
level and at the group level.

The individual MAE values were computed by
training the model only on the feature at hand in ad-
dition to FREQUENCY and LENGTH, thus reflecting
its performance beyond these simple baseline fea-
tures5. As for the group-level MAE, we obtained
them by training a model that takes as input all the
features of the group at hand as well as the preced-
ing groups in the table. For example, the MAE for
“Raw Textual Features” was obtained by training
the model on all the feature in this group only (as

5That’s why the individual MAE values for FREQUENCY
and LENGTH are identical: It is the errors of a model trained
only on the baseline features made of FREQUENCY and
LENGTH.
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Name Description Span MAE (individual) MAE (group)
Raw Textual Features

LENGTH Number of letters in the word. 111 4.20±0.00
PREFIX First 3 letters of the word. 010 4.15±0.02
SUFFIX Last 3 letters of the word. 010 4.16±0.01
FORM Contextualized word embedding. 110 4.05±0.01
EOS Whether or not the word is the last of the sentence. 110 4.15±0.00 3.87±0.01
WORD_ID Index of the word in the sentence. (Kuperman et al., 2010) 110 4.09±0.01
SENT_ID Index of the sentence in the text. (Genzel and Charniak, 2002) 110 4.16±0.01
TEXT_ID Index of the file containing the raw text. 010 4.18±0.00

Frequencies
FREQUENCY Logarithm of the frequency of the word. 111 4.20±0.00
COOC_P Log frequency of the bigram with previous word. 111 4.15±0.00 3.78±0.02
COOC_N Log frequency of the bigram with next word. 111 4.17±0.00

Linguistic Features
POS Part of speech. 110 4.15±0.00
MORPHO Morphology. 110 4.17±0.00 3.74±0.01
DEPREL Syntactic function. 110 4.14±0.00
DEP_LEN Distance to the syntactic governor. 110 4.17±0.01

Complexity Metrics
STACK_SIZE Size of the stack when processing the word. (Gibson, 2000) 111 4.12±0.00
STACK_DIST Distance between the two top elements of the stack. 111 4.14±0.01
ENT_TOK Entropy of the tokenizer. 110 4.22±0.00
ENT_TAG Entropy of the part of speech tagger. 110 4.22±0.01
ENT_MORPHO Entropy of the morphological tagger. 110 4.22±0.00 3.73±0.00
ENT_PARSER Entropy of the dependency parser. (Boston et al., 2008) 110 4.23±0.01
ENT_MEAN Mean of the entropies. 110 4.22±0.00
ENT_MAX Highest entropy. 110 4.23±0.01

Table 1: Features of our model. Span defines the words taken into account in a window of length 3 centered on
the current word. The first MAE column of row FEATNAME is the MAE achieved by a model using only features
{FEATNAME,FREQUENCY,LENGTH}. Last MAE column is the score achieved by a model when adding this feature
group (last value is for the model with all features). Results include standard deviation across 2 replications.

there is no preceding group). The MAE for “Fre-
quencies” was obtained by training the model on
all the feature in this group in addition to the fea-
tures in the “Raw Textual Features” group, and so
forth. Finally, the score associated with “Complex-
ity Metrics” is the most comprehensive, including
all features in the table. The goal of such nested
calculation is to appreciate the role of each higher-
level group above and beyond the information pro-
vided by the lower-level group of features. The
four groups were ordered by the amount of effort
it requires to obtain them. We did not test every
combination of features.

Several conclusion can be drawn from these re-
sults. First, we found that low-level features per-
formed very well. Indeed when combining only
raw textual features and frequencies, we already
had an impressive performance of MAE = 3.78.
The linguistic features allow us to only slightly im-
prove performance with a small gain of ∆MAE =
0.04. Surprisingly enough, the complexity met-
rics barely added any useful information. When
looking at each complexity measure individually,
we found that only the measures related to the

stack size of the parser added information, whereas
entropy-based measures, if anything, degraded per-
formance in the test set compared to frequency and
length. This was unexpected because the litera-
ture (Demberg and Keller, 2009; Wu et al., 2010)
suggest that these metrics should play a little but
noticeable role in modeling oculometric features.
We suspect that even if these metrics are signifi-
cant in mixed effect models, they are not powerful
enough to increase the predictive performance of a
neural network model.

In addition to testing the contribution of the pre-
dictive features, we were curious if our way of
combining these features also played a role. Thus,
we compared our non-linear neural network to five
linear regressions (one for each variable in the chal-
lenge) both using Table 1 features6. The average
gain was quite large ∆MAE = 1.23, showing that
both the features we used as well as the way we
combined them played a role in the scores we ob-
tained in this challenge.

6Minus FORM, PREFIX and SUFFIX because the linear
model would struggle to deal with the many values that appear
in the test set but not in the train set.
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Appendix

Name nFix FFD GPT TRT fixProp
Raw Textual Features

LENGTH 4.30±0.00 0.71±0.00 2.55±0.00 1.69±0.00 11.75±0.00
EOS 4.28±0.00 0.71±0.00 2.38±0.00 1.69±0.00 11.71±0.00
SUFFIX 4.25±0.00 0.70±0.00 2.60±0.00 1.66±0.00 11.59±0.00
TEXT_ID 4.25±0.00 0.71±0.00 2.52±0.00 1.67±0.00 11.75±0.00
PREFIX 4.24±0.00 3.88 0.70±0.00 0.67 2.59±0.00 2.21 1.66±0.00 1.54 11.57±0.00 11.06
SENT_ID 4.16±0.00 0.70±0.00 2.55±0.00 1.64±0.00 11.75±0.00
WORD_ID 4.11±0.00 0.70±0.00 2.52±0.00 1.61±0.00 11.52±0.00
FORM 4.11±0.00 0.69±0.00 2.29±0.00 1.60±0.00 11.54±0.00

Frequencies
FREQUENCY 4.30±0.00 0.71±0.00 2.55±0.00 1.69±0.00 11.75±0.00
COOC_N 4.28±0.00 3.76 0.71±0.00 0.66 2.44±0.00 2.13 1.68±0.00 1.44 11.73±0.00 10.91
COOC_P 4.28±0.00 0.70±0.00 2.46±0.00 1.67±0.00 11.66±0.00

Linguistic Features
DEP_LEN 4.28±0.00 0.71±0.00 2.48±0.00 1.68±0.00 11.73±0.00
MORPHO 4.26±0.00 0.70±0.00 2.56±0.00 1.67±0.00 11.68±0.00
POS 4.23±0.00 3.69 0.70±0.00 0.65 2.56±0.00 2.12 1.65±0.00 1.43 11.59±0.00 10.79
DEPREL 4.21±0.00 0.70±0.00 2.56±0.00 1.66±0.00 11.57±0.00

Complexity Metrics
ENT_TOK 4.32±0.00 0.71±0.00 2.62±0.00 1.69±0.00 11.73±0.00
ENT_PARSER 4.31±0.00 0.71±0.00 2.66±0.00 1.69±0.00 11.78±0.00
ENT_MORPHO 4.31±0.00 0.71±0.00 2.62±0.00 1.69±0.00 11.77±0.00
ENT_MAX 4.30±0.00 0.71±0.00 2.66±0.00 1.69±0.00 11.78±0.00
ENT_MEAN 4.30±0.00 3.67 0.71±0.00 0.65 2.62±0.00 2.12 1.69±0.00 1.43 11.75±0.00 10.80
ENT_TAG 4.30±0.00 0.71±0.00 2.60±0.00 1.69±0.00 11.78±0.00
STACK_DIST 4.23±0.00 0.70±0.00 2.50±0.00 1.67±0.00 11.63±0.00
STACK_SIZE 4.20±0.00 0.70±0.00 2.48±0.00 1.65±0.00 11.59±0.00

Table 2: Detailed results for individual features and features groups, across 5 metrics.
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Abstract

Reading and comprehension are quintessen-
tially cognitive tasks. Eye movement acts as
a surrogate to understand which part of a sen-
tence is critical to the process of comprehen-
sion. The aim of the shared task is to pre-
dict five eye-tracking features for a given word
of the input sentence. We experimented with
several models based on LGBM (Light Gradi-
ent Boosting Machine) Regression, ANN (Ar-
tificial Neural Network) and CNN (Convolu-
tional Neural Network), using BERT embed-
dings and some combination of linguistic fea-
tures. Our submission using CNN achieved
an average MAE of 4.0639 and ranked 7th in
the shared task. The average MAE was further
lowered to 3.994 in post task evaluation.

1 Introduction

Eye tracking data gauged during the process of nat-
ural and comprehensive reading can be an outset
to understand which part of the sentence demands
more attention. The main objective of the present
experiment is to understand the factors responsi-
ble for determining how we perceive and process
languages.

The CMCL-2021 shared task (Hollenstein et al.,
2021) focuses on predicting the eye-tracking met-
rics for a word. The goal of the task is to train a
predictive model for five eye-tracking feature val-
ues namely, nFix (Number of fixations), FFD (First
fixation duration), TRT (Total reading time), GPT
(Go past time), and fixProp (fixation proportion)
for a given word of a sentence (Hollenstein et al.,
2018; Inhoff et al., 2005). Here, nFix is the total
number of fixations on the current word, FFD is
the duration of the first fixation on the prevailing
word, TRT is the sum of all fixation durations on
the current word including regressions, GPT is the
sum of all fixations prior to progressing to the right

∗* Joint First Author

of the current word, including regressions to pre-
vious words that originated from the current word
and fixProp is the proportion of the participants
who fixated on the current word. With respect to
eye-tracking data, regression refers to the backward
movement of the eye required to reprocess the in-
formation in the text (Eskenazi and Folk, 2017).

In this work we have experimented with two
broad categories of models: regessor based and
neural networks based. Among the regressor based
models, we tried with Catboost, XGboost, Light
Gradient Boosting Machine (LGBM) among others.
Among the Neural Network based models we have
used both ANN and CNN. LGBM gave the best
results among the regressor based models. CNN
produced lowest MAE between CNN and ANN. In
this paper we discuss the best models of each type
and their corresponding parameters in detail.

The paper is divided into the following sec-
tions: Section 2 describes some details of the
dataset used for the experiments. In Section 3
we discuss the data preparation approaches for
feature extraction. Model details are presented
in Section 4, and Section 5 presents analysis of
the results. Section 6 concludes the paper. The
code for the proposed system is available at https:
//github.com/shivaniiitd/Eye_tracking

2 Dataset Description

The present task uses the eye-tracking data of
the Zurich Cognitive Language Processing Cor-
pus (ZuCo 1.0 and ZuCo 2.0) (Hollenstein et al.,
2018, 2020). The dataset is divided into two subsets
Train, and Test. The data statistics are presented
in Table 1. The data was arranged according to
the sentence_id and word_id. The Train data set
contained the values of nFix, GPT, FFD, TRT and
fixProp for each word of the input sentences. We
used the first 100 sentences from the Train data for
validation purposes.
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Dataset No of Sentence No of Words
Train 800 15736
Test 191 3554

Table 1: Data statistics

3 Data Pre-processing and Feature
Selection

It is important to identify the features that provide
essential visual and cognitive cues about each word
which in turn govern the corresponding various
eye-tracking metrics for the word. In the present
work we have used BERT embeddings along with
linguistic features (Agarwal et al., 2020) to train
the predictive models.

Mean Absolute Error (MAE) was used for mea-
suring the performance of the proposed systems for
the shared task.

Before feature extraction, the following pre-
processing steps were performed:

• The <EOS> tag and extra white spaces were
stripped from the end of the words.

• Sentences were created by sequentially join-
ing the words having the same sentence_id.

• Additionally, for CNN and ANN models punc-
tuations were removed from the input word.

3.1 Feature Selection

Initially the essential token-level attributes were
extracted as follows:

1. Syllables: The number of syllables in a token
determines its pronunciation. The sentences
were tokenized using the spaCy (Honnibal
et al., 2020), and the syllables1 package was
used to calculate the number of syllables in
each token.

2. BERT Embeddings: The Bidirectional En-
coder Representations from Transformers
(BERT) (Devlin et al., 2019) embeddings are
contextualized word representations. We have
considered the average of the embeddings
from the last four hidden layers. The py-
torch_pretrained _bert2 uncased embeddings
have been used to extract this feature for each
token.

1https://github.com/prosegrinder/python-syllables
2https://github.com/huggingface/transformers

The above-mentioned features are extracted
token-wise but in the training set some input words
(which includes both singleton tokens and hyphen-
ated phrases) contained more than one token, e.g.
‘seventh-grade’

The final attributes that were used for the LGBM
models according to each input word are as follows:

• BERT Embeddings: BERT embeddings for
the input word is calculated by averaging the
embeddings over all the tokens that make up
the word, extracted using the BertTokenizer.

• Syllables: For extracting the syllables for each
input word , we sum the number of syllables
over all the tokens in that word.

• Word_id: This feature was supplied in the
dataset. It indicates the position of each word
or phrase in the sentence.

• Word_length: The total number of characters
present in each input word or phrase.

Some additional features, such as POS tag,
detailed tag, NER tag, dependency label and a
Boolean value to indicate whether a token is present
in the list of standard English stopwords or not,
were also considered. However, these features
have not been incorporated in the final models as
these features failed to improve the models’ per-
formances. To get the values of these features for
the input words, the properties of the last token in
the input word are used, unless it is a punctuation.
In that case the properties of the token before the
punctuation are used. To account for the above,
two additional features were considered:

(a) a binary feature (HasHyphen) to indicate
whether the phrase contains a hyphen or not;

(b) the number of punctuation (NumPunct) in the
phrase;

For illustration, for the input phrase ‘Brandenburg-
Kulmbach,’ the feature HasHyphen is 1 and
NumPunct is 2, and for the other features men-
tioned above, the token ‘Kulmbach’ was used.

4 Proposed Models

In this section we present the details of the three
predictive machine learning regression models
namely, LGBM, ANN and CNN.
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Features Avg_MAE nFix FFD GPT TRT fixProp
Syllables+ 4.01 MAE 4.02 0.69 2.52 1.58 11.24
Word_id+ λ1 6.6 2.6 4.6 9.6 3.6

Word_length+ λ2 12.6 12.6 9.2 0.6 3.6
BERT NL 75 62 62 80 31

Word_id + 4.01 MAE 4.01 0.68 2.52 1.58 11.25
Word_length+ λ1 4.6 1.0 4.6 9.6 10.6

BERT λ2 8.6 11.6 9.2 0.6 18.6
NL 75 62 62 75 31

Syllables+ 4.12 MAE 4.15 0.70 2.55 1.63 11.58
Word_length+ λ1 4.6 5.6 3.6 3.6 9.6

BERT λ2 8.6 15.6 6.6 0.6 9.6
NL 80 93 31 62 62

Syllables+ 4.27 MAE 4.31 0.71 2.59 1.68 12.06
Word_id+ λ1 4.6 2.6 1.6 4.6 7.6

BERT λ2 8.6 12.6 3.6 2.6 7.6
NL 93 62 31 62 31

Table 2: LGBM Regressor Models

4.1 LGBM Model
LGBM is a Gradient Boosting Decision Tree
(GBDT) algorithm which uses two novel tech-
niques: Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB)
to deal with a large number of data instances and
large number of features respectively (Ke et al.,
2017).

GOSS keeps all the data instances in the GBDT
with large gradients and performs random sampling
on the instances with small gradients. The sparsity
of feature space in high dimensional data provides
a possibility to design a nearly lossless approach
to reduce the number of features. Many features
in a sparse feature are mutually exclusive. These
exclusive features are bundled into a single feature
(called an exclusive feature bundle).

Five LGBM Regressor models from the Light-
GBM python package3 were trained and tuned on
varied feature spaces. These models were trained
with BERT Embeddings which is present in all
models as a feature, along with different combi-
nations of linguistic features, namely, Word_id,
Word_length, and Syllables.

In the context of the given problem, the follow-
ing hyperparameters were tuned,

• lambda_l1 (λ1): It is the L1 regularization
parameter.

• lambda_l2 (λ2): It is the L2 regularization
parameter.

• num_leaves (NL): This is the main parameter
to control the complexity of the tree model,
and governs the leaf-wise growth of the tree.

3https://github.com/microsoft/LightGBM

The hyperparameters, namely λ1, λ2, and NL,
the overall model MAE (Avg_MAE) calculated
as average of the MAEs corresponding to each
eye-tracking metric, and the individual MAE corre-
sponding to each eye tracking metric evaluated on
the test sets are described in Table 2.

4.2 Artificial Neural Network

We have applied a seven layer deep ANN for the
shared task. First hidden layer has 1024 neurons,
followed by 4 hidden layers of sizes 512, 256, 64
and 16 respectively. The output layer is of size 1.
For each of the five eye-tracking features, we have
trained separate Neural Networks. The ANN is
implemented using Keras with tensorflow backend
(Chollet et al., 2015). Adam optimizer (Kingma
and Ba, 2017) is used to minimize the loss function
(MAE). Rectified linear unit (ReLU) activation is
applied on the dense layers. Hyperparameter tuning
detail is presented in Section 5. The learning rate
is set to decay at a rate of e−0.1 after 15 epochs.
Dropout layers with dropout rate of 0.2 was placed
after the first three hidden layers.

4.3 Convolutional Neural Network

The proposed CNN model has been implemented
with the following configuration. In order to cap-
ture the contextual information from the sentence,
we have used a context window of size K. We split
the whole sentence around that word with a sliding
window of length K. We named two matrices as
left and right context matrix, formed with preced-
ing and succeeding K-1 words, respectively. If the
number of words available for the sliding window
is less than K then K-r rows are padded with zero,
at the start for the left context matrix, and at the end

116



Model Features Avg_MAE nFix FFD TRT GPT fixProp
CNN Word_id+ 3.99 MAE 4.02 0.70 2.24 1.58 11.43

Word_length+ BS 32 32 32 32 32
BERT DR 0.44 0.3 0.3 0.3 0.3

LR 1e-4 1e-4 1e-4 1e-4 1e-4
CNN Word_id+ 4.00 MAE 4.03 0.70 2.26 1.59 11.41

Word_length+ BS 16 16 32 16 32
BERT DR 0.4 0.1 0.4 0.3 0.0

LR 1e-4 1e-4 1e-4 1e-4 1e-4
ANN Word_id+ 4.08 MAE 4.06 0.71 2.37 1.58 11.68

Word_length+ BS 64 64 32 16 64
BERT DR 0.2 0.0 0.2 0.0 0.0

LR 1e-5 1e-5 1e-3 1e-4 1e-5
ANN Word_id+ 4.08 MAE 4.06 0.72 2.40 1.59 11.65

Word_length+ BS 64 32 32 64 64
BERT DR 0.0 0.3 0.3 0.2 0.0

LR 1e-5 1e-3 1e-3 1e-5 1e-5

Table 3: CNN model’s performance

for the right context matrix. We have conducted
experiments for values of K in the set {1, 2, 5, 10,
11, 12}. The best results were obtained for K=10.

The left and right context matrices are fed into
two different branches of convolutional layers. The
left branch has two convolutions with filter sizes
3× 3 with ReLU, and 5× 5 without ReLU in two
separate branches. For further processing outputs
from both the branches are concatenated. In the
right branch, two convolution layer with 3×3 filter
with ReLU are stacked.

Batch Normalization and ReLU activation are
applied on the output of convolutional layers, fol-
lowed by a pooling layer. The outputs of both the
branches are fed into two separate convolutional
layers with filter size 64 and kernel size 3 × 3,
followed by two max pooling / average pooling
layers with kernel size 2× 2. Average pooling has
generated the best results. The outputs of the two
branches are flattened to obtain two tensors. The
resulting tensors are averaged, and this acts as the
input to seven fully connected layers with sizes
2048, 1024, 512, 64, 32, 16 and 1, respectively.

The padding used in the convolutional layer is
‘same’ which keeps the input and output dimension
equal. For each of the five eye-tracking features,
we have trained separate Neural Networks. The
model was trained with loss function MAE, batch
size of 32 and Adam optimizer. ReLU activation
function is used for the fully connected layers ex-
cept the output layer. The learning rate is set to
decay at a rate of e−0.1 after 15 epochs. The net-
work has a dropout rate of 0.2 on the CNN layers
and between the fully connected layers of sizes
2048, 1024, 512, and 64. Hyperparameter tuning
details are described below.

Parameters Range
NF [32, 64]
BS [16, 32]
LR [1e-3, 1e-4]
DR [0, 0.1, 0.2, 0.3, 0.4, 0.5 ]

Table 4: CNN Hyperparameter details

Parameters Range
BS [16, 32, 64]
LR [1e-3, 1e-4, 1e-5]
DR [0, 0.1, 0.2, 0.3, 0.4]

Table 5: ANN Hyperparameter details

4.4 Hyperparameter Tuning
Hyperparameter tuning for CNN was performed
on Learning Rate (LR), Batch Size (BS), Dropout
Rate (DR) and Number of Filters (NF) while ANN
hyperparamter tunning was performed on learning
rate, batch size, dropout rate. Hyperopt4 library
was used for grid search. For CNN and ANN the
range of values for grid search parameters are pre-
sented in Table 4 and Table 5, respectively. DR
in ANN was limited to 0.4 since higher value will
leave very few connections. The maximum number
of trials was set to 20. Pooling method variation
was controlled manually. CNN models with Aver-
age pooling and NF 64 produced the lowest MAE.
Additional experiments were conducted on CNN
with feature set word_id, word_length and BERT
was analysed for fine dropout rate of 0.42, 0.44
and 0.46 and higher batch size of 256. Learning
rate was reduced by 0.2 using Keras callback API
ReduceLROnPlateau. EarlyStopping was used to
stop the training process if the validation loss stops
decreasing.

4http://hyperopt.github.io/hyperopt/
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Model Features Avg_MAE nFix FFD GPT TRT fixProp
CNN word_id + Length+ BERT 3.99 4.02 0.7 2.24 1.58 11.43
CNN Syllables + Word_id+Length+BERT 4.00 4.03 0.70 2.26 1.59 11.41

LGBM Word_id + Length+ BERT 4.01 4.01 0.68 2.52 1.58 11.25
LGBM Syllables + Word_id + Length+ BERT 4.01 4.02 0.69 2.52 1.58 11.24

Table 6: Analysis of the best performing models

5 Results and Analysis

The comparison among top four performing mod-
els, ranked according to MAE, is presented in Ta-
ble 6. CNN models with the feature space Word_id
+ Length + BERT , as described in Section 3.1 per-
formed the best with MAE 3.99.

It has been observed that Word_id, Length and
the BERT embeddings are all present in the fea-
ture space of the best performing models, hence
these features play an important role in the deter-
mination of the eye-tracking metrics. Although,
addition of Syllables to the feature space of the
LGBM Model did not decrease the MAE corre-
sponding to nFix and FFD. In case of CNN, inclu-
sion of Syllables decreased the MAE correspond-
ing to fixProp. The best result with feature set
POS+word_len+word_id+BERT was generated by
CNN with an MAE of 4.07. Removal of POS tags
as a feature lead to improvement in FFD and TRT
however, the overall performance decreased.

The LGBM Models give the best results cor-
responding to nFix, FFD and fixProp among the
top 4 best performing models, While CNN based
model performed the best on Avg_MAE and GPT.
As we observe in Table 2, in most of the cases, the
removal of Word_id and Length led to a decline
in the systems’ performance. It is also observed
that the complex structure of Neural Networks fail
to model some of the features in comparison with
LGBM model. These experiments also indicate
that the feature space for individual eye-tracking
features may be curated separately to achieve a
better accuracy.

6 Conclusion

The aim of the present work is to develop a pre-
dictive model for five eye-tracking features. Ex-
periments were conducted using LGBM, ANN and
CNN models trained on a feature space consisting
of pre-trained BERT embeddings and linguistic fea-
tures namely, number of syllables, POS tag, Word
length and Word_id. The discussed CNN Mod-
els achieved the best performance with respect to
the test data. Experiments for studying the impor-

tance of individual features indicate that POS tag
has the lowest impact on the overall MAE, with
respect to the CNN Models and that the addition
of Syllables to the feature space in LGBM models
does not improve the overall performance of the
system. It is further observed that individual lin-
guistic features lead to a varied effect on different
eye-tracking metrics. Separate tuning of hyperpa-
rameters and feature space corresponding to the
LGBM and Neural Network based model, for each
eye-tracking metric, can improve the overall sys-
tem performance.

Even though CNN architecture is more complex,
but with the same set of features the LGBM regres-
sor gave almost same results. Currently, we did not
perform a rigorous hyperparameter tuning which
may be taken up in future.
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Abstract

This paper describes the submission of the
team KonTra to the CMCL 2021 Shared Task
on eye-tracking prediction. Our system com-
bines the embeddings extracted from a fine-
tuned BERT model with surface, linguistic and
behavioral features, resulting in an average
mean absolute error of 4.22 across all 5 eye-
tracking measures. We show that word length
and features representing the expectedness of a
word are consistently the strongest predictors
across all 5 eye-tracking measures.

1 Introduction

The corpora ZuCo 1.0 and ZuCo 2.0 by Hollen-
stein et al. (2018, 2019) contain eye-tracking data
collected in a series of reading tasks on English
materials. For each word of the sentences, five eye-
tracking measures are recorded: 1) the number of
fixations (nFix), 2) the first fixation duration (FFD),
3) the go-past time (GPT), 4) the total reading time
(TRT), and 5) the fixation proportion (fixProp). Pro-
viding a subset of the two corpora, the CMCL 2021
Shared Task (Hollenstein et al., 2021) requires the
prediction of these eye-tracking measures based on
any relevant feature.

To tackle the task, we conduct a series of experi-
ments using various combinations of BERT embed-
dings (Devlin et al., 2018) and a rich set of surface,
linguistic and behavioral features (SLB features).
Our experimental setting enables a comparison of
the potential of BERT and the SLB features, and al-
lows for the explainability of the system. The best
performance is achieved by the models combin-
ing word embeddings extracted from a fine-tuned
BERT model with a subset of the SLB features that
are the most predictive for each eye-tracking mea-
sure. Overall, our model was ranked 8th out of 13
models submitted to the shared task.

Our main contributions are the following: 1)
We show that training solely on SLB features pro-
vides better results than training solely on word

embeddings (both pre-trained and fine-tuned ones).
2) Among the SLB features, we show that word
length and linguistic features representing word ex-
pectedness consistently show the highest weight in
predicting all of the 5 measures.

2 Describing Eye-Tracking Measures

To explore the impact of linguistic and cognitive
information on eye-movements in reading tasks,
we extract a set of surface, linguistic, behavioral
and BERT features, as listed in Table 1.

Surface Features Given the common finding
that surface characteristics, particularly the length
of a word, influence fixation duration (Juhasz and
Rayner, 2003; New et al., 2006), we compute var-
ious surface features at word and sentence level
(e.g., word and sentence length).

Linguistic Features The linguistic characteris-
tics of the words co-occurring in a sentence have
an effect on eye movements (Clifton et al., 2007).
Thus, we experiment with features of syntactic
and semantic nature. The syntactic features are
extracted using the Stanza NLP kit (Qi et al., 2020).
For each word, we extract its part-of-speech (POS),
its word type (content vs. function word), its de-
pendency relation and its named entity type. Ac-
cording to Godfroid et al. (2018) and Williams
and Morris (2004), word familiarity (both local
and global) has an effect on the reader’s atten-
tion, i.e., readers may pay less attention on words
that already occurred in previous context. In this
study, we treat familiarity as word expectedness
and model it using three types of semantic sim-
ilarity: a) similarity of the current word wm to
the whole sentence (similaritywm,s), b) similarity
of the current word to its previous word (similar-
itywm,wm−1), and c) similarity of the current word
to all of its previous words within the current sen-
tence (similaritywm,w1...m−1). To compute these
similarity measures, we use the BERT (base) (De-
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Feature Category Feature Name

Surface Features
word length, sentence length in tokens, sentence length in characters,
word length-sentence length ratio

Linguistic Features
POS, word type, named entity type, dependency relation, surprisal score,
frequency score, similaritywm,s, similaritywm,wm−1 , similaritywm,w1...m−1

Behavioral Features
age of acquisition, prevalence score, valence score, arousal score, dominance score,
concretenesshuman, concretenessauto

BERT Features pre-trained BERT embedding, fine-tuned BERT embedding

Table 1: The complete set of surface, linguistic and behavioral (SLB) features and the BERT features.

vlin et al., 2018) pre-trained model1 and map each
word to its pre-trained embedding of layer 11. We
chose this layer because it mostly captures seman-
tic properties, while the last layer has been found
to be very close to the actual classification task and
thus less suitable for our purpose (Jawahar et al.,
2019; Lin et al., 2019). Based on these extracted
embeddings, we calculate the cosine similarities.
To measure the similarity of the current word to
the whole sentence (similaritywm,s), we take the
CLS token to represent the whole sentence; we also
experiment with the average token embeddings as
the sentence embedding, but we find that the CLS
token performs better. For measuring the similarity
of the current word to all of its previous words (sim-
ilaritywm,w1...m−1), we average the embeddings of
the previous words and find the cosine similarity be-
tween this average embedding and the embedding
of the current word.

Furthermore, semantic surprisal, i.e., the nega-
tive log-transformed conditional probability of a
word given its preceding context, provides a good
measure of predictability of words in context and
efficiently predicts reading times (Smith and Levy,
2013), N400 amplitude (Zhang et al., 2020) and
pupil dilation (Frank and Thompson, 2012). We
compute surprisal using a bigram language model
trained on the lemmatized version of the first slice
(roughly 31-million tokens) of the ENCOW14-AX
corpus (Schäfer and Bildhauer, 2012). As an ad-
ditional measure of word expectedness, we also
include frequency scores based on the US subtitle
corpus (SUBTLEX-US, Brysbaert and New, 2009).

Behavioral Features As discussed in Juhasz and
Rayner (2003) and Clifton et al. (2007), behavioral
measures highly affect eye-movements in reading

1https://github.com/google-research/
bert

tasks. For each word in the sentence, we extract be-
havioral features from large collections of human
generated values available online: age of acqui-
sition (Kuperman et al., 2012), prevalence (Brys-
baert et al., 2019), valence, arousal, dominance
(Warriner et al., 2013) and concreteness. For con-
creteness, we experiment both with human gener-
ated scores (concretenesshuman, Brysbaert et al.,
2014) and automatically generated ones (concrete-
nessauto, Köper and Schulte im Walde, 2017). All
behavioral measures have been centered (mean
equal to zero) and the missing values have been
set to the corresponding mean value.

BERT Features Given the success of current lan-
guage models for various NLP tasks, we investigate
their expressivity for human-centered tasks such as
eye-tracking: each word is mapped to two types
of contextualized embeddings. First, each word is
mapped to its BERT (Devlin et al., 2018) embed-
ding extracted from the pre-trained base model. To
extract the second type of contextualized embed-
ding, we fine-tune BERT on each of the five eye-
tracking measures. Specifically, the BERT base
model2 is fine-tuned separately 5 times, one for
each of the eye-tracking measures to be predicted.
Based on these fine-tuned models, we extract the
embedding of each word as a fixed feature vector
to be used for further experimentation. This means
that in this step each word is in fact mapped to five
distinct embeddings, one for each fine-tuned model.
In the later experimentation, we use the respective
embedding based on which measure is currently
predicted (e.g., the embedding extracted from the
model fine-tuned for nFix is used to predict nFix).

2We use the regression implementation from: https:
//github.com/fancyerii/bert
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Measure Feature Name

nFix
word length (0.81), frequency score (0.05), word length-sentence length ratio (0.01), similaritywm,wm−1 (0.01),
surprisal score (0.01), similaritywm,w1...m−1 (0.01)

FFD
word length (0.80), frequency score (0.06), similaritywm,wm−1 (0.02), word length-sentence length ratio (0.02),
similaritywm,w1...m−1 (0.02), surprisal score (0.01)

GPT
word length (0.40), surprisal score (0.27), word length-sentence length ratio (0.06), similaritywm,s (0.04),
similaritywm,wm−1 (0.02), frequency score (0.02), stop word (0.02), similaritywm,w1...m−1 (0.02), numeral token (0.02),
age of acquisition (0.01), dominance (0.01)

TRT
word length (0.70), frequency score (0.11), word length-sentence length ratio (0.03), numeral token (0.01),
similaritywm,wm−1 (0.01), similaritywm,s (0.01), sentence length in characters (0.01)

fixProp word length (0.84), similaritywm,wm−1 (0.04), frequency score (0.03), similaritywm,w1...m−1 (0.02)

Table 2: SLB features with importance ≥ 0.01. Features in each row are sorted by their importance in descending
order. Features that are strong predictors in all 5 measures are marked in bold.

3 Predicting Eye-Tracking Measures

We conduct three experiments using different fea-
ture combinations, and experiment with three
model architectures. The models’ parameters are
experimentally defined. First, we train a Linear Re-
gression model (LR). Second, we train a Decision
Tree Regressor (DT) with the mse (Mean Squared
Error) criterion and a maximum depth of 7. Last,
we train a Random Forest Regressor (RF) with the
mse criterion, 15 estimators and a maximum depth
of 7. Before training the models, all categorical
feature values are one-hot-encoded and all numeric
values are normalized within the range [0, 1].

3.1 Experiment 1: Using Only SLB Features
In Experiment 1, we train the aforementioned
model architectures on the full set of SLB features.
Among the three models, the Random Forest Re-
gressor achieves the best overall performance, with
an average MAE across all 5 eye-tracking measures
of MAERF = 4.059 , MAEDT = 4.187, MAELR =
4.322. To shed light on the most predictive features
for each of the eye-tracking measures, we perform
feature selection based on the features’ weight, i.e.,
the impurity-based feature importance (Gini impor-
tance) computed as the normalized total reduction
of the criterion brought by that feature – the higher,
the more important the feature. We select features
with importance higher than 0.01, resulting in a
reduced SLB feature set as shown in Table 2. This
selected set is further used for Experiment 3 (see
Section 3.3).

3.2 Experiment 2: Using Only BERT
Our second experiment aims at investigating the
expressivity of the contextualized BERT embed-
dings. We experiment with the two variants of

BERT embeddings (see Section 2). In the first
variant, the three models use the pre-trained BERT
embeddings, while in the second variant, the mod-
els use the fine-tuned BERT embeddings. The latter
means that for each of the 5 eye-tracking measures,
the extracted embeddings of the corresponding fine-
tuned model are used and 3 models are trained
for each measure, with a total of 15 models. We
also experiment with the predictions directly result-
ing from the fine-tuning tasks, but we observe that
these predictions show similar performance. This
finding is in line with what is reported in Devlin
et al. (2018).

3.3 Experiment 3: Enhancing BERT with
SLB Features

Extracting BERT embeddings as fixed-length fea-
tures instead of using the predictions directly out
of the fine-tuned model allows us to extend the
BERT vectors with further features. Thus, in the
last experiment, we train the 3 regression models
on an extended vector, comprising the extracted
768-dimensional BERT embedding and additional
dimensions for the reduced SLB feature set of Ex-
periment 1 (see Section 3.1). Again, two variants
are tested: one using the pre-trained embeddings
and the other one using the fine-tuned embeddings
of the corresponding model.

4 Results and Discussion

Table 3 reports the results from all experimental
settings on the development set and test set (80/20
split). Due to space limits, we only report the re-
sults of the best model in each configuration. Over-
all, combining the embeddings from the fine-tuned
version of BERT with the surface, linguistic and
behavioral features gives the best performance on
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nFix FFD GPT TRT fixProp

DEVELOPMENT SET

SLB 4.126 (RF) 0.675 (RF) 2.682 (RF) 1.615 (RF) 11.198 (RF)
Pre-trained BERT 4.925 (LR) 0.769 (LR) 2.967 (LR) 1.888 (LR) 13.530 (LR)
Fine-tuned BERT 4.694 (LR) 0.753 (LR) 2.811 (LR) 1.805 (LR) 13.140 (LR)
Pre-trained BERT + SLB 4.086 (LR) 0.676 (RF) 2.625 (RF) 1.597 (RF) 11.150 (RF)
Fine-tuned BERT + SLB 3.982 (LR) 0.676 (RF) 2.572 (RF) 1.555 (LR) 11.147 (RF)

TEST SET (PRE-EVALUATION)

Fine-tuned BERT + SLB 4.263 (LR) 0.698 (RF) 2.756 (RF) 1.682 (LR) 11.683 (RF)

TEST SET (POST-EVALUATION)

Fine-tuned BERT + SLB 4.233 (LR) 0.700 (RF) 2.751 (LR) 1.673 (LR) 11.760(RF)

Table 3: Mean absolute errors on the development and the test set. The pre-evaluation test set results are the ones
submitted to the competition. We obtained the post-evaluation results after further fine-tuning.

all 5 eye-tracking measures. When we compare the
predictive power of the models including only SLB
features against the models trained only on BERT,
we see that the embeddings are less informative
than the carefully selected set of SLB features.

A closer investigation of the selected SLB fea-
tures in Table 2 provides interesting insights about
the nature of the features and the task.

Surface Features Among all SLB features, word
length is consistently the predictor with the highest
weight across all 5 measures. Furthermore, word
length-sentence length ratio is among the most
important contributors in 4 of the 5 measures. This
confirms the observation in Hollenstein et al. (2018,
p. 10) that the probability of a word being skipped
reduces as word length increases.

Linguistic Features Two features for word ex-
pectedness, i.e., frequency score and similar-
itywm,wm−1 , also show a high predictive power for
all 5 measures. This confirms previous findings
by Godfroid et al. (2018) and Williams and Mor-
ris (2004). Likewise, similaritywm,w1...m−1 ranks
among the most important features for 4 of the 5
measures, and surprisal score for 3 of the 5 mea-
sures. Most importantly, surprisal score shows a
much higher importance in predicting GPT, which
indicates that encountering an unexpected word
may cause a regressive reading to re-inspect pre-
vious words and thus increases the go-past time.
On the other hand, the syntactic properties of a
word (e.g., POS, dependency relation and named

entity type) do not show any strong effect in our
results. The only exception is that numeral tokens
are among the most important features in predict-
ing GPT and TRT. After a closer look into the data,
we found that a majority of the numeral tokens are
information about date (e.g. November 28; 1826-
1905). The effect of such numeral tokens could
probably be explained by the nature of the data,
where a majority of the sentences are biographical
sentences from Wikipedia (Hollenstein et al., 2018,
2019). In such data, this numeral information is
highly relevant for the context.

Behavioral Features Dominance and age of ac-
quisition also play a significant role in predicting
GPT: as indicated in the literature (Juhasz and
Rayner, 2003), such behavioral measures have a
strong impact on the processing time of words in
context.

5 Conclusion

We presented a system of eye-tracking feature pre-
diction which combines BERT with a rich set of
surface, linguistic and behavioral (SLB) features.
Overall, our three studies indicate that including
not only semantic properties that can be directly
extracted from text, such as embeddings and sur-
prisal score, but also measures reflecting behavioral
(e.g., dominance and age of acquisition) and sur-
face properties (word and sentence length) has a
positive impact on the performance of our models
in predicting eye-tracking data.
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Abstract

The CogNLP-Sheffield submissions to the
CMCL 2021 Shared Task examine the value
of a variety of cognitively and linguistically
inspired features for predicting eye tracking
patterns, as both standalone model inputs and
as supplements to contextual word embed-
dings (XLNet). Surprisingly, the smaller pre-
trained model (XLNet-base) outperforms the
larger (XLNet-large), and despite evidence
that multi-word expressions (MWEs) provide
cognitive processing advantages, MWE fea-
tures provide little benefit to either model.

1 Introduction and Motivation

Many researchers now agree that eye movements
during reading are not random (Rayner, 1998); as a
result, eye-tracking has been used to study a variety
of linguistic phenomena, such as language acqui-
sition (Blom and Unsworth, 2010) and language
comprehension (Tanenhaus, 2007). Readers do not
study every word in a sentence exactly once, so fol-
lowing patterns of fixations (pauses with the eyes
focused on a word for processing) and regressions
(returning to a previous word) provides a relatively
non-intrusive method for capturing subconscious
elements of subjects’ cognitive processes.

Recently, cognitive signals like eye-tracking data
have been put to use in a variety of NLP tasks,
such as POS-tagging (Barrett et al., 2016), de-
tecting multi-word expressions (Rohanian et al.,
2017) and regularising attention mechanisms (Bar-
rett et al., 2018): the majority of research utilis-
ing eye-tracking data has focused on its revealing
linguistic qualities of the reading material and/or
the cognitive processes involved in reading. The
CMCL 2021 Shared Task of Predicting Human
Reading Behaviour (Hollenstein et al., 2021) asks a

*Equal Contribution

slightly different question: given the reading mate-
rial, is it possible to predict eye-tracking behaviour?

Our ability to quantitatively describe linguistic
phenomena has greatly increased since the first
feature-based models of reading behaviour (i.e.
Carpenter and Just (1983)). Informed by these
traditional models, our first model tests ‘simple’
features that are informed by up-to-date expert lin-
guistic knowledge. In particular, we investigate
information about multi-word expressions (MWEs)
as eye-tracking information has been used to de-
tect MWEs in context (Rohanian et al., 2017;
Yaneva et al., 2017), and empirically MWEs appear
have processing advantages over non-formulaic lan-
guage (Siyanova-Chanturia et al., 2017).

Our second model is motivated by evidence that
Pre-trained Language Models (PLMs) outperform
feature based models in ways that do not corre-
late with identifiable cognitive processes (Sood
et al., 2020). Since many PLMs evolved from the
study of human cognitive processes (Vaswani et al.,
2017) but now perform in ways that do not cor-
relate with human cognition, we wished to inves-
tigate how merging cognitively inspired features
with PLMs may impact predictive behaviour. We
felt this was a particularly pertinent question given
that PLMs have been shown to contain information
about crucial features for predicting eye tracking
patterns such as parts of speech (Chrupała and Al-
ishahi, 2019; Tenney et al., 2019) and sentence
length (Jawahar et al., 2019).

We therefore had the goals of providing a com-
petitive Shared Task entry, and investigating the
following hypotheses: A) Does linguistic/cognitive
information that can be predicted by eye-tracking
features prove useful for predicting eye-tracking
features? B) Can adding cognitively inspired fea-
tures to a model based on PLMs improve perfor-
mance in predicting eye tracking features?
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2 Task Description

The CMCL 2021 Shared Task of Predicting Read-
ing Behaviour formulates predicting gaze features
from the linguistic information in their associated
sentences as a regression task. The data for the task
consists of 991 sentences (800 training, 191 test)
and their associated token-level gaze features from
the Zurich Cognitive Language Processing Corpora
(Hollenstein et al., 2018, 2020). For each word, the
following measures were averaged over the reading
behaviour of the participants: FFD (first fixation du-
ration, the length of the first fixation on the given
word); TRT (total reading time, the sum of the
lengths of all fixations on the given word); GPT
(go past time, the time taken from the first fixation
on the given word for the eyes to move to its right
in the sentence); nFix (number of fixations, the total
quantity of fixations on a word, regardless of fixa-
tion lengths) and fixProp (fixation proportion, the
proportion of participants that fixated the word at
least once). Solutions were evaluated using Mean
Absolute Error (MAE). For more details about the
Shared Task, see Hollenstein et al. (2021).

3 Related Work

Transformer architectures Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019) is a Language Representation
model constructed from stacked Neural Network at-
tention layers and ‘massively’ pre-trained on large
Natural Language Corpora. In contrast with tradi-
tional language models, BERT is pre-trained in two
settings: a ‘cloze’ task where a randomly masked
word is to be predicted, and next sentence predic-
tion. BERT or derivative models have been used
to achieve state-of-the-art baselines on many NLP
tasks (Devlin et al., 2019; Yang et al., 2019). Anal-
ysis studies have shown that BERT learns complex,
task-appropriate, multi-stage pipelines for reason-
ing over natural language, although there is evi-
dence of model bias. XLNet (Yang et al., 2019)
is an autoregressive formulation of BERT which
trains on all possible permutations of contextual
words, and removes the assumption that predicted
tokens are independent of each other.
Similar studies To our knowledge, studies that
attempt to predict cognitive signals using language
models are fairly few and far between. Djokic et al.
(2020) successfully used non-Transformer word
embeddings to decode brain activity recorded dur-
ing literal and metaphorical sentence disambigua-

tion. Since RNNs may be considered more ‘cog-
nitively plausible’ than Transformer based mod-
els, Merkx and Frank (2020) compared how well
these two types of language models predict differ-
ent measures of human reading behaviour, finding
that the Transformer models more accurately pre-
dicted self-paced reading times and EEG signals,
but the RNNs were superior for predicting eye-
tracking measures.

In a slightly different task, Sood et al. (2020)
compared LSTM, CNN, and XLNet attention
weightings with human eye-tracking data on the
MovieQA task (Tapaswi et al., 2016), finding sig-
nificant evidence that LSTMs display similar pat-
terns to humans when performing well. XLNet
used a more accurate strategy for the task but was
less similar to human reading.

Though these studies may indicate that Trans-
former models are not the most suited to eye-
tracking prediction, they are still considered State
of the Art in creating broad semantic representa-
tions and general linguistic competence (Devlin
et al., 2019). As such, we hoped they would allow
us to investigate Carpenter and Just’s speculation
that the dominance of word length and frequency
for predicting eye-tracking behaviour may reduce
“as the metrics improve for describing higher-level
factors” like semantic meaning (1983, p. 290).

4 Experimental Design1

We pursued both feature engineering and deep
learning approaches to the task; though both meth-
ods performed well independently, there was little
improvement in predictive capability when com-
bining their features (see Table 1). As such, we
developed and submitted two models: Model 1
(Feature Rich) and Model 2 (XLNet). Additional
details about the feature combinations used in our
final models can be found in Appendices A and C.

4.1 Linguistic Features

Each word in the training vocabulary was encoded
as a one-hot vector. Since function words are more
likely to be fixated than open class words (Carpen-
ter and Just, 1983), we included POS information
generated by Spacy (Honnibal et al., 2020) (hon-
ouring the tokenisation in the training data). We
included a a binary indicator for whether a word

1For reproducibility purposes, our program code (includ-
ing details of hyperparameters) is available here: CogNLP-
Sheffield-CMCL-2021
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was the first or last in its sentence to incorporate
the knowledge that first and last fixations on a line
are 5-7 letter spaces from the two respective ends
(Rayner, 1998). We generated raw frequencies
(proportion per million words) and Zipf frequen-
cies (Van Heuven et al., 2014).

Finally, concreteness norms (a measure of how
‘abstract’ a given word is) were included as features
(mean, standard deviation, and the % of partici-
pants familiar enough with the word to accurately
judge its concreteness; Brysbaert et al. (2014)). We
specifically tested concreteness due to the unusu-
ally large coverage of the norms.

4.2 Reading Specific Features
Word length has been empirically demonstrated as
a very good predictor of gaze features in many stud-
ies (i.e. Rayner and McConkie (1976); Carpenter
and Just (1983). Duration of fixation is observed
to increase for words that exceed the mean saccade
length (7-9 letters), and probability of fixation is re-
duced for words shorter than half the mean saccade
length (Rayner and McConkie, 1976). Therefore,
as features we included both the raw word lengths,
and categorical variables representing word length
as a proportion of a mean saccade length.

Since readers may store information about ad-
jacent words (Rayner, 1975, 1998; Barrett, 2018),
we also experimented with supplying features from
previous and future words to each target word.

4.3 Type Summary Statistics from GECO
Following Barrett et al. (2016), we used the mono-
lingual data from the GECO corpus (Cop et al.,
2017) to generate type-level summary statistics for
each word. Specifically, we averaged the gaze fea-
tures across the 12 participants who completed the
reading task, and normalised these features to re-
flect the normalisation of the Shared Trask train-
ing data. We then averaged these values again at
the type (word) level. For words present in the
task training data but not the GECO data, we es-
timated the values using means for words in the
GECO data of a similar frequency (according to
the wordfreq).

4.4 Multi-word Expression Features
We generated an MWE lexicon and summary met-
rics using the Wikitext-103 corpus (Merity et al.,
2016) and mwetoolkit (Ramisch, 2012). We
chose Wikitext-103 since it provided a large vari-
ety of possible MWEs in a similar context to the

ZuCo reading material (Hollenstein et al., 2020).
We produced two indicator features for the pres-
ence of MWEs: a binary indicator, and a categor-
ical variable summarising the syntactic pattern of
the MWE, motivated by Yaneva et al.’s evidence
that MWEs of different syntactic patterns display
different eye-tracking characteristics (2017).

Following the method of Cordeiro et al. (2019),
we joined component words of MWEs in Wikitext-
103 using underscores (i.e. climate change be-
came climate_change) and then generated Skip-
gram word embeddings (Mikolov et al., 2013)
for all single words and MWEs identified in
Wikitext-103. Using the feat_comp function in
mwetoolkit (Ramisch, 2012), these MWE em-
beddings were used to compute compositionality
scores and weights (Cordeiro et al., 2019). 2

MWEs identified in the training data were as-
signed MWE embeddings and compositionality
information as features, and non-MWEs were as-
signed single word embeddings and zero values for
compositionality.

Figure 1: XLNET Feature Prediction Model

4.5 XLNet

In order to obtain Massively Pre-trained Language
Model features we used XLNet. We finetuned a
model that was pre-trained on BooksCorpus (Zhu
et al., 2015), English Wikipedia, Giga5 (Courtney
Napoles, Matthew R. Gormley, 2012), ClueWeb
2012-B (Callan et al., 2009), and Common Crawl
text (Crawl, 2019). For predictions, we took the
final hidden representation of the first sub-word
token encoding of each word. We concatenated
this feature with an integer representing the total
word length in characters to encourage the model
to explicitly attend to word length. We tested the ef-
fectiveness of sub-word aggregation but found this

2The score represents the degree to which the meaning of
the MWE can be worked out from the meanings of its con-
stituent words (i.e. ‘climate change’ has high compositionality,
‘cloud nine’ has low compositionality), and the weights esti-
mate the semantic contribution of each word in the expression.
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Figure 2: Feature Importance by Target for Model 1 (Left) and Model 2 (Right).

reduced the model’s accuracy by an average of 0.04
MAE, which we speculate is due loss of informa-
tion in the pooling operation whilst head sub-word
units already contain contextual information. We
then passed the concatenated sub-word and word-
length features to a 3-layer dense Neural Network
which was used to predict the Shared Task’s five
target features. This 3-layer multi-feature Network
was found to be optimal through experimentation.
For stability, we used the Huber loss objective,
which approximates L2 loss for small values and L1
loss for large values. We trained using the AdamW
optimiser and with learning rates and training du-
ration chosen through grid search across 3-fold
cross-validation, obtaining an optimal learning rate
of 0.00001 and 800 epochs.

4.6 Regressors
To form predictions for the Feature Rich model we
used a Random Forest Regressor implemented by
scikit-learn (Pedregosa et al., 2011) with
parameters [max_depth = 7, n_estimators =

100, max_features = None]. For the XLNet
model, we collected the XLNet final state embed-
dings (identical to those fed into the DNN in Figure

1) along with the features [word-len, CAT-pos,

zipf-frequency, Is-EOS, Is-SOS]. We then
trained scikit-learn’s ElasticNetCV for
5-fold validation with parameters [max_iter

= 10000, l1_ratio=[0.1,0.3,0.5,0.7,1],

cv=5].

5 Results

In Table 1 we present the MAE on validation splits
of the training data. This information informed our
choice of model submissions alongside a prefer-
ence for models using more cognitive features.

Model/Split 1 2 3 Mean
ElasticNet(XLNet + ALL Features ) 3.918 3.927 3.891 3.912
Feature Rich/Model 1 4.017 4.023 3.981 4.007
BERT-base-cased 4.030 4.045 3.977 4.012
ElasticNet(BERT-base-cased) 3.986 4.024 3.969 3.993
XLNet-base-cased 3.988 3.956 3.935 3.959
XLNet-base-cased (random init) 4.608 4.722 4.695 4.675
XLNet-large-cased 3.929 4.039 3.960 3.976
ElasticNet(XLNet-base-cased)/Model 2 3.921 3.924 3.896 3.914

Table 1: Model MAE on Development Splits

We submitted two sets of predictions from
Model 2 ( ElasticNet(XLNet-base-cased)) and one
set of predictions from Model 1 (Feature Rich).
Table 2 shows the ranking of Models 1 and 2 in
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Rank Team (model) MAE
1 LAST 3.8134
2 TALEP 3.8328

. . .

5 CogNLP@Sheffield
(XLNet/Model 2)

3.9565

. . .

7 MTL782_IITD 4.0639

- CogNLP@Sheffield
(Feature Rich/Model 1) 4.0689

. . .
- MEAN BASELINE 7.3699
13 IIIT_DWD 9.7615

Table 2: Ranking on the CMCL Shared Task Test Data.

the overall task. Our overall standing is shown to
be 5th, with an MAE delta of 0.143 behind the
best model. Whilst a prediction which combined
Models 1 and 2 was slightly more accurate (see
Table 1), we regard this improvement as within
margin of error. We therefore focussed on Models
1 and 2 separately since this allowed for clearer
comparisons between the two approaches.

6 Analysis and Discussion

Our results (Table 1) support both our hypotheses
introduced in Section 1.

We did not anticipate that XLNet-base would
outperform XLNet-large, which had more pre-
training data and layers. This is possibly due to the
limited amount of training data specific to the task
for fine-tuning, resulting in the larger model under-
fitting. We are able to confirm that the knowledge
XLNet learns through massive pre-training crucial
to its performance in this arena - removal of this
knowledge through weight randomisation increases
MAE from 3.959 to 4.675. Hence we believe that
both structure and pre-training of XLNet-base con-
tribute to its success in this task.

We use normalised permutation feature impor-
tance (see Appendix B) to better understand the
value of different features and present it on a per-
target basis for each model in Figure 2.

The most interesting outcome of our experiments
was the fact that XLNet embeddings subsume infor-
mation contained across most features except word
length (especially in predicting nFix). It may be
that the use of word-pieces obfuscate word length
information thus requiring the explicit addition of
that information. While the usefulness of features
such as word length is consistent with the literature,
we were surprised by the relative unimportance
of MWE information given that many neurocogni-
tive studies have demonstrated differences in how

they are processed (Siyanova-Chanturia et al., 2011,
2017; Cacciari and Tabossi, 1988). An additional
surprise is that even though the Skip-gram embed-
dings provide semantic information about single
words as well as MWEs, the Feature Rich models
make little use of them. Many of the Feature Rich
models utilize the GECO features, which may be
because they provide approximate guidance about
the distributions of the various gaze features that
would be difficult to learn directly given the spar-
sity of the training data.

7 Conclusion and Future Work

This work describes our submissions to the 2021
CMCL Shared Task: we contributed a Feature Rich
model inspired by cognitive and linguistic informa-
tion, and model predominantly based on contextual
XLNet-base embeddings. We find that only a lim-
ited subset of the cognitive features (such as word
length) are helpful in the XLNet model. To our sur-
prise, neither XLNet-large embeddings nor MWE
features provide performance improvements. How-
ever, we believe this indicates a need for further
research into MWE representations as opposed to
suggesting that MWEs are unimportant for creating
effective cognitive models.
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A Features Used

We use the following features for each model. +N
and +P indicate that associated data for the two
next and two preceding words were included, re-
spectively.

A.1 Model One Features
[CAT-pos+N+P, CAT-word+N+P,
Conc-M+N+P, Conc-SD+N+P,
Is-EOS+N+P, Is-SOS+N+P,
Percent-Known+N+P,
comp-score+N+P, comp-weights+N+P,
geco-FFD-mean+N+P,
geco-FFD-std+N+P,
geco-GPT-median+N+P,
geco-GPT-std+N+P,
geco-TRT-mean+N+P,
geco-fixProp-mean+N+P,
geco-fixProp-std+N+P,
geco-nFix-median+N+P,
geco-nFix-std+N+P,
is-mwe+N+P, is-strange+N+P,
mwe-cat+N+P, saccade-cat+N+P,
saccade-cat-binary+N+P,
w2v-embedding+N+P,
word-frequency+N+P, word-len+N+P,
zipf-frequency+N+P]

A.2 Model Two Features
[XLNET-embed, CAT-pos, Is-EOS,
Is-SOS, word-len, zipf-frequency]

B Permutation Feature Importance

We use permutation feature importance (Breiman,
2001) to better understand the impact of differ-
ent features on each of the different models. This
method measures the base error of the model
against the error when one feature is randomly per-
muted, allowing for quantification of importance.
That is for feature i:

FIi = Ebase − Epermi

We note that permutation methods have a ten-
dency of attributing higher importance to corre-
lated features (Nicodemus et al., 2010), whilst
still being informative. Alternatives include per-
feature retraining (Lei et al., 2016; Mentch and
Hooker, 2016) which was computationally in-
tractable within the timeframe of the CMCL task
duration.
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C Description of features

Feature (generated at the
word-level unless specified) Description Data and tools used

CAT_word One hot word encoding
CAT_pos Categorical encoding of Part-of-Speech tag Honnibal et al. (2020)
Is_EOS Binary variable indicating if word is the last in its sentence
Is_SOS Binary variable indicating if word is the first in its sentence

Conc_M
Mean concreteness norm assigned to the lemmatized form of the word.
Words not covered by the dataset of norms were given a’neutral’ score
of 3 (concreteness rated on a Likert scale from 1-5)

Brysbaert et al. (2014)

Conc_SD
Standard deviation of concreteness values assigned to lemmatized form
of word. Words not covered by the dataset of norms were assigned the
mean of Conc_SD for all other words

Brysbaert et al. (2014)

Percent_Known
Proportion of participants asked to estimate concreteness norms that
were familiar enough with the word to judge its concreteness. Words
not covered by the dataset of norms were assigned a value of 1

Brysbaert et al. (2014)

word_len Number of characters in the word

saccade_cat
Categorical representation of number of characters in relation to average
saccade length (categories were 1-3, 4-7, 8-10 and 11+ letters)

saccade _cat_binary
Binary categorical representation of number of characters in relation to
average saccade length (categories were 1-3 letters and 4+ letters)

word_frequency Frequency of word per million words Speer et al. (2018)
zipf_frequency Frequency of word per million words on the zipf scale Speer et al. (2018)

NEXT_n_FEAT
Attaches FEAT for the next n words to the current word
(i.e. NEXT_1_Is_EOS attaches Is_EOS for the next word to the
current word)

PREV_n_FEAT Attaches FEAT for the previous n words to the current word

geco_FEAT_mean
Mean average of all measurements of FEAT for this word in GECO. If
the word was not present in GECO, the mean of means for words with
comparable frequency in natural language was used

Cop et al. (2017)

geco_FEAT_median
Median average of all measurements of FEAT for this word GECO. If
the word was not present in GECO, the mean of medians for words with
comparable frequency was used

Cop et al. (2017)

geco_FEAT_std
Standard deviation of all measurements of FEAT for this word in GECO.
If the word was not present in GECO, mean of standard deviations for
words with comparable frequency was used

Cop et al. (2017)

is_mwe Binary indicator showing if word is part of an MWE in this context Ramisch (2012)

mwe_cat
Categorical representation of whether the word is part of an MWE in this
context, where categories are based on syntactic patterns (i.e. adjective
noun compound, verb + preposition phrase)

Ramisch (2012)
Loper and Bird (2002)

w2v_embedding

300 dimensional Skip-gram embedding for the word or MWE. If the
word is part of an MWE in this context, the Skip-gram embedding trained
for the MWE is used instead. Embeddings are trained using the
Wikitext-103 corpus, where multiword expressions are reformatted to be
concatenated using underscores (i.e. multiword_expression)

Ramisch (2012)
Mikolov et al. (2013)
Rehurek and Sojka (2011)
Merity et al. (2016)

comp_score
Compositionality score for the MWE calculated using mwetoolkit.
Words not part of MWEs are assigned a value of 0

Ramisch (2012)
Cordeiro et al. (2019)

comp_weights
Weights used for each word to calculate the comp_score for the MWE
(certain words may contribute more semantic meaning to an MWE than
others). Words not part of MWEs are assigned a value of 0

Ramisch (2012)
Cordeiro et al. (2019)

is_strange
Binary indicator of non-standard formatting or non-alphanumeric
characters in the current word (generated using regular expressions)
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Abstract

This system description paper describes our
participation in CMCL 2021 shared task on
predicting human reading patterns. Our fo-
cus in this study is making use of well-known,
traditional oculomotor control models and ma-
chine learning systems. We present experi-
ments with a traditional oculomotor control
model (the EZ Reader) and two machine learn-
ing models (a linear regression model and a re-
current network model), as well as combining
the two different models. In all experiments
we test effects of features well-known in the lit-
erature for predicting reading patterns, such as
frequency, word length and word predictabil-
ity. Our experiments support the earlier find-
ings that such features are useful when com-
bined. Furthermore, we show that although
machine learning models perform better in
comparison to traditional models, combination
of both gives a consistent improvement for pre-
dicting multiple eye tracking variables during
reading.

1 Introduction

Oculomotor control in reading has been a well-
established domain in eye tracking research. From
the perspective of perceptual and cognitive mech-
anisms that drive eye movement control, the char-
acteristics of the visual stimuli is better controlled
in reading research than visual scene stimuli. Sev-
eral computational models have been developed
for the past two decades, which aimed at modeling
the relationship between a set of independent vari-
ables, such as word characteristics and dependent
variables, such as fixation duration and location
(Kliegl et al., 2006).

Based on the theoretical and experimental re-
search in reading, the leading independent vari-
ables include the frequency of a word in daily use,
the length of the word and its sentential predictabil-
ity. The term sentential predictability (or word
predictability) is used to define predictability score

which is the probability of guessing a word from
the sequence of previous words of the sentence
(Kliegl et al., 2004). The dependent variables in-
clude numerous metrics, including fixation dura-
tion metrics such as first fixation duration (FFD)
and total gaze time on a word, as well as location
and numerosity metrics such as the location of a
fixation on a word and gaze-regressions.

A major caveat of the computational models that
have been developed since the past two decades
is that they weakly address linguistic concepts be-
yond the level of the fixated word, with a few ex-
ceptions, such as the spillover effects related to
the preview of a next word n+1 during the current
fixation on word n (Engbert et al., 2005). These
models are also limited in their recognition of syn-
tactic, semantic and discourse characteristics of the
text due to their complexity, despite they are in-
dispensable aspects of reading for understanding.
Machine Learning (ML) models of oculomotor con-
trol address some of those limitations by presenting
high predictive power. However, the holistic ap-
proach of the learning models has drawbacks in
terms of the explainability of the model underpin-
nings. In this study, we present experiments with a
traditional model of oculomotor control in reading,
namely the EZ Reader (Reichle et al., 2003), two
ML models (a regression model and a recurrent net-
work model), and their combination. We present an
evaluation of the results by focusing on the model
inputs that reveal relatively higher accuracy.

Accordingly, the aim of the present paper is to
investigate the effectiveness of both types of mod-
els and their combinations on predicting human
reading behavior as set up by the CMCL 2021
shared task (Hollenstein et al., 2021). The task
is defined as predicting five eye-tracking features,
namely number of fixations (nFix), first fixation
duration (FFD), total reading time (TRT), go-past
time (GPT), and fixation proportion (fixProp). The
eye-tracking data of the Zurich Congitive Language
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Processing Corpus (ZuCo 1.0 and ZuCo 2.0) were
used (Hollenstein et al., 2018), (Hollenstein et al.,
2019). Details of these variables and further in-
formation on the data set can be found in the task
description paper (Hollenstein et al., 2021).

2 Methodology

We created our models and identified the input fea-
tures following the findings in research on oculo-
motor control in reading. The previous studies have
shown that word length, frequency and sentential
predictability are well known parameters that in-
fluence eye movement patterns in reading (Rayner,
1998). There exist further parameters that influence
eye movement characteristics. For instance, the lo-
cation of a word in the sentence has been proposed
as a predictor on First Fixation Duration (Kliegl
et al., 2006). Therefore, we used those additional
parameters to improve the accuracy of the learning
models, as well as running a traditions oculomo-
tor control model (viz., the EZ Reader) with its
required parameter set. Below we present a de-
scription of the models that have been employed in
the present study.

2.1 System Description

2.1.1 The EZ Reader Model
EZ Reader has been developed as a rule-based
model of oculomotor control in reading. It predicts
eye movement parameters, such as single fixation
duration, first fixation duration and total reading
time. The model efficiently addresses some of ex-
perimental research findings in the reading liter-
ature. For example, a saccade completion takes
about 20-50 msec to complete, and saccade length
is about 7-9 characters (Rayner, 2009). The model
consists of three main processing modules. The
oculomotor system is responsible for generating
and executing saccades by calculating the saccade
length. The visual system controls the attention of
the reader. Finally, the word identification system
calculates the time for identifying a word, mainly
based on the word length and the frequency of word
in daily use. EZ Reader accepts four arguments as
its input; frequency (count in million), word length
(number of characters), sentential predictability of
the word, and the word itself. The output features
of the model are given in Table 1.

Among those features, FFD and TT outputs of
EZ Reader directly map to FFD and TRT (Total
Reading Time) in the training data of the CMCL

Feature Description

EZ-SFD Single Fixation Duration
EZ-FFD First Fixation Duration
EZ-GD Gaze Duration
EZ-TT Total Reading Time
EZ-PrF Fixation Probability
EZ-Pr1 Probability of making exactly one fixation
EZ-Pr2 Probability of making two or more fixations
EZ-PrS Probability of skipping

Table 1: EZ Reader output features.

EZ Reader Training Data MAE

TT Total Reading Time 3.25
FFD First Fixation Duration 9.14

Table 2: Mean Absolute Error (MAE) scores obtained
by the EZ Reader model

2021 shared task. The EZ reader output features
are not sufficient enough to generate mean absolute
error values for each feature in the training data.
Therefore we were only able to calculate mean
absolute error values for FFD and TRT. Table 2
presents the Mean Absolute Error (MAE) values
of the test set, when predicted by the EZ Reader
model. In the design of the EZ Reader model, we
assumed the simulation count as 2000 participants,
which means that the model runs 2000 distinct sim-
ulations and the result scores consist of the average
of the simulation results. 2000 participants is the
optimum number for our case in terms of simula-
tion time and the MAE it produces. Above 2000
participants MEA did not decrease significantly.

A major challenge in designing the EZ Reader
model is that the model is not able to produce the
output values for some of the words, labeling them
Infinity. Those are usually long words with rela-
tively low frequency. In order to find an optimal
value to fill in the Infinity slots, we calculated the
mean absolute error between TRT of the training
data and the TT values of EZ Reader model results,
as an operational assumption. The calculation re-
turned 284 ms. Figure 1 shows the MAE scores
over given values between 0 to 500. This value is
close to the average fixation duration for skilled
readers which is about 200ms - 250ms (Rayner,
1998). Therefore, we preserved the assumption in
model development pipeline.
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Figure 1: Mean Absolute Error scores over given val-
ues for Infinity slot

In the present study, besides calculating the mean
absolute error values for the EZ Reader model, we
employed the outputs of the EZ Reader model as
inputs to the LSTM model. Below, we present
the model for the Linear Baseline and the LSTM
model.

2.1.2 Linear Baseline
Our linear model is a least-squares regression
model with L2 regularization (ridge regression).
The input features to the regression model include
the main word-level features, frequency, word
length and predictability discussed above. Word
frequencies are computed using a large news cor-
pus of approximately 2.7 million articles.1 The pre-
dictability features are obtained using the recurrent
network described in Section 2.2. Besides these
features, we also include some linguistic features
including the POS tag, dependency relation, and
signed distance from the head, as well as named
entity tag. The POS and dependency information is
obtained using version 1.2 of UDPipe using the pre-
trained models released by the authors (Straka and
Straková, 2017; Straka and Straková, 2019). We
used Apache OpenNLP (Apache Software Foun-
dation, 2014) for named entity recognition. The
model input also included indicator features for
beginning and end of sentence, and whether the
word is combined with a punctuation mark or not
(see Table 3). We also included the features from
EZ-reader described in Section 2.1.1 as additional
inputs to the regression model.

The predictions were based on a symmetric win-
dow around the target word, where all the above
features for the target word and ±k words were
concatenated. We selected the optimal window
size as well as the regularization constant (alpha)

1‘All the news’ data set, available from
https://components.one/datasets/
all-the-news-2-news-articles-dataset/.

Feature Description Used in model

Word Frequency (Fr) Word occurrence per million LB-LSTM
Word Location Zero based index of the word in sentence. LB-LSTM
Word Length (WL) Character count of the word LB-LSTM
Word Predictability (Pr) Probability of knowing a word before reading it LB-LSTM
StartPunct The presence of a punctuation before the word LB-LSTM
EndPunct The presence of the punctuation at the end LB-LSTM
EndSent Is the last word of the sentence or not LB-LSTM
POS Core part-of-speech category LB
Dep Universal syntactic relations LB
HeadDist Signed distance from the head LB
Ner Named entity category (person and company names, etc.) LB
EZ Reader simulation outputs see Table 1 LB-LSTM

Table 3: Input features used in Linear Baseline and
LSTM model.

for the ridge regression model via grid search. The
grid search is used to determine a single same al-
pha and single window size for all target variables.
We use the ridge regression implementation of the
Python scikit-learn library (Pedregosa et al., 2011).

2.1.3 LSTM Model
The LSTM model consists of an LSTM layer with
128 units followed by two dense layers and 5-
dimensional output layer. The input features of
the model include word length in total number of
characters, word predictability, frequency per mil-
lion, the location of the word in the sentence, the
presence of a punctuation before the word, the pres-
ence of the punctuation at the end, and the end of
sentence, being the last word of the sentence or
not. Finally, the input features included the outputs
of the typical EZ Reader model (given in Table
1). The output features of the LSTM model the
variables identified by the CMCL 2021 share task,
namely nFix, FFD, GPT, TT, and fixProp.

2.2 Predictability Scores
Sentential predictability of a word in a context is
a well-established predictor of eye movement pat-
terns in reading (Fernández et al., 2014; Kliegl
et al., 2004; Clifton et al., 2016). We used two
methods to generate the predictability values. First,
we used the average human predictability scores
from the Provo Corpus (Luke and Christianson,
2018), which is a public eye-tracking dataset col-
lected from real participants. The Provo Corpus
includes the cloze task results in which participants
are given the starting word of the sentence and ex-
pected to guess the next word. The actual word
is shown after the participant’s guess and predic-
tion for the next word is expected. This process
continues for all of the words. Prediction value is
generated for each word in corpus by simply calcu-
lating the ratio of the correct guesses to all guesses
for the word. We selected 1.0 as the default pre-
diction value for words which does not exist in the
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Model nFix FFD GPT TRT fixProp

LAST 3.88 0.66 2.20 1.52 10.81
Linear 4.36 0.74 2.50 1.76 12.55
LSTM 4.62 0.76 3.61 1.84 13.06
Baseline 7.30 1.15 3.78 2.78 21.78

Table 4: Official scores (MAE) of our models in com-
parison to mean baseline and the first team (LAST) in
the competition.

Provo Corpus. The mean absolute error for TRT
between EZ Reader output and CMCL train data
was at minimum when default prediction value is
1.0.

Second, we developed a separate LSTM model
that produced sentential predictability values. For
this, we trained the model by Wikipedia.2 Since the
primary goal of the model was to predict eye move-
ment patterns per word, we built a word-level lan-
guage model. The model consisted of two LSTM
layers with 1200 hidden units. It was trained with
a learning rate of 0.0001, and a dropout value was
set to 0.2, with the Adam optimizer. After the
training, we obtained the predictability scores for
each word based on their sentential context. These
scores were then used as an additional feature in
our final model besides the other features, such as
word length and frequency.

Provo Corpus predictability values are indepen-
dent from the context of text used in the shared
task. However using predictability values from the
first method gave better results than the calculated
predictability. Therefore we used Provo Corpus
predictability values for the results in the following
sections.

3 Results

We participated in the CMCL 2021 shared task
with two submissions, one with the linear model
described in Section 2.1.2, and the other with the
LSTM model (Section 2.1.3). Table 4 presents
the scores of our system in the competition, in
comparison to mean baseline and the best system.
Our systems perform substantially better than the
baseline, and the difference between the scores of
the participating teams are comparatively small.
Among our models, the linear model performed
slightly better, obtaining 10th place in the compe-

2We use the sentence segmented corpus from
https://www.kaggle.com/mikeortman/
wikipedia-sentences.

Features nFix FFD GPT TRT fixProp

Fr 4.80 2.20 2.75 1.85 13.61
WL 6.73 0.77 2.78 1.84 12.94
Pr 5.64 0.85 3.11 2.15 15.17
EZ-SFD 6.26 1.00 3.11 2.34 18.21
WL x Pr x Fr 4.35 0.71 2.68 1.73 11.99
WL x Pr 4.28 0.71 2.70 1.68 12.07
EZ-SFDxFrxWLxPr 4.21 0.73 2.57 1.64 12.11

Table 5: MAE for with different feature combinations.

tition. However, experimenting with the LSTM
model gave us more information about the basic
features of eye movements in reading and their ef-
fects on fixation durations. For the remainder of
this section, we will present further experiments
with the LSTM model, demonstrating the effects
of various features discussed above.

3.1 Further Experiments

To demonstrate the effectiveness of the features de-
scribed above, we trained a number of models that
employed a set of input variables in isolation, as
well as the models trained by their combination.
In particular, we trained a model on frequency,
then predictability, and then word length. Then
we trained models by their combinations as input
features. Each model produced a MAE (mean abso-
lute error) value. We then calculated the average of
the MAE values for each model output (nFix, FFD,
GPT, TRT, and FixProp) and their Standard De-
viation (SD). Finally, we calculated how far each
model was away from the average MAE in terms
of the SDs. Table 5 presents MAE scores for each
setting.

The figures in the Appendix A show the distance
of the models from the center of the circle, where
the center represents the best MAE score and the
circle represents the distance covered by one SD
(Standard Deviation) from the best accuracy (i.e.
the center). The models that received the combina-
tion of frequency, predictability, word length and
E-Z SFD (i.e., E-Z Reader’s single fixation dura-
tion prediction) as the input returned the best MAE
values for four of five dependent variables. As an
example, consider the MAE values for the models
developed for predicting the nFix (the number of
fixations on a word). Figure 2 shows that the ma-
jority of the models that are based on features in
isolation have relatively lower predictability com-
pared to the models that take a combination of the
features as the inputs. In particular, the predictabil-
ity model (i.e., the model that is solely based on
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the predictability values as the input feature) has
a mean MAE value 1.75 times the SD (Standard
Deviation). Similarly, the word-length model has
approximately 3 times the SD from the best score,
and the EZ-SFD model (i.e., the model that is solely
based on the single fixation duration predictions of
the EZ Reader model) has a mean MAE value far
away from the mean by 2.5 times the SD value.

4 Conclusion

In this paper, we analyzed a linear baseline model
and an LSTM model that employed the outputs of
a traditional model as its inputs. We built models
with input features in isolation, and their combina-
tion. The evaluation of the mean absolute errors
(MAE) supported a major finding in reading re-
search: The oculomotor processes in reading are in-
fluenced by multiple factors. Temporal and spatial
aspects of eye movement control are determined by
linguistic factors as well as low-level nonlinguistic
factors (Rayner, 1998; Kliegl and Engbert, 2013).
The models that employ their combinations return
higher accuracy. Our findings also indicate that be-
sides the frequently used features in the literature,
the EZ-SFD (single frequency duration outputs of
the EZ Reader model) may contribute to the accu-
racy of the learning based models. Nevertheless,
given the high variability of the machine learning
model outputs a systematic investigation is neces-
sary that address several operational assumptions
in the present study. In particular, future research
should improve statistical analysis for comparing
the model outputs. It should also address the in-
fluence of the location of a word in a sentence,
besides its interaction with the duration measures.
Last but not the least, future research on develop-
ing ML models of oculomotor control in reading
should focus on the relationship between the as-
pects of the ML model design and basic findings
in reading research. The GCMW (Gaze Contin-
gent Moving Window) paradigm and the boundary
paradigm (Rayner, 2014) are some examples of
those findings that could be used for oculomotor
control modeling.
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Abstract
We present a novel deep learning-based frame-
work to generate embedding representations of
fine-grained emotions that can be used to com-
putationally describe psychological models of
emotions. Our framework integrates a contex-
tualized embedding encoder with a multi-head
probing model that enables to interpret dynam-
ically learned representations optimized for an
emotion classification task. Our model is eval-
uated on the Empathetic Dialogue dataset and
shows the state-of-the-art result for classifying
32 emotions. Our layer analysis can derive an
emotion graph to depict hierarchical relations
among the emotions. Our emotion representa-
tions can be used to generate an emotion wheel
directly comparable to the one from Plutchik’s
model, and also augment the values of missing
emotions in the PAD emotional state model.

1 Introduction

Emotion classification has been extensively studied
by many disciplines for decades (Spencer, 1895;
Lazarus and Lazarus, 1994; Ekman, 1999). Two
main streams have been developed for this research:
one is the discrete theory that tries to explain emo-
tions with basic and complex categories (Plutchik,
1980; Ekman, 1992; Colombetti, 2009), and the
other is the dimensional theory that aims to con-
ceptualize emotions into a continuous vector space
(Russell and Mehrabian, 1977; Watson and Telle-
gen, 1985; Bradley et al., 1992). Illustration of
human emotion however is often subjective and
obscure in nature, leading to a long debate among
researchers about the “correct” way of representing
emotions (Gendron and Feldman Barrett, 2009).

Representation learning has made remarkable
progress recently by building neural language mod-
els on large corpora, which have substantially im-
proved the performance on many downstream tasks
(Peters et al., 2018; Devlin et al., 2019; Yang et al.,
2019; Liu et al., 2019; Joshi et al., 2020). Encour-
aged by this rapid progress along with an increasing

interest of interpretability in deep learning models,
several studies have attempted to capture various
knowledge encoded in language (Adi et al., 2017;
Peters et al., 2018; Hewitt and Manning, 2019),
and shown that it is possible to learn computational
representations through distributional semantics for
abstract concepts. Inspired by these prior studies,
we build a deep learning-based framework to gen-
erate emotion embeddings from text and assess its
ability of enhancing cognitive models of emotions.
Our contributions are summarized as follows:1

• To develop a deep probing model that allows
us to interpret the process of representation
learning on emotion classification (Section 3).

• To achieve the state-of-the-art result on the
Empathetic Dialogue dataset for the classifi-
cation of 32 emotions (Section 4).

• To generate emotion representations that can
derive an emotion graph, an emotion wheel,
as well as fill the gap for unexplored emotions
from existing emotion theories (Section 5).

2 Related Work

Probing models are designed to construct a probe
to detect knowledge in embedding representations.
Peters et al. (2018) used linear probes to examine
phrasal information in representations learned by
deep neural models on multiple NLP tasks. Tenney
et al. (2019) proposed an edge probing model using
a span pooling to analyze syntactic and semantic
relations among words through word embeddings.
Hewitt and Manning (2019) constructed a structural
probe to detect the correlations among word pairs
to predict their latent distances in dependency trees.
As far as we can tell, our work is the first to generate
embeddings of fine-grained emotions from text and
apply them to well-established emotion theories.

1All our resources including source codes and mod-
els are available at https://github.com/emorynlp/
CMCL-2021.
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Figure 1: The overview of our deep learning-based multi-head probing model.

NLP researchers have produced several corpora
for emotion detection including FriendsED (Zahiri
and Choi, 2018), EmoInt (Mohammad et al., 2017),
EmoBank (Buechel and Hahn, 2017), and Daily-
Dialogs (Li et al., 2017), all of which are based on
coarse-grained emotions with at most 7 categories.
For a more comprehensive analysis, we adapt the
Empathetic Dialogue dataset based on fine-grained
emotions with 32 categories (Rashkin et al., 2019).

3 Multi-head Probing Model

We present a multi-head probing model allowing us
to interpret how emotion embeddings are learned in
deep learning models. Figure 1 shows an overview
of our probing model. Let W = {w1, . . . , wn} be
an input document where wi is the i’th token in
the document. W is first fed into a contextualized
embedding encoder that generates the embedding
e0 ∈ Rd0 representing the entire document. The
document embedding e0 is then fed into multiple
probing heads, PH11, . . . ,PH1k, that generate the
vectors e1j ∈ Rd1 comprising features useful for
emotion classification (j ∈ [1, k]). The probing
heads in this layer are expected to capture abstract
concepts (e.g., positive/negative, intense/mild).

Each vector e1j is fed into a sequence of prob-
ing heads where the probing head PHij is defined
PHij(ehj)→ eij (i ∈ [2, `], j ∈ [1, k], h = i− 1).
The feature vectors e`∗ from the final probing layer
are expected to learn more fine-grained concepts
(e.g., ashamed/embarrassed, hopeful/anticipating).
e`∗ are concatenated and normalized to g` ∈ Rd`·k

and fed into a linear layer that generates the output
vector o ∈ Rm where m is the total number of emo-
tions in the training data. It is worth mentioning
that every probing sequence finds its own feature
combinations. Thus, each of e`∗ potentially repre-
sents different concepts in emotions, which allow
us to analyze concept compositions of these emo-
tions empirically derived by this model.

4 Experiments

4.1 Contextualized Embedding Encoder
For all experiments, BERT (Devlin et al., 2019) is
used as the contextualized embedding encoder for
our multi-head probing model in Section 3. BERT
prepends the special token CLS to the input docu-
ment W such that W ′ = {CLS} ⊕W is fed into
the ENCODER in Figure 1 instead, which generates
the document embedding e0 by applying several
layers of multi-head attentions to CLS along with
the other tokens in W (Vaswani et al., 2017).2

4.2 Dataset
Although several datasets are available for various
types of emotion detection tasks (Section 2), most
of them are annotated with coarse-grained labels
that are not suitable to make a comprehensive anal-
ysis of emotions learned by deep learning models.

TRN DEV TST ALL

C 19,533 2,770 2,547 24,850
L 18.2 (±10.4) 19.6 (±11.4) 23.0 (±12.5) 18.9 (±10.8)

Table 1: Statistics of the Empathetic Dialogue dataset.
TRN/DEV/TST: training/development/test set. C: # of
documents, L: average # of tokens and its standard de-
viation in each document.

To demonstrate the impact of our probing model,
the Empathetic Dialogue dataset is selected, that is
labeled with 32 emotions on ≈25K conversations
related to daily life, each of which comes with an
emotion label, a situation described in text that can
reflect the emotion (e.g., Proud→ “I finally got
that promotion at work!”), and a short two-party
dialogue generated through MTurk that simulates
a conversation about the situation (Rashkin et al.,
2019). For our experiments, only the situation parts
are used as input documents.

2Details about the experimental settings are provided in
Section A.1.
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Figure 2: The overview of our deep learning-based multi-head probing model.

4.3 Results

Several multi-head probing models are developed
by varying the number of probing layers and the
dimension of feature vectors to find the most ef-
fective model for interpretation. For all models, a
linear layer is used for every probing head such that
PHi∗(eh∗) → w · eh∗ = ei∗, where eh∗ ∈ R1×dh ,
w ∈ Rdh×di , ei∗ ∈ R1×di . The dimension of the
document embedding d0 is set to 768 for all models
as configured by the pretrained BERT model.

k 128:64:32 64:32 32
2 56.9 (±0.4) 57.1 (±0.5) 56.9 (±0.5)
4 57.5 (±0.4) 58.1 (±0.5) 57.8 (±0.5)
8 57.8 (±0.8) 58.2 (±0.5) 57.6 (±0.1)

16 57.2 (±0.3) 57.6 (±0.4) 57.7 (±0.6)
32 57.2 (±0.9) 57.3 (±0.4) 57.5 (±0.7)
64 56.8 (±0.6) 57.2 (±0.3) 57.4 (±0.4)

Table 2: Average accuracies and standard deviations on
the test set. k: total # of feature vectors in each layer,
i’th # in each column delimited by colons is the dimen-
sion of the feature vectors in the i’th probing layer.

Table 2 shows the results achieved by all models;
every model is trained 3 times and the average ac-
curacy and its standard deviation is reported. The
baseline BERT model using no probing, that is to
feed e0 directly into the linear layer, is also built for
comparison, showing a significantly higher accu-
racy of 57.6% (±0.02) than the previously reported
state-of-the-art of 48% by Rashkin et al. (2019).
The best result is achieved by the 2-layer probing
model with 8 feature vectors, showing the accuracy
of 58.2% (d1 = 64, d2 = 32, k = 8).

5 Analysis

5.1 Layer-wise Analysis

To analyze which emotional concepts are embed-
ded in each probing layer (Section 3), we train
a logistic regression model on the concatenated
vector of (ei1 ⊕ · · · ⊕ eik) for each layer `i with
the same configuration used for the 3-layer model,

128:64:32 (Table 2), and tested on the development
set. For each pair of adjacent layers (`i, `j) where
j = i+1 and 1 ≤ i ≤ 2, we measure the likelihood
Hij(s, t) of those layers classifying each emotion
s as every other emotion t as follows:

Hij(s, t) = L(s, t)− L(t, s)

L(eg, ep) = `j(eg, ep)− `i(eg, ep)

where `∗(eg, ep) is the proportion of the documents
whose gold labels are eg but predicted as ep by the
model trained on the layer `∗. If L(s, t) > 0, it
means that the higher layer `j tends to predict s as
t more than the lower layer `i. L(t, s) > 0 implies
the opposite, and is used as a penalty term to get a
more reliable measurement of how much the higher
layer is confused s for t than the lower layer.

The results are illustrated in Figure 2, where ar-
rows pointing from one emotion s to another emo-
tion t indicate Hij(s, j) ≥ 2. The dashed arrows
and thin solid arrows correspond to the confusion
likelihoods of H12(s, j) and H23(s, j) respectively,
and the thick solid arrows reflect the likelihoods in
those two metrics. Most emotion pairs point from
coarse-grained emotions to fine-grained emotions
(e.g., angry→ furious, sentimental→ nostalgic)
except for a few pairs (excited→ anticipating), im-
plying that higher probing layers tend to learn more
finer-grained emotions that lower layers.

5.2 Generation of Emotion Wheel

Plutchik (1980) introduced the emotion wheel by
selecting a reference emotion and arranging others
on a circle where the angles are determined by man-
ually assessed similarities between emotion pairs.
Inspired by this work, we derive an emotion wheel
by creating emotion embeddings and representing
each complex emotion as a weighted sum of two
basic emotions. Given an emotion e and a set of
documents De whose gold labels are e in the DEV
set, the embedding of e can be derived as follows,
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where gd` is the normalized vector in Section 3 for d.

re =
1

|De|
∑

∀d∈De

gd` (1)

For each complex emotion c, its combinatory basic
emotion pair (bi, bj) and the weight w ∈ [0.1, 0.9]
are founded as follows (r∗ is the embedding of b∗):

ri,j,w = w · ri + (1− w) · rj
(bi, bj , w) = argmax

∀i,∀j,∀w
[cosine_sim(ri,j,w, c)] (2)

Figure 3 depicts the emotion wheel auto-generated
by our framework; 8 basic emotions are displayed
on the outer circle and complex emotions are dis-
played on the edges between those basic emotions
where the dot scales are proportional to the cosine_
sims in Eq (2).3 Although the only manual part in
this wheel is the selection of those basic emotions
from Plutchik (1980), it is compatible to the orig-
inal emotion wheel in Section A.2 and finds even
more relations such as Excited = Anticipating + Joyful,
Lonely = Sad + Afraid, and Grateful = Trusting + Joyful.
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Figure 3: Emotion wheel auto-derived by our approach.

5.3 Augmentation of PAD Model
Russell and Mehrabian (1977) presented the PAD
model suggesting that emotions can be denoted by
3 dimensions of pleasure, arousal, and dominance.
To verify whether our representations can capture
emotional concepts similar to the PAD model, we
train a regression model per dimension that takes
the emotion embeddings from Eq (1) and learns the
corresponding PAD values in Section A.3 manually
assessed by Russell and Mehrabian (1977).

33 complex emotions whose cosine similarity scores are
less than 0.1 are omitted in Figure 3: guilty, jealous, nostalgic.

Note that the original PAD model provides the PAD
values for only 22 emotions. Given the 3 regression
models trained on those 22 emotions, we are able
to predict the PAD values for the other 10 emotions
missing from the original model.4 Figure 4 shows
the 2D plot of the PA values predicted by our regres-
sion models for Pleasure and Arousal, where the 10
emotions, whose PAD values are newly discovered
by our models, are indicated with the red labels.5

It is exciting to see that the newly discovered emo-
tions blend well in this plot (e.g., anticipating in
between anxious and excited). Similar emotions
are closer in this space (e.g., sentimental / nostalgic,
trusting / faithful / confident), implying the robust-
ness of the predicted values. Notice that the P value
of nostalgic is predicted as positive, which is under-
standable because nostalgic is related to a memory
with happy personal associations; thus, it is found
to be positive by distributional semantics.
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Figure 4: The 2D plot from the PAD values of 32 emo-
tions predicted by our regression models.

6 Conclusion

This paper presents a multi-head probing model
to derive emotion embeddings from neural model
interpretation. Our model is applied to an emotion
detection task and shows a state-of-the-art result.
These emotion embeddings can derive an emotion
graph, depicting how abstract concepts are learned
in neural models, and an emotion wheel and PAD
values, verifying their potential of augmenting cog-
nitive models for more diverse groups of emotions
that have not been explored by cognitive theories.

4Section A.3 provides configurations for all three models.
5The 3D plot including the dominance values is in Sec-

tion A.3.
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A Appendix

A.1 Experimental Settings
The BERT model used in our experiment is BERT-
base, and Table 3 shows the hyperparameters used
to develop the models in Table 2.

Hyperparameter Value
n: max document length 128
m: number of classes 32
k: number of feature vectors in each layer 8
d0: dimension of the feature vector e0 768
batch size 32
learning rate 5e-5

(a) Shared hyperparameters.

128:64:32 64:32 32
l: # of probing layers 3 2 1
d1: dimension of e1 128 64 32
d2: dimension of e2 64 32 -
d3: dimension of e3 32 - -

(b) Model-specific hyperparameters.

Table 3: Hyperparameter configurations for all models.

A.2 Plutchik’s Emotion Wheel
The emotion wheel described in Section 5.2 is in-
spired by Plutchik (1980) which proposed the eight
basic emotions that can constitute other complex
emotions through various combinations shown by
the emotion wheel in Figure 5, where emotions dis-
played on the edges are the compositions of those
two basic emotions. As can be seen, our derived
emotion wheel has some identical emotion rela-
tions as the Plutchik’s emotion wheel such as Hope

= Anticipation + Trust, Anxiety = Anticipation + Fear, and
Sentimentality = Trust + Sadness. It suggests the robust-
ness of the emotion wheel derived by the proposed
method in Section 5.2.

A.3 Russell and Mehrabian’s PAD Model
All regression models in Section 5.3 are based on 2-
layer multilayer perceptron using the mean square
error (MSE) loss, including a hidden layer with the
ReLU activation and an output layer with the Tanh
activation. The hidden layer dimension is 128, and
the dropout rate is 0.3, and early stopping is ap-
plied to avoid overfitting. The MSE losses of the
three regression models to predict the Pleasure (P),
Arousal (A), and Dominance (D) values are 0.028,
0.019, and 0.016, respectively. Table 4 describes
the original PAD values of the 22 emotions from
Russell and Mehrabian (1977), and Figure 6 shows
the 2D plot from the PAD values of those 22 emo-
tions. Table 5 describes the PAD values predicted
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Figure 5: Emotion wheel proposed by Plutchik (1980).

by our regressions models, which are plotted in Fig-
ure 4. Finally, Figure 7 plots those predicted PAD
values in the 3D space to depict the dominance
values with respect to the other two PA dimensions.
By comparing the PAD values of 22 emotions in
Table 4 and Table 5, most of the predicted values
are close to their gold values. Also, we can observe
that the predicted values of some newly discovered
emotions are consistent with our perception of emo-
tions. For example, Anticipating is very close to
Hope in terms of pleasure but with higher intensity.

Emotion Pleasure Arousal Dominance
afraid -0.64 0.6 -0.43
angry -0.51 0.59 0.25

annoyed -0.28 0.17 0.04
anxious 0.01 0.59 -0.15
ashamed -0.57 0.01 -0.34
caring 0.64 0.35 0.24
content 0.86 0.2 0.62

devastated 0.14 0.45 -0.24
disgusted -0.6 0.35 0.11

embarrassed -0.46 0.54 -0.24
excited 0.62 0.75 0.38
furious -0.44 0.72 0.32
grateful 0.64 0.16 -0.21
guilty -0.57 0.28 -0.34

hopeful 0.51 0.23 0.14
impressed 0.41 0.3 -0.32

joyful 0.76 0.48 0.35
lonely -0.66 -0.43 -0.32
proud 0.77 0.38 0.65

sad -0.64 -0.27 -0.33
surprised 0.4 0.67 -0.13
terrified -0.62 0.82 -0.43

Table 4: The original PAD values of 22 emotions pro-
vided by Russell and Mehrabian (1977).
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Figure 6: The 2D plot from the PAD values in Table 4.

Emotion Pleasure Arousal Dominance
afraid -0.56 0.7 -0.6
angry -0.61 0.6 0.28

annoyed -0.56 0.47 0.09
anticipating 0.53 0.59 0.03

anxious -0.05 0.61 -0.31
apprehensive -0.25 0.49 -0.46

ashamed -0.6 0.35 -0.33
caring 0.46 0.27 0.22

confident 0.55 0.08 0.51
content 0.86 0.28 0.44

devastated -0.41 0.1 -0.4
disappointed -0.4 0.27 -0.24

disgusted -0.61 0.62 0.12
embarrassed -0.62 0.31 -0.46

excited 0.67 0.64 0.45
faithful 0.2 0.1 0.18
furious -0.63 0.7 0.31
grateful 0.8 0.3 -0.14
guilty -0.55 0.22 -0.52

hopeful 0.55 0.29 0.19
impressed 0.47 0.51 -0.06

jealous -0.15 -0.27 -0.08
joyful 0.81 0.57 0.37
lonely -0.33 -0.46 -0.51

nostalgic 0.16 -0.2 0.14
prepared 0.32 0.22 0.17

proud 0.78 0.47 0.46
sad -0.44 -0.12 -0.43

sentimental 0.09 -0.13 -0.11
surprised 0.58 0.79 -0.19
terrified -0.65 0.76 -0.6
trusting 0.07 0.15 0.23

Table 5: The PAD values of 32 emotions predicted by
our regression models. The 10 emotions that are miss-
ing from the original work in Table 4 are indicated with
bold font.

A.4 Combinatory Emotions Details
In Section 5.2, we propose a framework to find the
combinatory basic emotion pairs for each complex
emotion by calculating a weighted sum vector of
two basic emotion embeddings. Table 6 lists the
basis emotion pairs, weights, and cosine similarity
for 24 complex emotions derived by our framework.

Figure 7: The 3D plot from the PAD values in Table 5.

The weight indicates how much each basic emotion
in the pair contributes to the complex emotion and
can be interpreted in a proportional manner. For
example, Annoyed can be composed of 90% Angry
and 10% Anticipating.

c bi bj w cos
annoyed angry anticipating 0.9 0.80
anxious anticipating afraid 0.5 0.79

apprehensive anticipating afraid 0.3 0.76
ashamed sad disgusted 0.6 0.17

caring trusting sad 0.5 0.28
confident anticipating trusting 0.5 0.31
content joyful trusting 0.9 0.63

devastated surprised sad 0.1 0.93
disappointed sad angry 0.7 0.64
embarrassed disgusted angry 0.5 0.13

excited anticipating joyful 0.5 0.95
faithful trusting sad 0.9 0.59
furious angry trusting 0.9 0.98
grateful joyful trusting 0.8 0.56
guilty trusting sad 0.1 0.07

hopeful anticipating trusting 0.8 0.67
impressed surprised disgusted 0.9 0.40

jealous disgusted angry 0.3 0.02
lonely afraid sad 0.2 0.33

nostalgic anticipating joyful 0.1 0.04
prepared anticipating trusting 0.9 0.31

proud joyful surprised 0.9 0.45
sentimental trusting sad 0.1 0.33

terrified afraid surprised 0.9 0.98

Table 6: The combinatory basic emotion pairs for each
complex emotion.
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Abstract

This paper asks whether a distinction between
production-based and perception-based gram-
mar induction influences either (i) the growth
curve of grammars and lexicons or (ii) the simi-
larity between representations learned from in-
dependent sub-sets of a corpus. A production-
based model is trained on the usage of a
single individual, thus simulating the gram-
matical knowledge of a single speaker. A
perception-based model is trained on an ag-
gregation of many individuals, thus simulat-
ing grammatical generalizations learned from
exposure to many different speakers. To en-
sure robustness, the experiments are replicated
across two registers of written English, with
four additional registers reserved as a con-
trol. A set of three computational experiments
shows that production-based grammars are
significantly different from perception-based
grammars across all conditions, with a steeper
growth curve that can be explained by substan-
tial inter-individual grammatical differences.

1 The Role of Individuals in Usage-Based
Grammar Induction

This paper experiments with the interaction be-
tween the amount of exposure (the size of a train-
ing corpus) and the number of representations
learned (the size of the grammar and lexicon) un-
der perception-based vs production-based grammar
induction. The basic idea behind these experiments
is to test the degree to which computational con-
struction grammar (Alishahi and Stevenson, 2008;
Wible and Tsao, 2010; Forsberg et al., 2014; Dunn,
2017; Barak and Goldberg, 2017; Barak et al.,
2017) satisfies the expectations of the usage-based
paradigm (Goldberg, 2006, 2011, 2016). The in-
put for language learning, exposure, is essential
from a usage-based perspective. Does usage-based
grammar induction maintain a distinction between
different types of exposure?

A first preliminary question is whether the gram-
mar grows at the same rate as the lexicon when
exposed to increasing amounts of data. While the
growth curve of the lexicon is well-documented
(Zipf, 1935; Heaps, 1978; Gelbukh and Sidorov,
2001; Baayen, 2001), less is known about changes
in construction grammars when exposed to increas-
ing amounts of training data. Construction Gram-
mar argues that both words and constructions are
symbols. However, because these two types of rep-
resentations operate at different levels of complex-
ity, it is possible that they grow at different rates.
We thus experiment with the growth of a computa-
tional construction grammar (Dunn, 2018b, 2019a)
across data drawn from six different registers: news
articles, Wikipedia articles, web pages, tweets, aca-
demic papers, and published books. These exper-
iments are needed to establish a baseline relation-
ship between the grammar and the lexicon for the
experiments to follow.

The second question is whether a difference be-
tween perception and production influences the
growth curves of the grammar and the lexicon.
Most corpora used for experiments in grammar
induction are aggregations of many unknown indi-
viduals. From the perspective of language learning
or acquisition, these corpora represent a perception-
based approach: the model is exposed to snippets
of language use from many different sources in the
same way that an individual is exposed to many dif-
ferent speakers. Language perception is the process
of hearing, reading, and seeing language use (being
exposed to someone else’s production). These mod-
els simulate perception-based grammar induction
in the sense that the input is a selection of many
different individuals, each with their own grammar.

This is contrasted with a production-based ap-
proach in which each training corpus represents
a single individual: the model is exposed only to
the language production observed from that one
individual. Language production is the process of
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speaking, writing, and signing (creating new lan-
guage use). From the perspective of language ac-
quisition, a purely production-based situation does
not exist: an individual needs to learn a grammar
before that grammar is able to produce any output.
But, within the current context of grammar induc-
tion, the question is whether a corpus from just a
single individual produces a different type of gram-
mar than a corpus from many different individuals.
This is important because most computational mod-
els of language learning operate on a corpus drawn
from many unknown individuals (perception-based,
in these terms) without evaluating whether this dis-
tinction influences the grammar learning process.

We conduct experiments across two registers
that simulate either production-based grammar in-
duction (one single individual) or perception-based
grammar induction (many different individuals).
The question is whether the mode of observation
influences the resulting grammar’s growth curve.
These conditions are paired across two registers
and contrasted with the background registers in or-
der to avoid interpreting other sources of variation
to be a result of these different exposure conditions.

The third question is whether individuality is
an important factor to take into account in induc-
tion. On the one hand, perception-based models
will be exposed to language use by many different
individuals, potentially causing individual models
to converge onto a shared grammar. On the other
hand, production-based models will be exposed
to the language use of only one individual, poten-
tially causing individual models to diverge in a
manner that highlights individual differences. We
test this by learning grammars from 20 distinct cor-
pora for each condition for each register. We then
compute the pairwise similarities between represen-
tations, creating a population of perception-based
vs production-based models. Do the models ex-
posed to individuals differ from models exposed to
aggregations of individuals?

The primary contribution of this paper is to es-
tablish the influence that individual production has
on usage-based grammar induction. The role of
individual-specific usage is of special importance
to construction grammar: How much does a per-
son’s grammar actually depend on observed usage?
The computational experiments in this paper es-
tablish that production-based models show more
individual differences than comparable perception-
based models. This is indicated by both (i) a sig-

nificantly increased growth curve and (ii) greater
pairwise distances between learned grammars.

2 Methods: Computational CxG

The grammar induction experiments in this pa-
per draw on computational construction grammar
(Dunn, 2017, 2018a,b). In the Construction Gram-
mar paradigm, a grammar is modelled as an inven-
tory of symbols of varying complexity: from parts
of words (morphemes) to lexical items (words) up
to abstract patterns (NP -> DET N). Construction
Grammar thus rejects the notion that the lexicon
and grammatical rules are two separate entities,
instead suggesting that both are similar symbols
with different levels of abstraction. In the same
way as other symbols, the units of grammar in this
paradigm consist of a form combined with a mean-
ing. This is most evident in the case of lexical items,
but also applies to grammatical constructions. For
example, the abstract structure NP VP NP NP, with
the right constraints, conveys a meaning of transfer
(e.g. Kim gave Alex the book).

In order to extract a grammar of this kind compu-
tationally, an algorithm must focus on the form of
the constructions. For example, computational con-
struction grammars are different from other types
of grammar because they allow lexical and seman-
tic representations in addition to syntactic represen-
tations. On the one hand, this leads to constructions
capturing item-specific slot-constraints that are an
important part of usage-based grammar. On the
other hand, this means that the hypothesis space of
potential grammars is much larger. Representing
the meaning of these constructional forms is a sep-
arate problem from finding the forms themselves.

(a) NP-Simple -> DET ADJ N

(b) NP-Construction -> DET ADJ [SEM=335]
(c) “the developing countries"
(d) “a vertical organization"
(e) “this total world"

For example, a simple phrase structure grammar
might define just one version of a noun phrase as
in (a), using syntactic representations. But a con-
struction grammar could also define the distinct
NP-construction in (b), further constraining the se-
mantic domain. Thus, the utterances in (c) through
(e) are noun phrases that belong to this more con-
strained NP-based construction (where the semantic
constraint is represented as SEM=335).
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The grammar induction algorithm used here em-
ploys an association-based beam search to iden-
tify the best sequences of slot-constraints (Dunn,
2019a). While a grammar formalism like de-
pendency grammar (Nivre and McDonald, 2008;
Zhang and Nivre, 2012) must identify the head and
attachment type for each word, a construction gram-
mar must identify the representation type for each
slot-constraint. This leads to a larger number of
potential representations and the beam search has
been used to explore this space efficiently. Previous
work has used the Minimum Description Length
(MDL) paradigm (Goldsmith, 2001, 2006) to de-
scribe the fit between a grammar and a corpus as
an optimization function during training.

With the exception of the use of semantic rep-
resentations for slot-constraints, the meaning of
constructions is not taken into account here. This
is a necessary simplification. Nonetheless, it is im-
portant to remember that – to the extent that these
patterns are strong manifestations of association
across slots – it is likely that they each possess a
distinct meaning as well as a distinct form.

The experiments in this paper are centered on
sub-sets of corpora containing 100k words. This is
significantly less data than previous work (Dunn,
2018b). The idea is to measure the degree to which
the grammar itself changes when the induction al-
gorithm is exposed to a more realistic amount of
linguistic usage. Because the impact of training
size is not clear on the MDL metric, the grammars
in this paper are based on the beam search together
with an MDL-based metric for choosing the op-
timum threshold for the ∆P association measure
(Dunn, 2018c) used in the beam search. But a final
MDL-based selection stage is not employed.

Previous work represented semantic domains
using word embeddings clustered into discrete cat-
egories. To provide better representations for less
common vocabulary items, the embeddings here
are derived from fastText (Grave et al., 2019), us-
ing k-means (the number of clusters is set to 1 per
1,000 words). Thus, the assumption is that each lex-
ical item belongs to a single domain. Drawing on
the universal part-of-speech tag-set (Petrov et al.,
2012; Nguyen et al., 2016), semantic domains are
only applied to open-class lexical items, on the as-
sumption that more functional words do not carry
domain-specific information. The codebase for
grammar induction is open source.1

1https://github.com/jonathandunn/c2xg

ID Data Source Condition
AC-IND Academic Articles Production
PG-IND Published Books Production
AC-AGG Academic Papers Perception
PG-AGG Published Books Perception
TW-AGG Tweets Background
CC-AGG Web Crawled Background
WI-AGG Wikipedia Articles Background
NW-AGG News Articles Background

Table 1: Sources of Language Data

3 Data and Experimental Design

The basic experimental framework in this paper is
to apply grammar induction to independent sub-
sets of corpora drawn from different registers. We
find the growth curve of grammars and lexicons by
measuring the increase in representations as these
individual subsets are combined. In this case, we
examine the representations learned from between
100k and 2 million words in increments of 100k, for
a total of 20 observations per condition. Further, we
measure the convergence of grammars by quantify-
ing pairwise similarities within each condition. In
this framework, a condition is defined by the data
used for learning representations. For example,
we examine the convergence of grammars learned
from news articles by measuring pairwise similar-
ity across 200 randomly selected combinations of
unique sub-sets of the corpus of news articles.

Because of variation in registers, or varieties
associated with the context of production (Biber
and Conrad, 2009), some grammatical construc-
tions are incredibly rare in one type of corpus but
quite common in another type (Fodor and Crowther,
2002; Sampson, 2002). Along these same lines,
some registers have more technical terms and thus
a larger lexicon with more rare words. Both of
these factors mean that the relationship between
grammar and the lexicon could be an artifact of one
particular register. To control for this possibility,
the experiments in this paper are replicated across
six registers, as shown in Table 1.

First, corpora representing unique individuals
are taken from academic articles and from Project
Gutenberg. In this condition, each additional in-
crement of data represents a new speaker (e.g.
Dickens, followed by Austen, followed by James).
Second, corpora representing aggregations of in-
dividuals are taken from the same registers; the
difference here is that each additional increment
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of data does not represent a unique new speaker,
only an increased amount of language use. Third,
background corpora representing other aggrega-
tions of individuals are taken from tweets, web
pages, Wikipedia articles, and news articles. These
background corpora provide a baseline against
which we compare variation in production-based
vs perception-based models. Does any observed
difference between the production and perception
conditions fall within the expected range observed
within this baseline?

In the first condition, production, each increment
of data (100k words) represents the production of a
single individual. In other words, a model trained
on this sub-set of the corpus is a representation of
only that one individual’s production. A corpus
of academic articles is drawn from the field of his-
tory (Daltrey, 2020). This corpus represents the
AC-IND condition, meaning the Academic regis-
ter representing Individuals. A corpus of books
from Project Gutenberg is drawn from 20th cen-
tury authors. This corpus represents the PG-IND

condition, meaning the Project Gutenberg data or-
ganized by Individuals. Each grammar and lexicon
in this condition is trained on the production of a
single speaker.

In the second condition, perception, these
production-based corpora are contrasted with data
from the same registers in which each increment
of 100k words represents many unknown individ-
uals aggregated together. In other words, a model
trained on this sub-set of the corpus reflects the
perception of a single individual exposed to many
other speakers. The academic register is repre-
sented by the British Academic Written English
Corpus (Alsop and Nesi, 2009), drawn from profi-
cient student writing. This provides the AC-AGG

condition, representing the Academic register but
with each increment an Aggregation of many un-
known individuals. The register of books is drawn
from the same Project Gutenberg corpus, this time
with at most 500 words in each increment repre-
senting a single author. This ensures that there
is little individual-specific information present in
the corpus. This variant provides the PG-AGG con-
dition, representing Project Gutenberg data as an
Aggregation of many individuals.

To provide a baseline, these paired corpora are
contrasted with four further sources which repre-
sent an aggregation of many unknown individuals:
social media data from tweets (TW-AGG), web data

from the Common Crawl (CC-AGG), Wikipedia ar-
ticles (WI-AGG), and news articles, with no more
than 10 articles from the same publication per incre-
ment (NW-AGG). This range of sources ensures that
the experiments do not depend on the idiosyncratic
properties of a single register.

Each ID in Table 1 represents 2 million words,
divided into increments of 100k words. Representa-
tions are learned independently on each increment
in isolation. In other words, the grammar induc-
tion algorithm is applied to each increment of 100k
words, with no influence from the other sections
of the overall corpus. Thus, each grammar sim-
ulates the representations learned from exposure
to a fixed amount of language data. The amount
of exposure is held constant (at 100k words per
grammar), allowing us to measure the influence of
individuals (production) vs. aggregations of indi-
viduals (perception).

The growth of grammars and lexicons is simu-
lated by creating the union of these independent
sub-sets: for example, the grammar from Dick-
ens plus the grammar from Austen plus the gram-
mar from James. This means that, after observing
2 million words, the production-based condition
has observed the union of 20 different individuals.
This design is required to represent the production-
based condition because of the difficulty of find-
ing 2 million words for many different individuals.
This means that the perception-based condition at
2 million words samples from potentially tens of
thousands of speakers while the production-based
condition samples from just 20 speakers.

Thus, the growth curves potentially depend on
the order in which different samples are observed.
In other words, there is a chance that differences
between growth curves are artifacts of particular
orders of observation and not actual differences be-
tween corpora. To test this possibility, we simulate
growth curves from 100 random samples for each
condition. For each sample, we calculate the coef-
ficient of the regression between the amount of the
data and the number of representations, a measure
of the growth curve. This provides a population of
growth curves for each condition. We then use a
t-test to determine whether this sample of growth
curves represents a single population. In every case,
there is no difference. This gives us confidence that
the order of observations has no influence on the
final results; the curves reported here are averaged
across these 100 samples.
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4 Measuring Growth Curves and
Grammatical Overlap

The growth of the lexicon is expected to take a
power law distribution in which the number of lex-
ical items is proportional to the total number of
words in the corpus, as shown in (1). The chal-
lenge in understanding the rate of growth, then, is
to estimate the parameter α. The simplest method
is to undertake a least-squares regression using the
log of the size of the corpus and number of repre-
sentations, as show in (2). On some data sets, this
method is potentially problematic because fluctu-
ations in the most infrequent representations can
lead to a poor fit at certain portions of the curve
(Clauset et al., 2009). We validated the experiments
in this paper by conducting comparisons between
estimated α parameters and synthesized data fol-
lowing Heap’s law. These comparisons confirm
that the traditional least-squares regression method
provides an accurate measure of the growth curve.

p(x) ∝ x−α (1)

log p(x) = α log x+ c (2)

The first question is the degree to which there is
variation in the α parameter across representation
type (grammar vs lexicon) or condition (production
vs perception). For each case, such as perception-
based grammar induction from news articles, we
calculate the growth curve as described above using
least-squares regression on the mean growth curve.
We then report both the estimated α and the confi-
dence interval for determining whether differences
in the parameter values are significant.

dJ(A,B) = 1− |A ∩B||A ∪B| (3)

The second question is the degree to which the
representations from individual sub-sets of a corpus
agree with one another. To measure this, we use the
Jaccard distance between grammars, shown in (3).
To calculate the Jaccard distance, we first form the
union of the two grammars being compared and,
second, create a vector for each with binary values
indicating whether a particular item is present or
not present. The Jaccard distance then measures
the difference between these binary vectors, with
higher values indicating that there is more distance
between grammars and lower values indicating that
the grammars are more similar.

5 Experiment 1. Growth Curves Across
Grammar and the Lexicon

We begin by measuring the difference between
growth curves for the lexicon and for grammars.
Here we compare each of the six perception-based
conditions, to see the range of behaviours across
registers. This is shown in Figure 1, with the x axis
showing the increasing amount of data (from 100k
words to 2 million words) and the y axis showing
the increasing number of representations (to a max
of 80k lexical items). The red line represents the
grammar and the blue line represents the lexicon.
Each of the perception-based conditions (i.e., each
register) is represented by a separate plot.

This figure shows that the lexicon grows much
more quickly than the grammar. This is somewhat
expected because, even though both of them are
symbols in the Construction Grammar paradigm,
they are symbols of different complexity and may
have different behaviors. The other important ob-
servation is that lexical items can only be termi-
nal units in the slots of grammatical constructions,
which again suggests that the number of different
terminal units should be larger than the number of
grammatical constructions.

The growth of both lexicon and grammar is visu-
alized by the slope of the lines, with a steeper curve
showing quicker growth. Further, the grammar gen-
erally levels off, with the rate of growth slowing
more quickly as the amount of data increases. In
other words, as we observe new data, we are less
likely to continuously encounter new constructions
as we are to encounter new lexical items. There
is general agreement across registers, except that
the corpus of news articles shows a grammar that
grows much more quickly, reaching a total of 37k
constructions. This is a significantly larger gram-
mar than any of the other registers. We also see
variation in the lexicon, with the vocabulary on
Wikipedia growing at the quickest rate.

Which of these differences are significant? We
examine this in Table 2 by looking at the coeffi-
cient of a least-squares linear regression to esti-
mate the α parameter, as discussed above. Each α
is also shown with its confidence interval, outside
of which the difference is taken to be significant.
These regression results formalize what is visually
clear from the figure: the difference between gram-
mar and lexicon is quite significant. Because the r2

values of the regression are so high (Clauset et al.,
2009), it is also the case that there is a significant
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Figure 1: Growth Curve of the Lexicon Contrasted with the Grammar

Lexicon Grammar
Condition α [0.025 0.975] Max N Condition α [0.025 0.975] Max N
AC-AGG 0.776 [0.772 0.782] 67.4k AC-AGG 0.660 [0.657 0.664] 16.2k
PG-AGG 0.771 [0.764 0.780] 56.3k PG-AGG 0.652 [0.652 0.654] 13.3k
CC-AGG 0.782 [0.775 0.790] 67.2k CC-AGG 0.649 [0.648 0.651] 12.7k
NW-AGG 0.788 [0.782 0.795] 76.2k NW-AGG 0.721 [0.718 0.724] 37.7k
TW-AGG 0.793 [0.787 0.799] 82.9k TW-AGG 0.678 [0.676 0.680] 19.8k
WI-AGG 0.797 [0.793 0.803] 91.1k WI-AGG 0.657 [0.654 0.660] 15.2k

Table 2: α Parameters and Confidence Intervals for Growth Curve Estimation by Register

but less meaningful difference across registers in
both types of representation. The clearest of these
register-specific outliers are Wikipedia (for the lex-
icon) and news articles (for the grammar); only the
second of these is significantly different from all
other registers.

6 Experiment 2. Perception vs
Production in Growth Curves

Our next experiment takes a closer look at the dif-
ference in the growth curves under our two condi-
tions, production (structured around individuals)
and perception (structured around aggregations of
individuals). The results are shown in Figure 2,
again with the growth in number of representations
(types) on the y axis and the amount of data ob-
served (tokens) on the x axis. The top row presents
the lexicon and the bottom row the grammar. Fi-
nally, the blue line represents the perception condi-
tion while the red line represents the production or

individual condition.
The growth of the lexicon does not show any

striking differences. In the academic register (AC),
the perception condition shows a faster growth rate;
but in the book register (PG) the reverse is true.
But the growth of the grammar shows a marked
difference: the production-based grammar (in red)
grows more quickly in both conditions.

This is formalized in Table 3, showing the esti-
mated α parameters together with their confidence
intervals for testing significance. The lexical dif-
ferences, confirming what we see visually, are not
significantly different in either register (i.e., the
confidence intervals overlap, or very nearly do). So
the difference between production and perception
has no influence on the growth of the lexicon.

And yet the growth of the grammar across these
two conditions is significantly different in both reg-
isters, with an especially large difference in the
register of published books (PG). This significance
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Figure 2: Growth Curves for the Production and Perception Conditions

Lexicon Grammar
Condition α [0.025 0.975] Max N Condition α [0.025 0.975] Max N
AC-AGG 0.776 [0.772 0.782] 67.4k AC-AGG 0.660 [0.657 0.664] 16.2k
AC-IND 0.788 [0.784 0.792] 79.1k AC-IND 0.691 [0.686 0.697] 25.7k
PG-AGG 0.771 [0.764 0.780] 56.3k PG-AGG 0.652 [0.652 0.654] 13.3k
PG-IND 0.757 [0.751 0.764] 47.5k PG-IND 0.716 [0.714 0.719] 34.0k

Table 3: α Parameters and Confidence Intervals for Growth Curve Estimation by Condition

is shown by the confidence intervals on the estima-
tion of the α parameter; but it is also shown in the
final size of the grammars: 16.2 and 13.3k (AGG)
vs 25.7k and 34.0k (IND). In other words, given ac-
cess to data from just one individual, the grammar
contains more constructions than an equal amount
of data from an aggregation of individuals.

It is important to remember that the grammar in-
duction algorithm is applied independently to each
sub-set of the data. What this result shows, then, is
that there are considerable individual differences or
idiosyncrasies in the grammar but not in the lexicon.
In both registers, grammar induction based on the
production of individuals acquires more construc-
tions given the same amount of exposure. This is
important because most computational approaches
to language learning assume that speakers general-
ize toward a single shared grammar. This implies,
incorrectly, that the presence of many speakers in

the training corpora is irrelevant, perhaps with the
further constraint that each training corpus should
represent a single community and register (like
written British English).

7 Experiment 3. Perception vs
Production in Grammar Similarity

The previous experiments have focused on the size
and growth of the grammars without focusing on
the presence of individual representations (i.e., con-
structions). To what degree do the grammars from
each sub-set of a corpus overlap? Is there a signifi-
cant difference between the overlap of perception-
based and production-based representations? The
basic idea in this experiment is to take a closer
look at the higher growth curve in production-based
grammars identified in the previous experiment: it
is possible that a few of the grammars are unique,
thus contributing to a higher growth curve, without
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Figure 3: Distribution of Grammar Differences using Jaccard Distance

a pervasive uniqueness distributed across all of the
production-based grammars.

This experiment consists in creating pairs of
grammars under the two conditions. First, we sam-
ple 200 pairs drawn from each condition/register:
for example, a pair from different sub-sets of the
corpus of news articles. Second, we use Jaccard dis-
tance to measure the similarity of each pair. Each
comparison is made within a single register, thus
controlling for the possibility of register variation.
This provides a broader population of pairwise sim-
ilarities, allowing us to measure the uniqueness of
individual grammars in each condition.

We visualize the distribution of grammar simi-
larities using a violin plot in Figure 3. The distance
measure ranges from 1 (no overlap) to 0 (complete
overlap). The violin plot here shows the distri-
butions, with width representing the density for a
particular value and height representing the range
of values. This shows, for example, that the AC-
IND condition is not normally distributed. Rather,
it has a large range of values with two slight peaks.
The AC-AGG condition, however, is normally dis-
tributed, with a large peak at its mean (shown here
by the dotted line in the center).

The values for the Jaccard distances show that,
independently of condition, these pairs of gram-
mars are relatively dissimilar. There are many rea-
sons why this is the case, ranging from the amount
of data used to train each grammar to the possibil-
ity that constructional representations overlap with

slightly different slot-constraints. Putting aside the
baseline similarity that is observed using this par-
ticular measure, the larger point is that there is
a clear distinction between production-based and
perception-based grammars.

This figure shows a clear distinction between
the production-based (IND) and perception-based
(AGG) conditions. The grammars learned from indi-
viduals vary widely among themselves: some pairs
have a high overlap but others a low overlap. Fur-
thermore, the most similar pairs in the individual
conditions are as similar or less similar than the
average pair for the aggregated condition. This in-
dicates that there are individual differences in these
grammars, the same phenomenon that resulted in
the higher growth curves identified in the second
experiment above.

The perception-based grammars, however, have
a low degree of variation: the similarity measures
are centered densely around the mean because most
grammars have the same degree of similarity. This
means that the aggregated or perception-based con-
dition is forcing the induction algorithm to con-
verge onto more stable representations by exposing
it to many individuals. The inverse of this general-
ization is that individuals have unique or idiosyn-
cratic constructions which are only revealed when
the training corpus is centered around that individ-
ual. This finding fits well with studies in variation
(Dunn, 2019b), Dunn2019a which reveal the high
degree of syntactic differences across speech com-
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Condition Mean Variance
AC-IND 91.35 0.053
PG-IND 87.79 0.045
AC-AGG 85.08 0.009
PG-AGG 79.01 0.006
CC-AGG 79.33 0.005
TW-AGG 83.06 0.009
WI-AGG 84.76 0.008
NW-AGG 86.33 0.026

Table 4: Estimated Mean and Variation at Bayesian
Confidence Interval of 99% (Each *100 for readability)

munities.
We also notice in Figure 3 that the news register,

although part of the perception-based condition, is
not as densely centered as the other background
registers. This shows the importance of including
many registers in a study like this. The likely rea-
son is that different publications enforce their own
stylistic conventions. This data set is balanced to
ensure that no single publication venue accounts
for more than 10 of the articles in any sub-set of the
corpus. It remains the case, however, that the pres-
ence of a publication-specific style may simulate a
different distribution of grammar overlap.

We formalize this violin plot in Table 4 using
Bayesian estimates of the mean and variance for
each condition at a 99% confidence interval. Be-
cause the Jaccard distance is between 0 and 1,
we multiply each value by 100 to make the val-
ues easier to read. First, the mean distance in the
production-based condition is significantly higher
in each case; further, the production-based con-
ditions have a higher mean than any of the back-
ground conditions. Second and more importantly,
the variance for the production-based conditions
is greater by an order of magnitude than all other
conditions. Only the news register is close; and this
is still more similar to the other background data
sets than to the individual data sets. The variance is
important because it represents the range of overlap
caused by individual differences in the grammars.

These Bayesian estimates reinforce the visual-
ization and show that there is more variance and
thus more individual differences within grammars
that are trained from the production of a single indi-
vidual. This experiment thus confirms what is sug-
gested by the increased growth curves seen in the
second experiment: production-based grammars di-
verge into more individual-specific representations.

8 Discussion and Conclusions

The three computational experiments in this paper
have shown that there is a significant difference
between perception-based and production-based
grammar induction, even when these conditions
are contrasted across many registers. Grammars
based on individuals (i) have a significantly steeper
growth curve and (ii) a significantly more long-
tailed distribution of pairwise similarity. We have
also seen that the growth curve of the grammar
in general does not have the same α parameter as
the lexicon, but does still conform to the general-
izations provided by Heap’s Law. This supports
the idea of a continuum between grammar and the
lexicon, with the symbolic representations in the
grammar more complex and more abstract, thus
showing a slower growth curve.

The results obtained by the three experiments
overall reveal that, given a certain number of word
tokens, the number of constructions extracted is
higher if the sample is taken from one unique indi-
vidual as opposed to a set of unknown individuals.
For example, 100k words of data from academic
prose written by the same individual contain 1845
construction types, while the same amount of data
from a combination of individuals contains about
1512 construction types, a difference of 333. This
is not a trivial result: as a counter-factual, it would
also be plausible to expect that the aggregated data
would contain a wider variety of constructions be-
cause it represents a wider variety of individuals.
These results therefore suggest that the construc-
tions that are normally observed in traditional (ag-
gregated) corpora are just the tip of the iceberg:
there are many individual-specific constructions
that are never observed in aggregated production.
In other words, the uniqueness of individual con-
struction grammars is disguised when observing
the aggregated usage of many individuals.

These findings are consistent with the usage-
based proposal that the general grammatical rep-
resentation of a language emerges as a complex-
adaptive system (Beckner et al., 2009). The gram-
mars learned in the perception-based condition con-
tain fewer construction types and are relatively sim-
ilar to each other. However, these seemingly ho-
mogeneous grammars are in fact formed from the
shared usage across a number of different individu-
als. And, as shown in the production-based condi-
tion, these aggregated individuals on their own are
likely to use very different grammars.
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Abstract

Verbal prediction has been shown to be crit-
ical during online comprehension of Subject-
Object-Verb (SOV) languages. In this work
we present three computational models to pre-
dict clause final verbs in Hindi given its prior
arguments. The models differ in their use of
prior context during the prediction process –
the context is either noisy or noise-free. Model
predictions are compared with the sentence
completion data obtained from Hindi native
speakers. Results show that models that as-
sume noisy context outperform the noise-free
model. In particular, a lossy context model
that assumes prior context to be affected by
predictability and recency captures the distri-
bution of the predicted verb class and error
sources best. The success of the predictability-
recency lossy context model is consistent with
the noisy channel hypothesis for sentence com-
prehension and supports the idea that the re-
construction of the context during prediction is
driven by prior linguistic exposure. These re-
sults also shed light on the nature of the noise
that affects the reconstruction process. Overall
the results pose a challenge to the adaptability
hypothesis that assumes use of noise-free pre-
verbal context for robust verbal prediction.

1 Introduction

Research on sentence comprehension has con-
clusively established the widespread role of pre-
diction during online processing (e.g., Marslen-
Wilson, 1973; Altmann and Kamide, 1999; Staub
and Clifton, 2006; Kutas and Hillyard, 1984). It
is known that comprehenders actively anticipate
the upcoming linguistic material prior to receiving
that information during listening or reading (Luke
and Christianson, 2016; Staub, 2015). The role of
active prediction during comprehension has partic-
ularly been emphasized for processing of SOV lan-
guages (e.g., Konieczny, 2000; Yamashita, 1997;

*Equal contribution by KS and NB.

Friederici and Frisch, 2000). In particular, it has
been argued that preverbal nominal features such as
case-markers are effectively used to make precise
prediction regarding the clause final verb. Indeed,
the ADAPTABILITY HYPOTHESIS states that ow-
ing to the typological properties, the prediction
system in SOV languages is particularly adapted
to make effective use of preverbal linguistic mate-
rial to make robust clause final verbal prediction
(Vasishth et al., 2010; Levy and Keller, 2013). Ev-
idence for the adaptability hypothesis come from
various behavioral experiments that show effective
use of case-markers to make clause final verbal
prediction (e.g., Husain et al., 2014), facilitation
at the verb when the distance between the verb
and its prior dependent increase (e.g., Konieczny,
2000), and lack of structural forgetting in the face
of complex linguistic environment (e.g., Vasishth
et al., 2010). On the other hand, the NOISY CHAN-
NEL HYPOTHESIS assumes that prediction during
comprehension is required to accommodate uncer-
tainty in the input (Gibson et al., 2013; Kurumada
and Jaeger, 2015). In other words, the hypothesis
posits that comprehenders have the knowledge that
speakers make mistakes during production, hence,
comprehenders need to reconstruct the received
input (Ferreira and Patson, 2007).

The two hypotheses stated above make distinct
assumptions regarding the utilization of pre-verbal
context towards making clause final verbal predic-
tions in SOV languages. One way to operationalize
the predictions of the adaptability hypothesis is to
assume that the preverbal linguistic material will be
faithfully used to make verbal prediction, the noisy
channel hypothesis on the other hand, assumes that
the preverbal context is noisy and therefore subject
to reconstruction. One consequence of this would
be that the adaptability hypothesis would predict
that verbal prediction should be robust while the
noisy channel hypothesis would predict that ver-
bal prediction should be susceptible to errors. In
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addition, the two hypotheses would make distinct
prediction regarding the nature of errors that might
occur during clause final verbal prediction.

In order to probe the two hypotheses stated ear-
lier, in this work, we investigate various incremen-
tal models that use local linguistic features to pre-
dict clause final verbal prediction in Hindi (an SOV
language). The distribution of these model predic-
tions is compared with human data. In particular,
we investigate to what extent the models are able to
capture the nature of both grammatical as well as
ungrammatical verbal predictions when compared
to data collected from native speakers of Hindi.
Further, in order to probe the assumptions of the
noisy channel hypothesis more closely, we probe
multiple noise functions to investigate the nature of
preverbal context reconstruction during prediction.

The paper is arranged as follow, in Section 2
we briefly describe the experimental results that
we model. Section 3 provide the necessary details
regarding methodology (data/tools, model evalu-
ation, etc.). In Sections 4 and 5 we respectively
discuss the n-gram surprisal and the lossy-surprisal
models. Section 6 presents the results. Section 7
discusses the current findings and its implications.
We conclude the paper in Section 8.

2 Background

In spite of the proposed central role of verb pre-
diction during online processing of Hindi (e.g., Va-
sishth and Lewis, 2006; Agrawal et al., 2017; Hu-
sain et al., 2014), there is a surprising lack of any
modeling attempt to understand the processes that
subserve verbal predictions in the language. While
there are computational metrics that model read-
ing time data (e.g., Hale, 2001; Shain et al., 2016;
Futrell et al., 2020), a computational model that
makes precise verbal prediction in SOV languages
has not been investigated thoroughly (but see, Gris-
som II et al., 2016, for an initial attempt). Un-
derstanding the mechanisms that subserve verbal
prediction in SOV languages is critical to under-
standing how these languages are processed (cf.
Konieczny, 2000; Vasishth et al., 2010; Husain
et al., 2014; Levy and Keller, 2013; Kuperberg
and Jaeger, 2016). Our work fills this gap in the
literature. In this section we summarize the key
results of a recent study by Apurva and Husain
(2020) who investigated the nature of verbal pre-
diction in Hindi using a series sentence completion
studies (Staub et al., 2015). Later, in sections 4, 5

we present three computational models to account
for these results.

2.1 Completion Study Results
Apurva and Husain (2020) used the sentence com-
pletion paradigm (Taylor, 1953) to probe the nature
of clause final verbal prediction when differing
the number of preverbal nouns that precede the to-
be-completed target verb. The number of nouns
ranged from 1 to 3 and appeared in different case-
marker order. All preverbal nouns were proper
nouns. Example 1 shows some of the conditions
where 3 preverbal nouns preceded the target verb.
In the example, ne is the Ergative case-marker, ko
is the Accusative case-marker and se is the Ablative
case-marker. In all, there were 6 conditions in this
experiment (ne-ko-se, ne-se-ko, ko-ne-se, ko-se-ne,
se-ko-ne, se-ne-ko). 36 native speakers participated
in the 3-NP condition experiments. Similar to the
3-NP conditions, the 1-NP and 2-NP items had
proper nouns and the nouns occurred in various
case-marker order. 25 native speakers participated
in the 1-NP and 2-NP condition experiments.

(1) a. ne-ko-se
pooja-ne
Pooja-ERG

urmila-ko
Urmila-ACC

suneet-se
Suneet-ABL

. . .

. . .
b. ne-se-ko

pooja-ne
Pooja-ERG

urmila-se
Urmila-ABL

suneet-ko
Suneet-ACC

. . .

. . .

The key result from these completion studies
was that the number of ungrammatical verbal com-
pletions increased as the number of preverbal nom-
inals increased. For the 1-NP conditions the per-
centage ungrammatical completions was 4%, for
the 2-NP conditions this was 8%, while for the
3-NP conditions the ungrammatical completions
increased to 15%.

In addition, the completion data was also ana-
lyzed for the nature of grammatical and ungram-
matical verbal completions. Completions were an-
alyzed based on the verb classes rather than lexical
identity (cf. Luke and Christianson, 2016). The
data contains a distribution over a total of 18 verbs
classes for the 2-NP and 3-NP conditions. In ma-
jority of the grammatical completions, Hindi na-
tive speakers posit simple syntactic structures (in
terms of the number of clausal embeddings and
the number of core argument structure). For the
2-NP conditions, the topmost verb classes were T
(Transitive verb), IN (Intransitive verb), and DT
(Ditransitive verb). For the 3-NP conditions, CAUS
(Causative verb) and T DT (Transitive non-finite
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verb followed by a ditransitive matrix verb) were
consistently the most frequent, covering at least
50% of completions between them for all condi-
tions. Some of the other classes observed were DT,
N T DT, and DT DT. Interestingly, while the 3-NP
conditions can be grammatically completed using a
double embedded structure (e.g., IN DT DT), such
cases were not found in the completion data.

Among the ungrammatical verb completions
across various conditions, N DT, IN DT and CAUS
were consistently the most frequent verb classes
predicted. Similar to the trend in the grammati-
cal completions discussed above, the parser posits
simple structures even when making mistakes. Ad-
ditionally, a closer analysis of the ungrammatical
completions showed the formation of locally coher-
ent parses (Tabor et al., 2004) for the various 3-NP
conditions where the first noun was ignored and
only the 2nd and the 3rd nouns were used to make
the prediction (we call these N2-N3 errors). Other
errors were made when either N2 or N3 were ig-
nored to make the prediction (we call these N1-N3,
N1-N2 errors respectively). The errors also show a
subject primacy effect (Häussler and Bader, 2015;
Knoedler et al., 1999) where the presence of an
Ergative case marker on N1 is not forgotten. This
leads to lack of passive predictions in such cases.2

To sum up, the key results of the completion
studies were, (a) verb prediction was good in 1-NP
and 2-NP conditions, (b) predictions deteriorated
in 3-NP conditions, (c) grammatical verbal comple-
tions are syntactically simple rather than complex
(e.g., clausal embeddings are avoided), (d) error
types for the 3-NP conditions show use of two pre-
verbal NPs to make predictions, as well as being
sensitive to subject primacy.

Table 1 provides the details on the number of
grammatical and ungrammatical completions over
all conditions. Also see Table 3 for verb class
numbers for the 2-NP conditions. Table 2 shows
examples of various error types in the 3-NP condi-
tions.

3 Methodology

3.1 Data and Tools

We use the monolingual Hindi corpus developed
by IIT Bombay (Kunchukuttan et al., 2017). It is a

2See Sections 1 and 2 of the supplementary material for ad-
ditional details regarding the word order in Hindi, experimen-
tal conditions, predicted verb classes predicted and examples
of various errors during the completion study.

collection of raw sentences of Hindi taken from var-
ious sources (HindMonoCorp (Bojar et al., 2014),
BBC, Wikipedia etc.). For training our models, we
use the first 5 million sentences of this data. For
the sentence simplification step (described in the
Section 3.2), we use the ISC dependency parser
for Hindi.3 Moreover, as the sentence completion
experiment included only animate nouns in vari-
ous items (see Section 2), we use an additional
animacy annotation (Jena et al., 2013) to label the
nouns accordingly.

3.2 Sentence Simplification

A key aim of the behavioral experiments discussed
in Section 2 was to investigate the role of preverbal
arguments on clause final verbal prediction. Conse-
quently, our models had to be trained on sentences
with various features (e.g., case-marker, animacy)
of the preverbal arguments . Since the raw data may
contain other intervening material (nominal modi-
fiers, verbal adjuncts, etc.),4 the task necessitated
removal of such material from the training corpus
to render it more tractable to the appropriate com-
putational model. Thus, we simplify each sentence
in the training data by removing these intervening
materials while ensuring that the grammaticality
of the sentence remains intact.5 This, of course,
implies that the model only uses the local argument
structure to make the necessary verbal prediction.

The sentence simplification process preserves
verbal and nominal arguments, such as di-
rect/oblique objects, case-markers, and auxiliaries,
but removes adjective phrases, relative clauses, and
adjuncts. It treats conjunct structures as separate
components. It identifies intra-sentential noun el-
lipsis and truncates a sequence that displays such
a structure, while processing its other verbs. For
example:

police-ne
Police-ERG

giraftari
arrest

warrant
warrant

milne-ke
get-INF-ACC-GEN

baad
after

somwar
Monday

raat-ko
night

Ratan-ke
Ratan-GEN-ACC

vakeel-se
lawyer-ABL

3https://bitbucket.org/account/user/
iscnlp/projects/ISCNLP. It is an implementation of
the incremental transition-based arc-eager parsing algorithm
(Nivre, 2008). The parser is trained on the Hyderabad
Dependency Treebank (Bhatt et al., 2009) and is reported to
have a UAS of 93.52% and an LAS of 87.77% (Bhat, 2017)

4Refer to Section 3 of the supplementary material for statis-
tics on the same.

5Additional details regarding procedure and testing have
been provided in Section 4 of the supplementary material.
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Verb Class Grammatical completions Ungrammatical completions

T+DT 170 6
CAUS 140 9
N+DT+DT 51 1
DT+DT 24 0
T+T 21 0
N+CAUS 19 0
N+T+DT 17 5
DT 10 1
CAUS+T 5 0
CAUS+DT 4 0
IN+DT 2 8
T 2 5
N+DT 2 15
N+T 1 2
DT+IN 0 1
DT+T 0 1
IN 0 1
IN+DT 0 2
Other 7 4

Table 1: Grammatical and ungrammatical completions across all 2-NP and 3-NP conditions. v1+v2 signifies an
embedded structure with v1 as the embedded non-finite verb and v2 as the matrix verb. In the case of n+v1+v2, n
is part of the v1 non-finite clause and v2 is the matrix verb. IN: Intransitive, CAUS: Causative, T: Transitive, DT:
Ditransitive, N: Noun.

Error type Example
N1 N2 N1-ne N2-ko N3-se peeta tha

‘hit PAST’
N1 N3 N1-ne N2-ko N3-se kuchaa mangaa

‘something asked’
N2 N3 N1-se N2-ne N3-ko introduce kiya

‘introduce do’

Table 2: Sample completions for various error types
in some 3-NP conditions. Completions are underlined.
Note: the completions are grammatical if we ignore
the striked-out phrase; else they are ungrammatical.
ne=Ergative case-marker, ko=Accusative case-marker,
se=Ablative case-marker.

sampark-kiya-tha
communicate-P.Perf y
police-ne
Police-ERG

vakeel-se
lawyer-ABL

sampark-kiya-tha
communicate-P.Perf

We also flatten all the nouns in the data to “noun
tokens” by merging the noun and its corresponding
case-marker. Since we are interested in capturing
the variations of the completions for different or-
der of case-markers in the prompt, we can abstract
away from the lexicality of the nouns. Thus, we re-
place the nominal lexical item with its correspond-
ing label depending on whether it is animate (A)
or not (N). Such an abstraction is well motivated
considering that humans are known to be sensi-
tive to both syntactic part-of-speech tags as well as
lexical semantics during sentence processing (e.g.,
Demberg and Keller, 2008; Trueswell et al., 1994).

3.3 Experiment Design
Given the abstract nominals and their case-marker,
a model’s task is to complete the input string with
an appropriate verb phrase. For example, if the
model is given 3 noun tokens (each with a unique
case-marker) with the lexical item replaced with a
label A denoting animate, the task is to predict a
verb phrase from this context. End of prediction is
signalled as a punctuation.

We note that, given a context, the model makes
the prediction in an incremental fashion, rather than
producing a one-shot phrase. This means that once
a word is predicted, the model considers it as part
of the context for the prediction of the next word.
For example, given “A-ne A-ko A-se”, the model
completes the sentence with w1w2w3 in the follow-
ing manner:
A-ne A-ko A-se⇒ w1

A-ne A-ko A-se w1 ⇒ w2

A-ne A-ko A-se w1 w2 ⇒ w3

All implemented models discussed in Section 4
and Section 5, use the 1/2/3 preverbal arguments
as context. The rationale for use of local context is
driven by the goal to model the role of argument
structure in verbal prediction (see Section 2). In-
terestingly, the automatically parsed Hindi corpus
(Bojar et al., 2014) shows that arguments (when
compared to adjuncts) tend to be closer to the verb6

suggesting that the critical information needed to
6Arguments are at an average distance of 3.8 from the verb

while adjuncts have mean dependency distance of 4.5.
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Cond M Vc Total VC count Cond M Vc Total VC count Cond M Vc Total VC count

n1c1n2c1 COP 1 3 n1c2n2c4 DT 8 23 n1c3n2c4 T 71 84
n1c1n2c1 T 2 3 n1c2n2c4 T 14 23 n1c4n2c1 IN 10 23
n1c1n2c3 DT 3 22 n1c3n2c1 DT 3 22 n1c4n2c1 T 13 23
n1c1n2c3 T 19 22 n1c3n2c1 T 19 22 n1c4n2c2 CAUS 8 82
n1c1n2c4 COP 4 23 n1c3n2c2 DT 30 89 n1c4n2c2 DT 32 82
n1c1n2c4 EXP 2 23 n1c3n2c2 T 59 89 n1c4n2c2 IN 2 82
n1c1n2c4 IN 3 23 n1c3n2c3 DT 2 6 n1c4n2c2 T 40 82
n1c1n2c4 T 14 23 n1c3n2c3 T 4 6 n1c4n2c3 CAUS 2 77
n1c2n2c1 DT 4 21 n1c3n2c4 CAUS 1 84 n1c4n2c3 DT 5 77
n1c2n2c1 T 17 21 n1c3n2c4 COP 1 84 n1c4n2c3 T 70 77
n1c2n2c3 DT 6 24 n1c3n2c4 DT 1 84 n1c4n2c4 T 1 1
n1c2n2c3 T 18 24 n1c3n2c4 EXP 5 84
n1c2n2c4 CAUS 1 23 n1c3n2c4 IN 5 84

Table 3: 2-NP Predictions: c1=Nom, c2=Erg, c3=Acc, c4=Abl; IN: Intransitive, CAUS: Causative, T: Transitive,
DT: Ditransitive, N: Noun. ‘Total’ refers to the number of instances of the condition, ‘VC count’ refers to the
number of instances of the corresponding verb class.

predict the verb should be accessible locally. In
addition, we place an upper limit on the no. of
predicted words – 2 words for 2-NP conditions and
3 for 3-NP.7 Given the cognitive validity of limited
beam-size (e.g., Boston et al., 2011), we only pick
the top 50 predictions for further analyses.

Both human and model completions are man-
ually annotated with verb classes based on the
valency of the predicted verb. In addition, any
nominal argument prediction was also annotated.
Verb classes were labeled as IN (intransitive), T
(transitive), DT (ditransitive), CAUS (causative), or
combinations of the above in case a combination
of non-finite and matrix verbs is predicted.

For example, the following phrase contains a
transitive verb preceded by its object noun:

(2) khaana
food

khaaya
eat-PT

−→ N T

Verb classes are used for comparing model out-
put with human data as predictions are known to
be graded rather than all-or-nothing lexical predic-
tion (Luke and Christianson, 2016; Staub, 2015).
Additionally, we don’t predict the verb classes di-
rectly to keep the model output consistent with the
human data. These completions are then labelled
for grammaticality automatically; given the prompt
condition and the verb class of the completion, we
can infer the grammaticality of the sentence.8

7No significant change in the set of predictions was ob-
served on increasing these numbers any further.

8We use information from our human-annotated comple-
tion data as well as native speaker knowledge to construct
an exhaustive list of valid completions per condition for this
purpose.

3.4 Model Evaluation

All the models are evaluated by comparing the
model output with the sentence completion data ob-
tained from the native speakers; specifically, model
output is evaluated in terms of the nature of the
predicted verb class. We let VC denote the set of
all verb-classes, h(x) denotes the probability distri-
bution of verb-class predictions made by humans,
and m(x) denotes the corresponding distribution
of the model. We measure KL-divergence between
these two distributions, replacing zero probabilities
with a fixed value9 (= 10−5); this is shown in (1)

KLp(h||m) = KL(h||m′) (1)

where KL denotes the KL-divergence and m′ is a
distribution such that m′(x) = max (m(x), 10−5)
for each x ∈ VC.

Apart from this primary measure, we use two
other metrics F and D to quantify the span and
quality of model predictions with respect to the pre-
dicted verb classes, respectively, in order to better
understand these characteristics of each model (see
Section 6.1).

Further, to ascertain a qualitative understanding
of the model performance, we also evaluate each
model on the basis of the following characteristics
that are displayed in the completion data discussed
in Section 2:

• Deterioration in the number of grammatical
completions on the 3-NP conditions compared
to the 2-NP conditions

9It is equal to the minimum probability that we allowed in
our model predictions
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• Within the grammatical completions, a pref-
erence for simpler structures as opposed to
complex or embedded constructions

• Exhibition of similar types of errors as hu-
mans; for example, in 3-NP conditions, N1-
N2 errors, as well as a sensitivity to subject
primacy with the Ergative case.

For the 3-NP conditions, we classify errors into
types based on their compatibility with a 2-NP
sub-context (N1-N2, N1-N3, N2-N3). For exam-
ple, an error type of N1-N2 would mean that the
corresponding ungrammatical prediction is com-
patible only with first two NPs and not the full
3-NP context. This scheme follows the error types
found in the completion data discussed in Section 2.
Additionally, see Section 2 of the supplementary
material for examples of various errors.

4 N -gram Based Surprisal Model

In order to evaluate the adaptability hypothesis
where the prediction of upcoming verb is driven
by local nominal arguments, we implement an n-
gram language model using the data discussed in
Section 3.2. Such models are typically used to com-
pute the surprisal metric (Hale, 2001; Levy, 2008)
given local context (e.g., Levy et al., 2012). Recall
that we have at most 3 NPs as the preverbal con-
text, and therefore, we use a 4-gram model so that
the model has access to the complete context in a
given condition to make a verbal prediction. Unlike
the models discussed in Section 5, the preverbal
context in this model is free of noise.

5 Lossy-context Surprisal Models

In this section, we discuss two models to test the
noisy channel hypothesis. As stated in Section 1,
the underlying assumption is that human commu-
nication is noisy (Gibson et al., 2013; Kurumada
and Jaeger, 2015) and the comprehender has to
reinterpret the input to make prediction about up-
coming linguistic material. In order to evaluate this
hypothesis, we implement different versions of the
lossy-context surprisal metric (Futrell et al., 2020).
Lossy-context surprisal holds that processing diffi-
culty at a word in a context is proportional to the
surprisal of a word given a lossy memory represen-
tation of the context. The two models discussed
in sections 5.1 and 5.2 differ in their noise func-
tions that affect the interpretation of the preverbal
context.

For the current investigation, lossy-context
surprisal is extended to model the sentence-
completion task. The word with the highest prob-
ability in a given context is assumed to be most
likely to complete the sentence (cf. Staub et al.,
2015; Levy, 2008; Smith and Levy, 2013).

As noted by Futrell et al. (2020), the lossy sur-
prisal model is not representation-agnostic. Its pre-
dictions are dependent on a noise distribution (M).
One can then obtain:

p(w|r) ∝
∑

c

pM (r|c)p(c)pL(w|c), (2)

where w is the predicted word and r is the result of
adding noise to the context c. Here, we consider L
to be a 4-gram model, same as the one discussed
in Section 4. Moreover, for c = w1w2 · · ·wn we
calculate p(c) also using L

p(c) =

n∏

i=1

pL(wi|wi−3wi−2wi−1)

In addition, if |c| = n ≤ 2, we don’t add
any noise to the context and simply use the n-
gram model L for prediction. In other words, if
c = w1w2 or c = w1, then we consider p(w|r) =
pL(w|c). Since we only consider erasure-based
noise distributions, this is done to ensure that the
whole context is not lost during prediction. In order
to get an average behavior of the model, we run the
model 10 times and then take the top 50 predictions
based on the total probability of each prediction.
In other words, suppose a phrase s is predicted to
follow a given preverbal arguments in a condition.
Then, the total probability of s to be predicted in
the given condition by the average model is equal
to 1

10

∑10
i=1 pi(s), where pi(s) denotes the proba-

bility of prediction s in the ith run. Note that if s
is not predicted in the ith run, then pi(s) = 0. In
the next subsections, we present two models with
different noise distribution.

5.1 Predictability Bias Noise (LC-Surp
Pred-Bias)

We first consider a noise distribution such that the
context is reconstructed based on the predictability
of a sub-context. This is driven by the idea that
reconstruction of context given a noisy input will
be influenced by prior linguistic exposure (Futrell
et al., 2020). When the input is less frequent, its
reconstruction will be influenced by frequent lin-
guistic patterns in the language. Note, however,
that a single word is obviously more frequent than
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two. Hence, we needed to control for the reduc-
tion in the size of the context that may arise due
to this predictability bias. We do this by selecting
sub-contexts based on their size with a preference
to a larger size. Starting from the complete context,
we thus iteratively reduce the size by 1 with a high
probability (d = 0.8).10 Thus, a sub-context of size
m is considered with a probability dn−m where m
is the size of the corresponding context. Hence,

pM (r|c) ∝ dn−mpL(r) (3)

5.2 Predictability Recency Noise (LC-Surp
Pred-Rec)

We next consider a noise distribution which ex-
ploits both predictability bias as well as recency. It
is well attested that recent input is easier to retrieve
from memory compared to non-recent input (e.g.,
Lewis and Vasishth, 2005). The function there-
fore is motivated by the fact that while previous
linguistic exposure should influence context recon-
struction (Futrell et al., 2020), this reconstruction
should bias recent linguistic material. In a way, this
model combines the properties of the Predictability
bias noise model and the n-gram surprisal model.

The conditional probability p(r|c), here, thus
can be seen as the multiplication of two parts -
(a) predictability of r, pL(r); and (b) decaying
erasure factor, prec(r|c). Let c = w1w2 · · ·wn,
r = wi1wi2 · · ·wik for some n, k, then

pM (r|c) ∝
n−k∏

j=1

fn−ijpL(r), (4)

where f is a constant fixed at 0.8.11

Thus, a context which is both predictable and
can be formed from a recent subcontext is favored.
The further a word is from the last uttered word, the
lesser its likelihood of being a part of the reduced
context r.

6 Results

Table 4 compares the verb class results for the three
models discussed above. The key finding is that the
values of KLp for the LC-Surp Pred-Rec model is
lower than the other models for most of the condi-
tions. This suggests that the model performs better
in capturing the verb class distribution found in the
human data.

10We also evaluated the model with d = 0.9 but the model
with d = 0.8 gave better results.

11Following the value fixed for d in Section 5.1.

Condition 4-gram
LC-Surp
Pred-Bias

LC-Surp
Pred-Rec

ne-ko-se 6.05 5.97 3.93
ne-se-ko 7.00 9.14 5.32
ko-ne-se 9.40 9.39 9.40
ko-se-ne 8.25 8.53 8.24
se-ko-ne 5.38 7.87 5.35
se-ne-ko 8.57 8.52 8.37

Average 7.44 8.24 6.77

Table 4: Comparison of the considered models for
each condition based on the KLp metric (Equation 1)
rounded to 2 places. Smaller (bold) means better.

In order to test if the improvement seen in the
LC-Surp Pred-Rec model is indeed significant, we
also performed the chi-square test to see if the cate-
gories of verb class predicted in the LC-Surp Pred-
Rec model were significantly different from other
models. Results showed that this was indeed true
– categories of verb classes in the LC-Surp Pred-
Rec model were significantly different (p < 0.05)
from both 4-gram model and the LC-Surp Pred-
bias model.12

KLp provides a measure to quantify the diver-
gence between the human and model prediction
distributions. However, the nature of this diver-
gence is still unclear. In order to understand the
output of the models better, we evaluate them on
some additional metrics. Finally, we report a quali-
tative analysis of the model output.

6.1 Span and Quality of the Models

In this section we assess the span and quality of the
predictions made by the models when compared to
the human data.

The span of verb prediction made by the model
can be computed by the proportion of human dis-
tribution that the model misses on. Formally,

F (h||m) ∝
∑

x∈VC
m(x)=0

h(x) (5)

Since the model will not be able to predict all
verb classes that humans produce, we formulate a
metric to evaluate the quality of the predictions
that the model makes. For this, we restrict the verb
classes to only those that are predicted by the model
and find the KL-divergence (Kullback and Leibler,

12See Section 5 of the Supplementary material for details.

166



Condition
4-gram

LC-Surp
Pred-Bias

LC-Surp
Pred-Rec

F D F D F D

ne-ko-se 0.58 2.42 0.58 2.30 0.31 2.15
ne-se-ko 0.68 2.12 0.94 0.50 0.31 4.06
ko-ne-se 0.96 0.33 0.96 0.35 0.96 0.25
ko-se-ne 0.87 0.32 0.90 0.37 0.87 0.23
se-ko-ne 0.51 2.05 0.83 0.96 0.43 2.87
se-ne-ko 0.90 0.23 0.90 0.35 0.88 0.15

Average 0.75 1.99 0.85 1.63 0.63 2.91

Table 5: Comparison of the considered models for each
condition based on the metrics F , D as defined in Equa-
tions 5, 6. Smaller means better (bold represents the
best in that row for each metric).

1951) on those verb classes between the model and
the human; this is shown in (6)

D(h||m) =
∑

x∈VC
m(x)6=0

h′(x) log
h′(x)
m(x)

(6)

where h′(x) is normalized from h(x) after re-
moving x where m(x) = 0.

Note that higher the F , lower is the model’s
span; and similarly, higher the D, lower is its qual-
ity of predictions (as compared to humans). Table 5
shows that for both F and D, the LC-Surp Pred-
Rec model consistently outperforms the LC-Surp
Pred-Bias and the 4-gram surprisal model. This
suggests that when compared to the human data,
the LC-Surp Pred-Rec is better in predicting the
valid verb class both in terms of span and the qual-
ity of the predictions.

6.2 Qualitative Analysis
In order to interpret the metrics mentioned in Ta-
ble 5, we did a detailed analysis of the model output
in terms of the nature of verb class and the type of
prediction errors. This is summarized in Table 6.
One can note that

• Grammaticality in all models drops in 3-NP
conditions as compared to 2-NP conditions,
in line with the human data (cf. Section 2) 13.

• The models prefer simple outcomes, and
largely predict DT , CAUS (grammatical)
and T , N DT (ungrammatical).

Investigating the reason for the better span of the
Pred-Rec model, we find that it is primarily due
to the important T DT verb class. This embedded

13See Section 5 of the supplement for actual percentages.

structure is often used by humans, and neither of
the 4-gram or the Pred-Bias model managed to pre-
dict it; thus, we can link the better span numbers of
the Pred-Rec model to an observable improvement
in the nature of verbal predictions.

We also study the error types made by the models
and compare them to human errors. The 4-gram
model by its nature is only capable of making the
locally coherent N2-N3 errors, whereas both the
Pred-Bias and Pred-Rec models produce N1-N3
and N1-N2 errors as well. However, while the
human data was sensitive to the subject primacy
effect – presence of Ergative case-marker never
lead to passive verb completion; none of the models
is able to fully replicate this pattern. However,
the 4-gram model produces the least percentage
of passives, followed by the Pred-Rec model. See
Section 6 of the supplementary material for more
details about error types.

7 Discussion

Results show that the Lossy context surprisal model
with Predictability Recency Bias noise performs
best in terms of the distribution of predicted verbs
and the error types vis-à-vis the completion data.
This provides support for the noisy channel hy-
pothesis and poses a challenge to the adaptability
hypothesis. In addition, the comparison of the two
lossy surprisal models sheds light on the nature of
the noise during the reconstruction process.

Results show that qualitatively all the models
capture the completion data to a certain extent
(see, Section 6.2). At the same time, overall the
noisy context models performed better than the n-
gram model in two clear ways. First, the models
were able to capture the differential nature of case-
marker combination in a limited context. This leads
to better coverage of error sources (both in terms
of errors made and not made). Second, the models
were therefore also better at making better verb
predictions compared to the n-gram model. In par-
ticular, the overall success of the Pred-Rec model
showed that reconstruction of the noisy context in
influenced by both past exposure of preverbal sub-
context and the recency of the context (cf. Futrell
et al., 2020). Put differently, the reconstruction of
the context is driven by sub-strings that are more
frequent (e.g., ne-ko) and that are closer to the verb.
Critically, this shows that the reconstruction pro-
cess is not random.14

14In addition to the two noise functions reported in Sec-
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Characteristic 4-gram LC-Surp Pred Bias LC-Surp Pred-Rec

Gm% (2-NP) > Gm% (3-NP) Yes Yes Yes
Grammatical classes DT, CAUS DT, CAUS DT, CAUS, T DT

Embeddings predicted No No Yes
% of passives 2.5% 4.2% 3.1%
Errors made Only N2 N3 errors All error types All error types

Table 6: Qualitative analysis of the models’ predictions. The best/desired outcomes appear in bold font. Gm%
denotes the proportion of grammatical completions predicted. High % of passives signifies insensitivity to subject
primacy.

While the performance of the predictability re-
cency model is good, it suffers from three issues
(a) it overestimates the number of errors made by
humans, (b) its overall coverage for various verb
class is low, and (c) it is insensitive to subject pri-
macy. The model is able to successfully predict
verb phrase involving no clausal embedding, and
to a limited extent, those with embeddings. While
certain complex structures such as N DT DT, pre-
dicted rarely by humans, are dropped entirely by
the model, its prediction for the T DT structure
which is frequent in the completion data is not that
high. An investigation into the data also shows a
scarcity of training examples that exhibit an ani-
mate 3-NP context followed by such T DT contin-
uations.15 One reason for this could be the size
of the training data, currently 5 million sentences;
future work can train on a larger data set. Another
possibility is that certain patterns in the human data
are not captured in the written corpus used for train-
ing and requires a dialogue corpus. Unfortunately,
such a corpus currently does not exist for Hindi
and attempts to modeling using such a data will
have to wait its availability. Relatedly, Staub et al.
(2015) argue that prediction based on corpus fre-
quency of syntactic information may not be able to
fully capture the notion of preactivation during the
completion task. Hence, future work will need to
incorporate other sources of information. Finally,
the results show that the 4-gram model is more
sensitive to subject primacy. This is because, the
4-gram model (unlike noisy context models) has ac-
cess to the N1 features when making predictions. It
can thus correctly use the N1 case feature to avoid
predicting passive verbs. This suggests that a noise
function relying only on local information will be
limited in accounting for the current data.

tion 5, we also investigated a purely random noise function.
Due to space constraint, details of this model have been men-
tioned as supplementary material (Section 7).

15See Section 3 of the supplementary material for more
details on training data.

The current work provided the first set of de-
tailed results towards modeling clause final verb
prediction in an SOV language. The work demon-
strated the effectiveness of lossy surprisal models
and probed the nature of the noise function dur-
ing the reconstruction process. In addition to the
quantitative analyses demonstrating the success of
the Predictability Recency lossy surprisal model, a
key contribution of the work was that it highlighted
the nature of model’s closeness to the human data,
both in terms of verb class prediction and the er-
ror type. Overall, the results support the proposals
that highlight the detrimental effect of increased
complexity of the preverbal linguistic material in
SOV languages (e.g., Gibson et al., 2013; Ueno
and Polinsky, 2009; Ros et al., 2015; Yadav et al.,
2020). Future models need to explore other noise
functions to investigate the interaction of context
predictability with recency as well as primacy of
non-local information (e.g., subject). Further, these
models need to be tested to investigate the effect of
distance (e.g., Vasishth and Lewis, 2006) and struc-
tural complexity (Vasishth et al., 2010) on verbal
prediction in SOV languages.

8 Conclusion

We implemented three models to predict clause fi-
nal verbs in Hindi. Model outputs were compared
with verb predictions of native speakers of Hindi
using quantitative measures as well as qualitatively.
Results show that the model that uses limited pre-
verbal context with a predictability recency bias
noise function captures the distribution of human
data best. The success of this model is consistent
with the idea that the reconstruction of the noisy
context during prediction is influenced by prior lin-
guistic exposure and that this process interacts with
recency of input. These results support the noisy
channel hypothesis to language comprehension.

168



References
Arpit Agrawal, Sumeet Agarwal, and Samar Husain.

2017. Role of expectation and working memory con-
straints in hindi comprehension: An eyetracking cor-
pus analysis. Journal of Eye Movement Research,
10(2):1–15.

G. T. Altmann and Y. Kamide. 1999. Incremental inter-
pretation at verbs: Restricting the domain of subse-
quent reference. Cognition, 73:247–256.

Apurva and Samar Husain. 2020. Parsing errors in
hindi: Investigating limits to verbal prediction in an
sov language. In submission.

Riyaz Bhat. 2017. Exploiting Linguistic Knowledge to
Address Representation and Sparsity Issues in De-
pendency Parsing of Indian Languages. Ph.D. the-
sis, IIIT Hyderabad India.

Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. A multi-representational and multi-layered
treebank for hindi/urdu. In Proceedings of the Third
Linguistic Annotation Workshop (LAW III), pages
186–189.
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Abstract

This paper compares two influential theories
of processing difficulty: Gibson (2000)’s De-
pendency Locality Theory (DLT) and Hale
(2001)’s Surprisal Theory. While prior work
has aimed to compare DLT and Surprisal The-
ory (see Demberg and Keller, 2008), they have
not yet been compared using more modern and
powerful methods for estimating surprisal and
DLT integration cost. I compare estimated sur-
prisal values from two models, an RNN and
a Transformer neural network, as well as DLT
integration cost from a hand-parsed treebank,
to reading times from the Dundee Corpus. The
results for integration cost corroborate those of
Demberg and Keller (2008), finding that it is a
negative predictor of reading times overall and
a strong positive predictor for nouns, but con-
trast with their observations for surprisal, find-
ing strong evidence for lexicalized surprisal as
a predictor of reading times. Ultimately, I con-
clude that a broad-coverage model must inte-
grate both theories in order to most accurately
predict processing difficulty.

1 Introduction

Computational theories of language processing
difficulty typically argue for either a memory or
expectation-based approach (Boston et al., 2011).
Memory based models (eg. Gibson, 1998, 2000;
Lewis and Vasishth, 2005) focus on the idea that
resources are allocated for integrating, storing, and
retrieving linguistic input. On the other hand,
expectation-based models (eg. Hale, 2001; Juraf-
sky, 1996) propose that resources are proportion-
ally devoted to maintaining different potential rep-
resentations, leading to an expectation-based view.
(Levy, 2008, 2013; Smith and Levy, 2013).

Here, I focus on one representative theory from
each group. The first is the Dependency Locality
Theory, or DLT, which was initially proposed by
Gibson (2000). The DLT quantifies the processing
difficulty, or integration cost (IC) of discourse ref-

erents (i.e. nouns and finite verbs), as the number
of intervening nouns and verbs between a word and
its preceding head or dependent, plus an additional
cost of 1. Thus, the IC is always incurred at the
second word in the dependency relation in linear
order. This is shown in Figure 1. Note that IC only
assigns a non-zero cost to discourse referents.

Meanwhile, Hale (2001) and Levy (2008)’s Sur-
prisal Theory formulates the processing difficulty
of a word wn in context C = w1 . . . wn−1 to be its
information-theoretic surprisal, given by

difficulty(wn) ∝ − log2 P (wn | C) (1)

so that words that are more likely in context will
then be assigned lower processing difficulties.

Some work has attempted to compare DLT and
surprisal as competing predictors of processing dif-
ficulty. Most notably, Demberg and Keller (2008)
compared processing difficulties from DLT and
surprisal to the Dundee Corpus (Kennedy et al.,
2003), a large corpus of eye-tracking data. Specif-
ically, they examined lexicalized surprisal (where
the model assigned probabilities to the words them-
selves), unlexicalized surprisal (where the model
only had access to parts of speech), and integration
cost. They found that unlexicalized surprisal was a
strong predictor of reading times, while IC and lex-
icalized surprisal were weak predictors. They also
observed that IC was a strong positive predictor of
reading times for nouns, and found little correlation
between IC and surprisal.

Notably, however, Demberg and Keller’s study
relied on older methods of calculating surprisal,
using a probabilistic context free grammar (PCFG).
Other similar work (eg. Smith and Levy, 2013)
has used n-gram models, which do not account for
structural probabilities. Computational language
models (LMs) such as n-grams and PCFGs are sub-
optimal for estimating the probabilities of words in
context compared to humans.
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The reporter who the senator attacked t admitted the error
IC 0 1 0 0 1 3 3 0 1

Figure 1: Dependency Locality Theory integration costs

However, recent work in neural network lan-
guage modeling has shown that recurrent neural
networks (RNNs) and Transformers are capable
not only of learning word sequences, but also un-
derlying syntactic structure (Futrell et al., 2019;
Gulordava et al., 2018; Hewitt and Manning, 2019;
Manning et al., 2020). This makes them suited for
more accurate estimations of surprisal.

In this paper, I examine the correlation between
reading times, DLT integration cost, and surprisal.
Specifically, I compare results from a manually
parsed treebank for IC and two neural LMs for
surprisal, to eye-tracking times sourced from the
Dundee Corpus. I additionally examine the corre-
lation between IC and surprisal.

2 Methods

The method in this study is similar to that of prior
work on empirically testing theories of sentence
processing (eg. Demberg and Keller, 2008; Smith
and Levy, 2013; Wilcox et al., 2020), using reading
time data in order to estimate processing difficulty.

2.1 Corpus
Specifically, I used a large corpus of eye-tracking
data, the Dundee Corpus (Kennedy et al., 2003).
The corpus consists of a large set of English data
taken from the Independent newspaper. Ten En-
glish speaking participants read selections from
this data, comprised of 20 unique texts, and their
reading times were recorded. The final corpus con-
tained 515,020 data points.

As with other work done on reading times (see
Demberg and Keller, 2008; Smith and Levy, 2013),
I excluded data from the analysis if it was one
of the first or last in a sentence, contained non-
alphabetical characters (including punctuation),
was a proper noun, was at the beginning or end
of a line, or was skipped during reading. I also
excluded the next three words that followed any

excluded words to account for spillover in the re-
gression. This left me with 383,791 data points.
For the RNN, I additionally removed any data (and
the three following words) that was not part of the
Wikipedia vocabulary.

As a second analysis, I restricted the data solely
to nouns, as well as to nouns and verbs (see Dem-
berg and Keller, 2008), given that DLT only makes
its predictions for discourse referents.

2.2 Integration Cost
For calculating IC, I used the Dundee Treebank
(Barrett et al., 2015), a hand-parsed Universal De-
pendencies style treebank of texts from the Dundee
Corpus. This hand-parsed dataset is more accu-
rate than the automatic parser used by Demberg
and Keller (2008). To account for syntactic traces,
which are not explicitly marked in the annotation,
I added traces based on the dependency relations
in the parsed sentence. Traces contributed a cost
of one as intervening referents, and were added
after the following UD relations: acl:relcl, ccomp,
dobj, nsubj:pass, and nmod, as in Howcroft and
Demberg (2017).

2.3 Surprisal Models
I used two language models (LMs) to calculate Sur-
prisal. While earlier work has relied on PCFGs and
n-grams to estimate surprisal, some recent work
suggests that these neural models are capable of
learning and generating syntactic representations
to the same degree as grammar-based LMs (van
Schijndel and Linzen, 2018). Thus, I used neural
LMs in order to generate probability distributions
without explicitly encoding symbolic syntax.

The first model was a recurrent neural network
(RNN) model from Gulordava et al. (2018) trained
on 90 million words of English Wikipedia.1 The

1The RNN consisted of two LSTM layers with 650 units
each, with a batch size of 128 and a dropout rate of 0.2.

172



All Data Nouns

RNN GPT-2 RNN GPT-2

Coeff. p Coeff. p Coeff. p Coeff. p

Intercept 164.1 *** 170.0 *** 144.0 *** 154.6 ***
s0 1.847 *** 1.606 *** 1.752 *** 1.561 ***
s1 1.738 *** 0.853 *** 2.042 *** 0.864 ***
IC –0.823 *** –0.767 ** 1.374 * 1.593 *
IC1 –0.566 –0.1332 0.154 –0.957

Table 1: Combined Surprisal and IC regression. *** p < 0.001, ** p < 0.01, * p < 0.05.

Figure 2: GAM plots from RNN (blue) and GPT-2 (red) surprisals at words n through n − 3. Shaded region
indicates a 95% confidence interval.

second model was the GPT-2 Transformer model
from Radford et al. (2019). This study used the 1.5
billion parameter version of GPT-2 trained on the
English WebText corpus.

2.4 Analysis
The reading times used for the analyses were first
pass gaze durations. As in previous work (Boston
et al., 2008; Demberg and Keller, 2008; Monsalve
et al., 2012), IC and estimated surprisal values were
entered into a mixed-effects model in order to ac-
count for other predictor and random effects. I used
lme4 to construct linear models, and obtained ap-
proximate p-values via Satterthwaite’s degrees of
freedom with the lmerTest package (Bates et al.,
2015; Kuznetsova et al., 2017).

To account for spillover effects, where the pro-
cessing difficulty of prior word impacts the reading
time of the current word (Rayner, 1998), as in pre-
vious work (see Smith and Levy, 2013; Wilcox
et al., 2020) I used the previous word in the model:

rt ∼ s0 + s1 + l ∗f + l1 ∗f1 +p+ (1 | subj) (2)

Here, s refers to the surprisal or IC, s1 indicates
the surprisal/IC of the previous word, l is word
length, f is frequency, l ∗ f indicates that there is
a relationship between l and f , and p is the word
position. Additionally, I performed GAM regres-
sions on the raw surprisals. I also examined the
correlation between the surprisal estimates and IC.

3 Results

Table 2 shows the coefficients of the regression for
the RNN and GPT-2 surprisal estimates. The RNN
and GPT-2 surprisal regressions resulted in signif-
icant positive coefficients, with spillover effects
contributing strongly to reading times. The GAM
regressions are shown by Figure 2. Surprisal of wn

had a strong linear effect in both models, as well as
a slightly weaker effect for wn−1.

Table 3 shows the coefficients for the IC regres-
sion on the Dundee Corpus. There was signifi-
cant negative coefficient for integration cost across
the full dataset, with insignificant spillover effects
(p = 0.49). Restricting data solely to nouns yields
a strong positive coefficient. A model fit on both
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RNN

Coeff. p

Intercept 163.9 ***
s0 1.826 ***
s1 1.733 ***

GPT-2

Coeff. p

169.8 ***
1.609 ***
0.854 ***

Table 2: Surprisal regression results from RNN and
GPT-2. *** p < 0.001, ** p < 0.01, * p < 0.05.

All Data

Coeff. p

Intercept 166.8 ***
IC –1.298 ***
IC1 –0.201

Nouns

Coeff. p

153.6 ***
1.134 *
0.127

Table 3: IC regression results for all data and nouns.
*** p < 0.001, ** p < 0.01, * p < 0.05.

nouns and verbs missed significance by a wide
margin. For the RNN and GPT-2, regressions on
solely nouns were similar to those on all data, with
coefficients of 1.75 and 1.560 for s0.

There was minimal correlation between surprisal
and IC across both models, and moderately high
correlation between GPT-2 and RNN surprisal val-
ues (Table 4). The results from the regression con-
taining both IC and Surprisal are shown in Table 1.
Surprisal continued to be a significant positive pre-
dictor, whereas IC was a significant negative pre-
dictor, albeit weaker than on it’s own. On nouns,
IC was again a much stronger positive predictor.
Again, spillover effects for IC were insignificant.

4 Discussion and Conclusion

This study examined the strength of two different
theories of processing difficulty as predictors of
eye-tracking data. Overall, neural surprisal has a
significant positive relationship with reading times,
indicating that it is a strong candidate for a broad-
coverage model of sentence processing difficulty.
Contrary to the predictions of DLT, there was a
significant negative relationship between reading
times and integration cost, as in Demberg and
Keller (2008).

All Data

IC GPT-2

GPT-2 0.128
RNN 0.267 0.684

Nouns Only

IC GPT-2

GPT-2 –0.0163
RNN –0.0188 0.562

Table 4: Correlations (Pearson’s r) between surprisal
and IC for all data and nouns only, p < 0.001 for all.

This negative coefficient is likely due to the fact
that DLT only makes its reading time predictions
for discourse referents, assigning non-referents a
processing difficulty of zero. When comparing IC
solely to noun reading times, there was a strong
positive coefficient, as expected. Additionally, de-
pendency locality has a well-documented cross-
linguistic impact on word order (Futrell et al., 2015;
Liu et al., 2017; Temperley and Gildea, 2018), sug-
gesting that a modified form of IC which predicts
non-discourse referent processing difficulties may
be a stronger and more accurate model.

Our results for surprisal are promising evidence
that Surprisal Theory can accurately measure sen-
tence processing difficulty. As hypothesised by
Surprisal Theory, there was a positive linear effect
for both GPT-2 and the RNN. This differs from
Demberg and Keller (2008), who found that lex-
icalized surprisal had an insignificant correlation
with reading times from a grammar-based LM. As
the corpus used in this study was identical to that
in Demberg and Keller (2008), these findings sup-
port work which indicates that neural LMs are ca-
pable of simulating human language processing
better than grammar-based LMs (Monsalve et al.,
2012; van Schijndel and Linzen, 2018). I also
found a moderately high correlation between RNN
and GPT-2 surprisal values, implying that neither
model significantly differs from the other.

Similarly to Demberg and Keller (2008), IC and
neural surprisal were minimally correlated. When
both were added as factors in a mixed effects model,
the results remained similar, with IC being negative
for all data, and strongly positive for nouns. Given
our results as a whole, this suggests that as IC is a
strong predictor for nouns, a true broad-coverage
model must integrate ideas from both DLT and Sur-
prisal Theory. While I did not note any major gaps
in predictions of surprisal, other work has found
that it cannot fully account for reading time dif-
ferences in ambiguities (van Schijndel and Linzen,
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2018). Our positive results are in part due to the
fact that the Dundee Corpus consists mostly of com-
mon syntactic constructions, and therefore does not
provide a perfect generalized picture of sentence
processing. Thus, this work is consistent with the
hypothesis that while appealing, a broad-coverage
measure of processing difficulty cannot simply use
one model of processing. Potential future work
could aim to combine expectation-based models
with memory-based theories, such that processing
involves both discarding potential representations
and integration into the prior structure.
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Abstract

Several researchers have argued that sentence
comprehension is mediated via a content-
addressable retrieval mechanism that allows
fast and direct access to memory items. Ini-
tially failed retrievals can result in backtrack-
ing, which leads to correct retrieval. We
present an augmented version of the direct-
access model that allows backtracking to fail.
Based on self-paced listening data from in-
dividuals with aphasia, we compare the aug-
mented model to the base model without back-
tracking failures. The augmented model shows
quantitatively similar performance to the base
model, but only the augmented model can ac-
count for slow incorrect responses. We argue
that the modified direct-access model is theo-
retically better suited to fit data from impaired
populations.

1 Introduction

Comprehending a sentence involves building lin-
guistic dependencies between words. In the sen-
tence processing literature, several researchers have
argued that linguistic dependency resolution is car-
ried out via a cue-based retrieval mechanism (Van
Dyke and McElree, 2006; Lewis and Vasishth,
2005). Cue-based retrieval theory assumes that
word representations are retrieved from working
memory via their syntactic and semantic features.
Consider the following sentences:

(1) a. The boy who tickled the girl greeted
the teacher.

b. The boy who the girl tickled greeted
the teacher.

In (1a), the noun boy would be encoded in mem-
ory with features such as [+animate, +subj]. When
the reader reaches the verb tickled, a retrieval is
triggered with retrieval cues that match the features
of boy. At this point in time, boy is the only ele-
ment that matches the retrieval cues of the verb. By

contrast, in (1b), another noun intervenes between
tickled and boy that partially matches the cues set at
the retrieval: girl [+animate, -subj]. The partial fea-
ture overlap causes similarity-based interference
between the two items, making the dependency
more difficult to resolve in (1b) compared to (1a).

Interference effects have been attested in mul-
tiple studies, see for example Jäger et al. (2020);
Gordon et al. (2006); Jäger et al. (2017); Van Dyke
(2007). One model of cue-based retrieval that
predicts these interference effects is the direct-
access model developed by McElree and colleagues
(McElree, 2000; McElree et al., 2003; Martin and
McElree, 2008). The direct-access model (DA)
assumes that retrieval cues allow parallel access
to candidate items in memory, as opposed to a
serial search mechanism. Due to the parallelism
assumption, the speed of retrieval is predicted to be
constant across items (aside from individual differ-
ences and stochastic noise in the retrieval process).

Factors such as increased distance between the
target and the retrieval point and the presence of dis-
tractor items can lower the probability of retrieving
the correct dependent (also known as availability).
Low availability of the target dependent can lead to
failures in parsing or to misretrievals of competitor
items. When such errors occur, a backtracking pro-
cess can be initiated, which by assumption leads to
the correct retrieval of the target (McElree, 1993).
The backtracking process requires additional time
that is independent of the retrieval time. According
to the direct-access model, (1a) should have shorter
processing times than (1b) on average, because in
(1b) some trials require costly backtracking due to
lower availability of the target item boy.

The direct-access model can be adapted to ex-
plain impaired sentence comprehension in indi-
viduals with aphasia (IWA; Lissón et al., 2021).
However, there is one crucial aspect of the direct-
access model that is at odds with the aphasia liter-
ature, specifically with the finding that IWA have
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longer processing times for incorrect than for cor-
rect responses (e.g., Hanne et al., 2015; Pregla et al.,
2021). The direct-access model assumes that some
percentage of correct interpretations are only ob-
tained after costly backtracking, and thus predicts
that the average processing time for incorrect re-
sponses should be faster than for correct responses.
To address this issue, we implement a modified ver-
sion of the direct-access model that is specifically
relevant for sentence processing in IWA. In this
model, backtracking can lead to correct retrieval of
the target, as in the base model, but can also result
in misretrieval and parsing failure.

1.1 Sentence Comprehension in Aphasia

Aphasia is an acquired neurological disorder that
causes language production and comprehension im-
pairments. In the aphasia literature, there are sev-
eral theories that aim to explain the source of these
impairments in language comprehension. One pos-
sibility is that IWA carry out syntactic operations
at a slower-than-normal pace, which could cause
failures in parsing. This is the slow syntax theory
(Burkhardt et al., 2008). By contrast, Ferrill et al.
(2012) claim that the underlying cause of slowed
sentence processing in IWA is delayed lexical ac-
cess, which cannot keep up with structure building.
Another theory, resource reduction, assumes that
IWA experience a reduction in the resources used
for parsing (Caplan, 2012), such as working mem-
ory. Finally, Caplan et al. (2013) claim that IWA
suffer from intermittent deficiencies in their pars-
ing system that lead to parsing failures. Previous
computational modeling work has shown that these
theories may be complementary (Patil et al., 2016;
Lissón et al., 2021), and that IWA may experience
a combination of all of these deficits (Mätzig et al.,
2018).

Assuming that a direct-access mechanism of
retrieval subserves sentence comprehension, this
mechanism could interact with one or more of the
proposed processing deficits in IWA. One way to
assess whether these deficits are plausible under
a direct-access model is the computational mod-
eling of experimental data. Lissón et al. (2021)
tested the direct-access model against self-paced
listening data from individuals with aphasia, find-
ing the model to be in line with multiple theories of
processing deficits in aphasia. Despite this encour-
aging result, the model could not fit slow incorrect
responses, due to its assumptions about backtrack-

ing and its consequences.
In what follows, we present our implementation

of the original direct-access model and the modified
version with backtracking failures. We fit the two
models to data from individuals with aphasia and
compare their quantitative performances. In order
to assess the role of the different proposed deficits
of IWA in sentence comprehension, we also map
the models’ parameters onto theories of processing
deficits in aphasia.

2 Data

The data that we model come from a self-paced lis-
tening task in German (Pregla et al., 2021). 50 con-
trol participants and 21 IWA completed the exper-
iment. Sentences were presented auditorily, word
by word. Participants paced the presentation them-
selves, choosing to hear the next word by pressing a
computer key. The time between key presses (here
called listening time) was recorded. At the end
of the sentence, two images (target and foil) were
presented, and participants had to select which im-
age matched the meaning of the sentence they had
just heard. Accuracies for the picture-selection task
were also recorded. To assess test-retest reliability,
each subject completed the task twice, with a break
of two months in between. Our modeling is based
on the pooled data of both sessions.

2.1 Items

We investigate interference effects in a linguistic
construction that is understudied in IWA: Control
constructions. In control constructions, the subject
of an infinitival clause is not overly specified, but
understood to be coreferential with one of the overt
noun phrases in the matrix clause of the same sen-
tence (e.g, Brian promises Martha to take out the
trash → Brian takes out the trash). In linguistic
theory, it is assumed that a a phonologically empty
element (PRO) occupies the subject position of take
out (Chomsky, 1981). PRO is co-indexed with a
noun phrase in the matrix clause that acts as its
antecedent. The verb in the matrix clause specifies,
according to its semantic and syntactic properties,
which noun phrase in the matrix clause triggers the
interpretation of PRO in the subclause.

In sentence (2a) below, the verb verspricht
(promises) is lexically specified as a subject-
control verb, and the subject noun phrase of the
main clause, Peter, is chosen as the antecedent
of PRO. By contrast, in (2b), the object-control

178



verb erlaubt (allows) specifies that the object noun
phrase of the main clause, Lisa, is the antecedent
of PRO.

(2) a. Subject control
Peteri verspricht nun Lisaj, PROi das
kleine Lamm zu streicheln und zu
kraulen.

‘Peter now promises Lisa to pet and to
ruffle the little lamb’

b. Object control
Peteri erlaubt nun Lisaj, PROj das
kleine Lamm zu streicheln und zu
kraulen.

‘Peter now allows Lisa to pet and to
ruffle the little lamb’

Cue-based retrieval theory assumes that control
clauses require completion of the PRO dependency
through memory access to the correct noun phrase.
The direct-access model would predict (2b) to be
easier to process than (2a), because the target (Lisa)
is linearly closer to the retrieval site at PRO, and
thus more available. Therefore, at PRO, the proba-
bility of retrieval of the target should be higher in
(2b) relative to (2a). In line with this prediction,
unimpaired subjects show a processing advantage
for object control over subject control (Kwon and
Sturt, 2016). Similarly, IWA exhibit more diffi-
culties understanding subject control conditions in
acting-out tasks (Caplan and Hildebrandt, 1988;
Caplan et al., 1996). However, the object control
advantage in IWA has not been previously tested
using online methods.

Our experimental items were 20 sentences (10
per condition) similar to (2a) and (2b). The corre-
sponding pictures for the picture-selection task are
shown in Figure (1). The top picture is the target
picture for (2a), whereas the bottom picture is the
target for (2b). We assume that trials where the
foil picture has been selected (i.e., the picture that
shows the distractor noun as the agent of the action)
correspond to a misretrieval.

2.2 Dependent Variables
The dependent variables used for modeling were
the listening times (henceforth, LT) at the retrieval
site (PRO) and the accuracy of the picture-selection
task. Given that PRO is phonologically empty, we
assumed that the retrieval process takes place at
some point between the second and the third noun
phrase (Lisa and das kleine Lamm in (2a)). We

Figure 1: Example pictures used in the picture-
selection task.

therefore summed the listening times of these re-
gions within each trial. In order to evaluate the
slowed lexical access hypothesis (Ferrill et al.,
2012), we also used data from an auditory lexical
decision task that participants performed in addi-
tion to the experiment. This task was based on
LEMO 2.0 (Stadie et al., 2013). Participants had to
decide whether an auditorily presented item was a
word or a neologism, and the response times were
recorded. For each participant, we computed the
mean response times for correct responses. These
were then centered and scaled within groups and
used as continuous predictors in the models. We
will refer to the scaled lexical decision task reaction
times as the LDT predictor.

3 Direct-Access Model

Our implementation of the direct-access model fol-
lows Nicenboim and Vasishth (2018). The model
assumes that listening times for correct responses
come from a mixture distribution, given that there
are trials with backtracking, where an additional
processing cost δ is added, and trials without back-
tracking, where no such cost is added. By contrast,
incorrect responses never involve backtracking, and
the average listening time should be the same as for
correct responses without backtracking. A graph-
ical representation of the model is displayed in
Figure (2). The three possible cases are as follows:

(a) Retrieval of the target succeeds at first attempt,
with probability θ:
LT ∼ lognormal(µ, σ)
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Figure 2: Graphical representation of the direct-access
model.

(b) Retrieval fails at first attempt, backtracking is
initiated, with probability
(1− θ) · Pb: LT ∼ lognormal(µ+ δ, σ)

(c) Retrieval fails, no backtracking, and a misre-
trieval occurs, with probability
(1− θ) · (1− Pb): LT ∼ lognormal(µ, σ)

The model includes both fixed and random ef-
fects in order to account for sentence complex-
ity, group differences, and individual variability.
The hierarchical structure is shown in Equation (1).
All parameters have an adjustment by group (IWA
versus control), because we expect IWA to have
different parameter estimates from control partic-
ipants. Since DA assumes that retrieval times are
not affected by sentence complexity, the average
listening times (µ) do not have an adjustment for
condition. By contrast, the probability of retrieval
of the target, θ, includes a condition adjustment.
This parameter can be thought of as indexing mem-
ory availability. The probability of backtracking Pb,
the cost of backtracking δ, and σ do not depend on
sentence complexity, but may vary between IWA
and controls. The hierarchical structure is embed-
ded within the parameters when possible (we re-
port the maximal hierarchical structure that could
be fit). In Equation (1), the terms u and w are the
by-participant and by-item adjustments to the fixed
effects, respectively. These are assumed to come
from two multivariate normal distributions. All pa-
rameters had regularizing priors, listed in Appendix
B.

µ = µ0 + uµ0 + wµ0 + β1 · group
θ = α+ uα + wα + β2 · LDT+

β3 · LDT · group+
(β4 + wβ4) · group

(β5 + uβ5) · condition+
β6 · group · condition

Pb = γ + uγ + β7 · group
δ = δ0 + β8 · group
σ = σ0 + β9 · group

(1)

The model was implemented in the probabilistic
programming language Stan (Stan Development
Team, 2020), and fit via the rstan package (Carpen-
ter et al., 2017) in R (R Core Team, 2020). The
model was fit with 3 chains and 8,000 iterations,
half of which were used as warm-up.

3.1 Predictions
Based on the theories of processing deficits in apha-
sia discussed in Section (1.1), and on the findings
in Lissón et al. (2021), we make the following pre-
dictions:

1. IWA’s µ and δ values should be higher than
controls’. This would be in line with slow
syntax, assuming that both the initial retrieval
and the backtracked retrieval are accompanied
by appropriate structure-building processes.

2. The probability of initial retrieval of the target
θ should be lower for IWA relative to controls,
across conditions.

3. Object control conditions should have a larger
θ, relative to subject control. In addition, IWA
should have a bigger interference effect, i.e.,
the difference in θ between the two condi-
tions should be larger in IWA than in controls.
This pattern would be expected under the re-
source reduction theory, which states that IWA
should have greater difficulties in more com-
plex sentences.

4. Slower lexical decision (LDT) should be as-
sociated with a decrease in θ across groups.
Strong support for delayed lexical access
would come from an interaction between LDT
and group, such that an increase in LDT pre-
dicts a greater decrease in θ for IWA than
for controls: Slow lexical access could cause
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parsing problems for controls, but if delayed
lexical access is the main cause of difficulty in
IWAs, parsing failures should occur more of-
ten in this group for individuals whose lexical
access is particularly slow.

5. The probability of backtracking should be
lower for IWA, which would be in line with
resource reduction.

6. Finally, the dispersion parameter σ of the
listening-time distribution should be larger for
IWA, which would indicate that IWA have
more noise in their parsing system. This
would be in line with intermittent deficien-
cies, since more noise could be due to more
breakdowns in parsing.

These predictions build on the previous work by
Lissón et al. (2021), but other options for the map-
ping between parameters and theories of compre-
hension deficits in aphasia are possible, see Mätzig
et al. (2018); Patil et al. (2016).

3.2 Results
We begin by assessing the posterior distribution of
the probability of retrieval of the target, θ, shown
in Figure (3).

Controls IWA

50 60 70 80 90 50 60 70 80 90

[%]

Condition

Object

Subject

Posterior distribution of θ

Figure 3: Posterior distribution of θ across conditions
and groups.

Controls are estimated to retrieve the target at
the first retrieval attempt in both conditions in more
than 90% of trials. The mean of the subject-control
condition is slightly lower than the mean for the
object-control condition. By contrast, IWA display
a greater effect of interference: In object-control
sentences, where the antecedent is close to PRO,
IWA are estimated to correctly retrieve the target
at the first attempt 85% of the time, compared to

60% for subject-control. An increase in LDT leads
to a decrease in θ of −6% CrI: [−11%, −2%], but
there was no interaction with group × LDT (−2%
CrI: [−6%, 2%]). The credible intervals for the
remaining parameters are shown in Table (1).

Par. Control participants IWA
µ [1668 ms, 1901 ms] [2508 ms, 3073 ms]
δ [1084 ms, 1385 ms] [2897 ms, 6836 ms]
Pb [63%, 78%] [3%, 10%]
σ [0.15, 0.16] [0.27, 0.3]

Table 1: Parameter credible intervals, DA model.

As expected under the slow syntax theory, IWA’s
mean listening times (µ) and the time needed for
backtracking (δ) are higher than controls’. Sim-
ilarly, σ is also higher for IWA, as predicted by
intermittent deficiencies. Finally, the probability
of backtracking is much lower for IWA than for
controls. Assuming that backtracking uses gen-
eral parsing resources, this estimate is in line with
resource reduction.

3.3 Posterior Predictive Checks

One way to assess the behavior of the model is to
check the posterior distribution of data generated
by the model against the empirical data. If the
mean of the empirical data falls within the range
of predicted values of the model, the model could
have generated the empirical data. By contrast, if
the empirical data are outside of the range of the
generated values, this indicates a suboptimal fit.
Figure (4) shows the posterior predictive distribu-
tions of the direct-access model across groups and
conditions. Overall, correct responses are modeled
reasonably well, except in the object-control condi-
tion for IWA. The model also underestimates the
listening times for incorrect responses, except for
IWA in the subject-control condition. In all other
design cells, incorrect responses are slower than
correct responses, contrary to the model’s assump-
tion that slow backtracking responses are always
correct.

4 Modified Direct-Access Model

Based on the original DA model’s suboptimal fit,
we propose a modified version (MDA). In this ver-
sion, the distribution of listening times for both
correct and incorrect responses is a mixture of di-
rectly accessed and backtracked retrievals. The
MDA model assumes that backtracking can fail.
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Figure 4: Posterior predictive checks of the direct-
access model split by accuracy, group, and condition.
The violin plots indicate the distribution of listening
times generated by the model. The black stars stand
for the mean of the empirical data.

In terms of implementation, the main difference
between the models is a newly-introduced parame-
ter θb, which is the probability of correct retrieval
after backtracking. Figure (5) displays a graphical
representation of this new model: After backtrack-
ing, the target is retrieved with probability θb, and
a misretrieval occurs with probability 1− θb. The
hierarchical structure is the same as in the DA orig-
inal model, except for θb, whose adjustments are
shown in Equation (2).

θb = αb + uαb
+ β · group (2)

Figure 5: Graphical representation of the modified
direct-access model.

The model was run with 10,000 iterations, half
of which were used as warm-up.

4.1 Predictions

All predictions are carried over from the base DA
model. In addition, the probability of retrieval of
the target after backtracking θb should be lower for
IWA than for controls. This would indicate that
IWA are more likely to experience parsing failure
or misretrieval even after backtracking.

4.2 Results

We begin by assessing the probability of first cor-
rect retrieval, θ. The posterior distribution across
groups and conditions is shown in Figure (6). The
estimates are quite similar to the ones in the original
DA model: Controls have a very high probability
of initial correct retrieval across conditions, and
IWA display a greater interference effect.

Controls IWA
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Figure 6: Posterior distribution of θ across conditions
and groups.

As in the base model, IWA have a low proba-
bility of backtracking in this model (7% CrI: [4%,
12%]) relative to controls (80%, CrI: [72%, 86%]).
The probability of correct retrieval after backtrack-
ing, θb, determines the amount of slow incorrect
responses. The posterior distribution of θb is shown
in Figure (7). After backtracking, controls are esti-
mated to retrieve the target 90% of the time, com-
pared to around 70% for IWA.

The rest of estimates are also similar to the
ones in the original DA model: IWA’s µ is higher
than controls’ (2751 ms, CrI: [2477, 3046] versus
1770 ms, CrI: [1654 ms, 1890 ms]). The cost of
backtracking, δ, is very high for IWA (6394 ms CrI:
[4235, 9468]) relative to controls (1238 ms, CrI:
[1103 ms, 1387 ms]). Finally, σ is also higher for
IWA (0.27 CrI: [0.25, 0.28]) than for controls (0.15
CrI: [0.14, 0.15]).
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Figure 7: Posterior distribution of θb across conditions
and groups.

4.3 Posterior Predictive Checks

The posterior predictive checks for the modified
direct-access model are shown in Figure (8).
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Figure 8: Posterior predictive checks of the modified
direct-access model split by accuracy, group, and con-
dition. The violin plots indicate the distribution of lis-
tening times generated by the model. The black stars
stand for the mean of the empirical data.

Like the base model, the MDA mostly correctly
estimates listening times for correct responses
across the board. The fits for incorrect responses
seem to have improved, except for object-control
in IWA, where the predicted listening times are still
faster than the observed listening times.

5 Model Comparison

In order to quantitatively compare the performance
of the models, we computed Bayes factors. We
chose Bayes factors over other alternatives (e.g.
cross-validation), because the two models seem to
predict similar distributions, and Bayes factors are
especially suited for nested models, or models that

make very similar predictions. The hypothesis be-
ing tested is whether there is a non-zero parameter
θb that indexes the probability of successful back-
tracking, assumed by the MDA model, or whether
backtracking is always successful, as assumed by
the base DA model.

In order to perform the comparison, the models
were run for 40,000 iterations, of which 3,000 were
used for warm-up. Bayes factors were computed
using the bridgesampling package (Gronau et al.,
2020) in R. The Bayes factor of DA over MDA was
estimated to be 2. This result is inconclusive, and
indicates that the models provide similar quantita-
tive fit to the data.

6 Discussion and Conclusion

In the present paper, we implemented and tested
two versions of the direct-access model of cue-
based retrieval and evaluated their predictive per-
formance on data from individuals with aphasia
and control participants. Specifically, we modeled
interference in an under-studied linguistic construc-
tion, namely control structures.

Both the base model and the modified model are
in line with a combination of processing deficits in
IWA: slow syntax, resource reduction, and intermit-
tent deficiencies. Neither of the two models showed
support for delayed lexical access as a source of
retrieval difficulty specifically for IWA. Although
a delay in LDT was connected to a decrease in the
probability of correct retrieval, the effect of LDT
was similar for IWA and control participants. In
general, our results are consistent with other studies
showing that a combination of processing deficits
may be the source of impairments in sentence com-
prehension in IWA (Caplan et al., 2015; Mätzig
et al., 2018; Lissón et al., 2021).

Unlike the base direct-access model, our mod-
ified DA model (MDA) assumes that backtrack-
ing can fail, resulting in slow, incorrect retrievals.
However, this added assumption does not result in
a decisive advantage in fit for the MDA model, as
shown by the posterior predictive checks and the
Bayes factor analysis. This result is unexpected,
and leads us to think that the MDA model may be
overparametrized. In MDA, all of the main parame-
ters include a group adjustment. As a consequence,
for instance, the mean listening times, µ, are esti-
mated to be higher for IWA than for controls. The
cost of backtracking, which is only added to µ if
backtracking is performed, accounts for slower re-
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sponses. However, because IWA’s µ is estimated to
be higher than controls’ µ, the model may not need
to rely on backtracking in order to account for slow
responses in IWA. This could be the reason why
the probability of backtracking for IWA is very low
(7%) relative to controls (80%). In addition, IWA’s
θb has to be estimated from the 7% of trials that
include backtracking. Given the size of the IWA
group (21 participants), and the small amount of
trials that include backtracking, perhaps the model
cannot correctly estimate the θb parameter. This
could be investigated in several ways. One possibil-
ity would be to remove the group adjustments from
µ, Pb, δ, and θb one at the time, and see which of
these models shows a better quantitative fit for the
data (see Lissón et al., 2021). Another possibility
would be to evaluate how these parameters inter-
act with and without group adjustments (e.g., do
Pb and/or δ for IWA increase if there is no group
adjustment in µ?). We will address these questions
in future work.

The present paper contributes to the aphasia lit-
erature by proposing a modification of the direct-
access model that can account for incorrect slow
responses. Despite our inconclusive results, we be-
lieve that the modified direct-access model offers a
more appropriate set of assumptions for individu-
als with aphasia than the direct-access model. The
modified-direct access model can account for slow
incorrect responses, which are frequently found in
studies on sentence processing in IWA (e.g., Hanne
et al., 2015; Lissón et al., 2021; Pregla et al., 2021).
It remains to be seen, by testing the new modified
direct-access model against more data from indi-
viduals with aphasia, whether there is a difference
in predictive performance between the two models.
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A Data and Code

Data and code are available at
https://bit.ly/30VVOYb.

B Priors

Equation (3) shows the priors used. These are
regularizing priors (Schad et al., 2020) and allow
for a broad range of parameter values. We used
the same priors as Lissón et al. (2021), so that
the model results could be comparable. In Lis-
són et al. (2021), the priors were selected by plot-
ting the predictive prior distribution for each pa-
rameter. Plots of the prior predictive distributions
can be found in the supplementary materials at
https://osf.io/wkdrz.

The priors for α and γ are in logit space, the
rest of priors are in log space. In the modified
direct-access model, αb has the same priors as α.

α ∼ normal(1, 0.5)
β1,...,12 ∼ normal(0, 0.5)
µ0 ∼ normal(7.5, 0.6)
γ ∼ normal(−1, 0.5)
δ0 ∼ normal(0, 1)

σ0 ∼ normal(0, 0.5)

(3)

A LKJ(2) (Lewandowski et al., 2009) prior was
used for the correlation matrix of the variance-
covariance matrix of the random effects.
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Abstract

We study the influence of context on how hu-
mans evaluate the complexity of a sentence
in English. We collect a new dataset of sen-
tences, where each sentence is rated for per-
ceived complexity within different contextual
windows. We carry out an in-depth analysis to
detect which linguistic features correlate more
with complexity judgments and with the de-
gree of agreement among annotators. We train
several regression models, using either explicit
linguistic features or contextualized word em-
beddings, to predict the mean complexity val-
ues assigned to sentences in the different con-
textual windows, as well as their standard devi-
ation. Results show that models leveraging ex-
plicit features capturing morphosyntactic and
syntactic phenomena perform always better,
especially when they have access to features
extracted from all contextual sentences.

1 Introduction

From a human-based perspective, sentence com-
plexity is assessed by measures of processing effort
or performance in behavioral tasks. In this respect,
a large part of studies has focused on reading sin-
gle sentences and correlating syntactic and lexical
properties with observed difficulty, being it cap-
tured by cognitive signals, such as eye-tracking
metrics (Rayner, 1998; King and Just, 1991), or by
explicit judgments of complexity given by readers
(Brunato et al., 2018). However, models of lan-
guage comprehension underline the importance of
contextual cues, such as the presence of explicit
cohesive devices, in building a coherent represen-
tation of a text (Kintsch et al., 1975; McNamara,
2001). This implies that a sentence can be per-
ceived as more or less difficult according to the
context in which it is presented.

The effect of context on how humans evaluate
a sentence has been investigated concerning its
acceptability and grammaticality, two properties

different from complexity, yet somehow related.
In Bernardy et al. (2018) speakers were asked to
evaluate the degree of acceptability of sentences
from Wikipedia, both in their original form and
with some grammatical alterations artificially in-
troduced by a process of round-trip machine trans-
lation. Results showed that ill-formed sentences
are evaluated as more acceptable when presented
within context (i.e. along with their preceding or
following sentence) rather than in isolation. More
closely related to our study is the one by Schu-
macher et al. (2016) on readability assessment. In
that work, authors gathered pairwise evaluations
of reading difficulty on sentences presented with
and without a larger context, training a logistic re-
gression model to predict binary complexity labels
assigned by humans. They observed that the con-
text slightly modifies the perception of the readabil-
ity of a sentence, although their predictive models
perform better on sentences rated in isolation.

Our study aims to understand how the context
surrounding a sentence influences its ‘perceived’
complexity by humans. As we consider linguis-
tic complexity from the individual’s perspective,
following Brunato et al. 2018, we use the term
complexity as a synonym of difficulty. Also, we as-
sume that sentence complexity is a gradient rather
than a binary concept and we operationalize per-
ceived complexity as a score on an ordinal scale.
These scores were collected for a new dataset of
sentences, where each sentence has been evaluated
in three contextual windows, which change accord-
ing to the position the sentence occupies within
them. This enables us to deeply inspect the role of
context, allowing us to determine if the perceived
complexity of a sentence changes when the context
is introduced, and also which contextual window
may impact more. To do so, we consider the aver-
age complexity score assigned to each sentence as
well as the degree of agreement among annotators,
calculated in terms of standard deviation. We think
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Figure 1: Number of sentences for each
degree of agreement.

Figure 2: Number of sentences at differ-
ent average complexity ratings.

Figure 3: Mean standard deviation at dif-
ferent average complexity ratings.

that this measure is also relevant to comprehend
perceived sentence complexity since this is a highly
subjective task that cannot be tackled by following
specific annotation guidelines. Moreover, knowing
that sentence length is a prominent predictor of sen-
tence complexity, we study how complexity scores
and annotators’ agreement vary for sentences of the
same length. Finally, we run experiments to eval-
uate the accuracy of different regression models
in predicting the mean complexity label and stan-
dard deviation assigned to a sentence. In particular,
we compare models leveraging explicit linguistic
features related to a wide set of morphosyntactic
and syntactic properties of a sentence, to models
exploiting the predictions of a state-of-the-art bidi-
rectional transformer encoder, i.e. BERT (Devlin
et al., 2019). To the best of our knowledge, the
assessment of sentence complexity in context has
never been tackled as a downstream task for evalu-
ating the effectiveness of neural representations in
modeling aspects of sentence complexity. Despite
the remarkable performance that neural language
models have achieved so far in a variety of NLP
tasks (Rogers et al., 2020) – also close to ours such
as the prediction of perceived sentence acceptabil-
ity in context (Lau et al., 2020) – our results show
that this is not the case as regards to the predic-
tion of sentence complexity: models using explicit
linguistic features perform better in all contextual
windows, suggesting that information embedded
in neural representations could be less effective in
modeling the examined task, particularly when few
labeled data will be made available.

Contributions. i) We release a new dataset of
∼2,900 English sentences rated with human judg-
ments of complexity elicited by presenting sen-
tences in their contexts; ii) we model a wide set
of morphosyntactic and syntactic phenomena, ex-
tracted from the single sentence and contextual
ones, and we study which of them are more corre-

lated with sentence complexity judgments in differ-
ent contextual windows; iii) we show that models
relying explicitly on these features achieve higher
performance in predicting complexity judgments
than state–of–the art neural language models, prov-
ing the effectiveness of these features to address
this task in particularly in a low resource scenario.

All the data discussed here will be made avail-
able at: www.italianlp.it/resources/.

2 Approach

We first collected an appropriate corpus to evaluate
the effect of context on the perception of sentence
complexity. We started from the crowdsourced
dataset by Brunato et al. (2018), which contains
1, 200 sentences annotated for perceived complex-
ity on a 7-point Likert scale. We similarly built a
crowdsourcing task, asking native English speakers
to read each sentence and rate its complexity on the
same scale. However, while in Brunato et al. all
sentences were rated in isolation, in our task sen-
tences were presented in three contextual windows,
as illustrated in Section 2.1.

To study which linguistic phenomena may af-
fect annotators’ ratings, we represented sentences
(the rated one and the contextual ones) with ∼100
linguistic features, based on those described in
Brunato et al. (2020). These features model a wide
range of sentence properties, which can be viewed
as proxies of sentence complexity at different lev-
els of linguistic annotation. The features were first
used to study the influence of context-level and
sentence-level phenomena on perceived complexity.
We did this by analyzing the correlations between
the features and the complexity ratings, and the
correlations between the features and the standard
deviation of complexity. Then, we assessed the
automatic prediction of sentence complexity and
of the standard deviation of complexity judgments,
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evaluating if adding information from the context
helps in the prediction. We tested two predicting
approaches: one based on a linear SVM regres-
sion model which leverages the linguistic features
discussed so far, and one that employs BERT, one
of the most prominent pre-trained neural language
model. We compared the accuracy of the models
across various scenarios, considering their predic-
tions both for sentences rated in different contex-
tual windows and for sentences distinguished into
same-length bins.

2.1 Data Collection

As already mentioned, our dataset was built start-
ing from the sentences collected by Brunato et al.
(2018). These sentences were extracted from the
Wall Street Journal section of the Penn Treebank
and grouped in 6 bins, according to their length
in terms of tokens (i.e. 10, 15, 20, 25, 30, 35),
as it is well-known that sentence length correlates
with complexity. By analyzing sentences with the
same length we would understand whether other
linguistic features still play an influence on com-
plexity or if their effect is nullified by controlling
length. We then proceeded to add context to all
sentences, defining context as the sentences that
precede and/or follow a given one. For each sen-
tence we created 3 different contextual windows,
according to the position occupied by the sentence
in relation to the one occupied by the context. In
the begin window, the sentence appears first and is
followed by two contextual sentences; in the cen-
ter window, the sentence is in the middle and is
preceded by a contextual sentence and followed
by another contextual sentence; in the end window,
the sentence appears as the last one and is preceded
by two contextual sentences. The resulting dataset
is composed of 2,913 windows of context: 1,002
for the begin window, 968 for the center window
and 943 for the end window.

We carried out a crowdsourcing task to collect
complexity ratings through the platform Prolific1.
For each contextual window, the sentence to be
evaluated was highlighted in bold, while the contex-
tual sentences were left in plain style. The windows
were randomly ordered and presented on different
pages, containing ten windows each. Due to the
high number of windows to be evaluated, we split
the dataset into smaller sections, containing at most
200 windows each, ending up creating 15 evalua-

1www.prolific.co

tion tasks. For each task, we recruited 10 native
English speakers. We then asked participants to
read the full paragraph (the whole window of con-
text) and to rate the complexity of the sentence
in bold on a 7-point Likert scale, where 1 stands
for “very easy" and 7 stands for “very difficult".
As complexity perception is very subjective, we
then aggregated the ratings to account for the in-
dividual bias of annotators, as there could be the
case in which a participant always gave low scores,
while another one always gave very high scores.
Thus, ratings were re-scaled between 0 and 1 and
normalized by the range of ratings given by each
annotator.

begin center end
judg std judg std judg std

Length 10 .28 .23 .28 .28 .28 .28
Length 15 .27 .23 .32 .28 .30 .28
Length 20 .27 .22 .35 .27 .33 .26
Length 25 .26 .21 .36 .26 .35 .26
Length 30 .26 .22 .38 .26 .36 .25
Length 35 .25 .21 .39 .26 .38 .26

All sents .26 .22 .35 .27 .33 .27

Table 1: Mean complexity judgment and mean standard devia-
tion on complexity, for all sentences and at different lengths.

2.2 Data Analysis

Firstly, we looked at the degree of agreement2

(DAE) between annotators. Figure 1 reports the
number of sentences for every DAE, considering
the different sentence positions within the context
windows. We found a strong DAE, as most sen-
tences have up to 5 annotators that assigned a com-
plexity judgment within the same range. As the
DAE increases, the number of sentences decreases
consistently. The highest DAE is found at 8 anno-
tators, but on a small amount of sentences (< 200),
while there are no sentences on which 9 or 10 an-
notators agree. Also, this first examination showed
that the sentence position has little to no influence
on the DAE, as the numbers for the context win-
dows mostly follow the same trend. To confirm this
view, we looked at the distribution of complexity
values among the three windows. For each window,
we computed the number of sentences that were as-
signed the same average complexity value. Figure
2 shows that average complexity follows a Gaus-
sian distribution for all the windows of context,
as most sentences received an average complexity
between 0.2 and 0.4.

2The degree of agreement is intended as the number of
annotators who gave a complexity score within the same range.
The range is defined as the standard deviation from the mean
of the judgments given to each sentence.
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Zero Variance BCE Highest Variance B C E

Length 10
Tokyo’s Nikkei index fell 84.15 points to 35442.40.

.38
Nashua announced the Reiss request after the market
closed.

.22 .42 .63

Length 15
Elsewhere in Europe, share prices closed higher in
Stockholm, Brussels and Milan.

.23
Last year, the prisons’ sales to the Pentagon totaled
$336 million.

.62 .32 .20

Length 20
Dow Jones industrials 2645.08, up 41.60; transporta-
tion 1205.01, up 13.15; utilities 219.19, up 2.45.

.50
The cash dividend paid on the common stock also
will apply to the new shares, the company said.

.12 .12 .55

Length 25
In the nine months, Milton Roy earned $6.6 million,
or $1.18 a share, on sales of $94.3 million. .38

Yesterday, Compaq plunged further, closing at $100
a share, off $8.625 a share, on volume of 2,633,700
shares.

.25 .67 .42

Length 30
SsangYong, which has only about 3% of the domestic
market, will sell about 18,000 of its models this year,
twice as many as last year.

.32
Though not reflected in the table, an investor should
know that the cost of the option insurance can be
partially offset by any dividends that the stock pays.

.23 .50 .57

Length 35

In the nine months, net rose 35% to $120.1 million,
or $1.64 a share, from $89.20 million, or $1.22 a
share, a year earlier.

.48

William Kaiser, president of the Kaiser Financial
Group in Chicago, said the decline was almost cer-
tainly influenced by the early sell-off in the stock
market, which partly reflected a weakening economy.

.45 .23 .58

All sents
Dow Jones industrials 2645.08, up 41.60; transporta-
tion 1205.01, up 13.15; utilities 219.19, up 2.45.

.50
The cash dividend paid on the common stock also
will apply to the new shares, the company said.

.12 .12 .55

Table 2: Sentences that vary the least or the most within context windows. B, C, and E respectively indicate the begin, center and
end windows.

Furthermore, we computed the standard devi-
ation of the complexity judgments that were as-
signed to each sentence. In Figure 3, we plot the
standard deviation of each sentence3 against the
average complexity assigned to that same sentence,
for the three windows of context. The standard
deviation tends to increase with the average com-
plexity score assigned to sentences. This means
that annotators agree more on rating a sentence as
simple, suggesting that the perception of a sentence
as more complex may be less homogeneous. This
trend is quite similar for all contextual windows,
though we observe a more uniform behaviour in
rating a sentence as more complex when it is sur-
rounded by both contextual sentences (i.e. the cen-
ter window).

Besides sentence positioning, also sentence
length may affect the perception of complexity.
Thus, we calculated the average of complexity judg-
ments assigned to sentences of the same length,
for all the three context windows, along with the
mean standard deviation. As shown in Table 1,
for the center and the end window average com-
plexity values tend to increase with the length of
the sentences, as expected. On the contrary, stan-
dard deviation follows the opposite trend, showing
that subjects agree more on the complexity of long
sentences (e.g. length 30 and 35), while their per-
ception about shorter sentences is more diversified.
It also emerges that when the sentence is at the be-
ginning of the paragraph, it is overall perceived as

3If more than one sentence was assigned the same average
complexity value, we plot the average standard deviation of
all the sentences.

simpler. This may indicate that the following con-
textual sentences help annotators in the processing
and understanding of the first sentence.

Table 2 shows examples of sentences whose
complexity scores vary the least or the most within
the different windows of context. In the case of
Zero Variance, the sentence received the same aver-
age complexity, regardless of the relative position
in the contextual window (begin, center, end). In-
stead, sentences with the highest variance received
very different average values, according to the po-
sition the sentence occupies in the contextual win-
dows. This table also reports the actual average
complexity values that the sentences got for each
position.

Linguistic Features
Raw Text Properties
Sentence Length
Word Length
Vocabulary Richness
Type/Token Ratio for words and lemmas
Morphosyntactic information
Distribution of UD and language–specific POS
Lexical dens
Inflectional morphology
Inflectional morphology of lexical verbs and auxiliaries
Verbal Predicate Structure
Distribution of verbal heads and verbal roots
Verb arity and distribution of verbs by arity
Global and Local Parsed Tree Structures
Depth of the whole syntactic tree
Average length of dependency links and of the longest link
Average length of prepositional chain and distribution by depth
Clause length
Relative order of elements
Order of subject and object
Syntactic Relations
Distribution of dependency relations
Use of Subordination
Distribution of subordinate and principal clauses
Average length of subordination chain and distribution by depth
Relative order of subordinate clauses

Table 3: Linguistic features.
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3 Correlation between Linguistic
Features and Complexity

To detect which linguistic phenomena are more in-
volved in the assessment of sentence complexity,
and to verify whether these phenomena capture in-
formation about the sentence itself or about the con-
text, we performed a correlation analysis between
the complexity score assigned to each sentence
and a wide set of linguistic features extracted from
the sentence. For each sentence, we computed the
Spearman’s rank correlation coefficient between
the average complexity score and the value of each
linguistic feature extracted from i) the rated sen-
tence, ii) its preceding one and iii) its following one,
according to the contextual window. We performed
the correlation analysis on the sentences altogether
and then dividing them into bins according to their
length. The same process was repeated correlating
the standard deviation of complexity scores with
the linguistic features of each sentence. As stated
in Section 2, we focused on features that model a
wide range of sentence properties extracted from
different levels of linguistic annotation, from raw
text features (i.e. sentence and word length) to
morphosyntactic information (e.g. distribution of
verbs according to morphological features such as
tense, mood, person), to more complex aspects of
the syntactic structure capturing global and local
information (e.g. parse tree depth, length of depen-
dency link, use of subordination). Table 3 reports
the list of features used for our analysis.

In what follows, we discuss the correlation re-
sults for the subset of sentences presented in the
center window, since this is the only one in which
the rated sentence was always surrounded by both
a left and a right sentence, allowing us to compare
the effect of the two context positions4.

Considering first the average complexity score,
we found statistically significant correlations (p-
value< 0.05) with ρ ≥ ±0.20 for 103 features out
of the whole set. Among them, 44% belongs to
the rated sentence (i.e. 45 features) and 56% to the
contextual ones (i.e. 23 and 35 features to the left
and the right sentence, respectively). Although we
could expect that many features extracted from the
rated sentence were correlated to complexity judg-
ments, these results also suggest that humans have
paid attention to the whole context when rating the
middle sentence, and especially to the following

4We report in the Appendix the whole tables of correlation
results for all contextual windows.

Features L10 L15 L20 L25 L30 L35 All
B_dep_aux:pass - - - −1 - - -
B_dep_compound - - 5 - - - -
B_dep_compound:prt −4 - - - - - -
B_dep_flat - - - −5 - - -
B_dep_nmod - - - 5 - - -
B_dep_nsubj - −5 - - - - -
B_dep_nsubj:pass - - - −2 - - -
B_dep_nummod - - 3 - - - -
B _princ_prop - - −4 - - - -
B_verb_root_perc - - −3 - - - -
C_aux_Fin - - −1 - −4 - -
C_aux_num_pers_+ −5 - −5 - - - -
C_aux_Pres - - - - −5 - -
C_avg_max_depth - 5 - - - - 4
C_avg_max_link - - - - - - 8
C_avg_sub_chain - - - - - −1 -
C_avg_tok_clause - - 4 - - - -
C_char_tok - - - - - −5 -
C_dep_aux - - - - −2 - -
C_dep_det - −3 - - - - -
C_dep_nmod 5 - - - - - -
C_dep_nummod - 4 2 - 2 2 5
C_dep_root - −1 - - - - −1
C_dep_xcomp - - - −3 - - -
C_max_link - - - - - - 7
C_n_prep_chain - - - - - - 6
C_n_tok 3 2 - - - - 2
C_tok_sent 4 3 - - - - 3
C_upos_ADJ - −4 - - - - -
C_upos_AUX - - −2 - −3 −2 −2
C_upos_DET - −2 - - - - -
C_upos_NUM 1 1 1 - 1 1 1
C_upos_PRON - - - - - −3 -
C_upos_SYM 2 - - - - 3 -
C_verb_edge_1 - - - - −1 - -
C_verb_Fin - - - - 3 - -
C_verb_Ind - - - - 5 - -
E_aux_Pres −3 - - - - - -
E_avg_link −2 - - - - - -
E_avg_max_depth - - - 2 - - -
E_dep_ccomp - - - - - −4 -
E_dep_nummod - - - 4 - 5 -
E_lexical_dens - - - −4 - - -
E_upos_NUM - - - 1 - 4 -
E_upos_SYM - - - 3 - - -
E_verb_edge_4 −1 - - - - - -
E_verb_Fin - - - - 4 - -

Table 4: Ranking of correlations between the top 10 linguistic
features and the average complexity score for all sentences
and for all length bins. The number indicates the position the
feature occupies in the ranking: the higher the number(positive
or negative), the higher the correlation. B_*, C_*,E_* mean
that the features characterize the beginning, the central and
the ending sentence, respectively.

sentence. The influence of context is suggested as
well by the fact that we observe much lower coeffi-
cients for all correlating features belonging to the
rated sentence, unlike those reported by Brunato
et al. (2018) for the same sentences evaluated in iso-
lation. Tables 4 shows the top ten features ranked
by the correlation score with average complexity,
for all sentences and for groups of sentences of
the same length. A positive number indicates that
the feature is linked to a higher perceived complex-
ity, meaning that linguistic phenomenon makes the
sentence more complex in the eyes of annotators.
Conversely, a negative number is linked to lower
complexity, meaning the linguistic phenomenon
helps annotators in the evaluation of the sentence
complexity.

When all sentences are considered, we observe
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Features L10 L15 L20 L25 L30 L35 All
B_aux_Inf 2 - - - - - -
B_dep_compound:prt −5 - - - - - -
B_subj_pre - - - −5 - - -
B_upos_SYM - - - −3 - - -
B_verb_edge_1 - −2 - - - - -
B_verb_Past - −1 - - - - -
C_avg_sub_chain - - - - - - −1
C_char_tok - - - - - - −5
C_dep_aux - - - - −1 - -
C_dep_nummod - - - - - - 2
C_dep_punct - - - −4 - - -
C_princ_prop - - - - - −2 -
C_sub_prop - - - - - 3 -
C_upos_AUX - - - - - - −2
C_upos_NUM - - - - - - 1
C_upos_PRON - - - - - - −3
C_upos_PUNCT - - - −2 - - -
C_upos_SYM - - - - - - 3
C_verb_edge_1 - - - - - 2 -
C_verb_root_perc - - - - - −1 -
E_avg_link −4 - - - - - -
E_avg_max_link −2 - - - - - -
E_dep_aux −6 - - - - - -
E_dep_ccomp - - - - - - −4
E_dep_nummod - - - - - - 5
E_dep_parataxis −7 - - - - - -
E_dep_root 1 - - - - - -
E_max_link −3 - - - - - -
E_upos_ADV - - 1 - - - -
E_upos_NUM - - - - - - 4
E_verb_edge_3 - - - −1 - 1 -
E_verb_Past 3 - - - - - -
E_verb_Pres −1 - - - - - -

Table 5: Ranking of correlations between the top 10 linguistic
features and complexity standard deviation for all sentences
and for all length bins. Feature labels and ranking numbers
are used as in 4.

that the first ten ones all belong to the middle sen-
tence and refer to features modeling linguistic phe-
nomena of different nature, although we can distin-
guish two main groups, positively correlated with
the perception of sentence complexity. The first
group is related to the presence of numerical in-
formation (i.e. literal numbers in the sentence),
as conveyed by both POS and syntactic features
(C_upos_NUM, C_dep_nummod). The second
one, as more expected, concerns sentence length
(C_tok_sent, C_dep_root) and features still related
to length but capturing aspects of structural com-
plexity, e.g. the depth of the whole parse tree and
specific sub-trees, i.e. nominal chain headed by a
preposition (C_avg_max_depth, C_n_prep_chain).
Notably, the effect of sentence length is observed
only for the middle sentence, while the length of
contextual sentences is never correlated with judg-
ments. Again, the correlation is much lower with
respect to the one obtained by sentences judged in
isolation (i.e. 0.31 vs 0.84 reported in the previous
study). Within bins of same-length sentences, we
notice a more prominent role of features from the
context, as suggested by the presence of features
characterizing both the sentence preceding and fol-
lowing the rated one in the first ten position of the
ranking. Interestingly, for all bins numerical infor-

mation turned out to be the feature most correlated
with complexity score, being it extracted from the
rated or from contextual sentences (specifically, the
right sentence, for the bin composed by sentences
with 25 tokens).

For standard deviation, we found 29 statistically
significant (p < 0.05) features with correlation
ρ ≥ 0.20. These include 24% of features belong-
ing to the rated sentence (i.e. 7 features), while
the remaining features belong to the contextual sen-
tences (i.e. 6 features for the left sentence, 15 for
the right one). In this case we found far less corre-
lations, with most features being significant for the
length bins but not when considering the sentences
altogether. These results confirm that humans have
paid attention to the whole context when evaluat-
ing the sentence, but also that standard deviation,
and thus annotators’ agreement, is a phenomenon
harder to describe and subjective to factors that lin-
guistic features cannot fully detect. Similarly to
what done for average complexity, in Table 5 we
report the first ten features mostly correlated with
standard deviation, for all rated sentences and for
sentences of the same length. As we can see, the
ranking is mostly different from the one resulting
from correlating feature values and average com-
plexity scores.

4 Predicting Sentence Complexity

The results of the correlation analysis have shown
that linguistic information of the context affects the
perception of sentence complexity and the extent
to which this perception is shared by annotators.
We thus proceed to assess the contribution of the
context from a modeling standpoint. We built two
regression tasks, one to predict the average com-
plexity value assigned to each sentence, and one
to predict the standard deviation of complexity for
each sentence. In both scenarios, we employed two
different models: the first is a linear SVM regres-
sion model with standard parameters that leverages
the explicit linguistic features presented in Table
3, the second is obtained by fine-tuning the BERT
base model (i.e. bert-base-uncased) on our dataset
using the FARM5 regression implementation. Both
models were evaluated with a 5-fold cross valida-
tion for each of the three windows of context.

For every window, we carried out different runs
of the models, varying the amount of contextual
features to be considered. For the begin window

5github.com/deepset-ai/FARM
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(a) SVM models (b) BERT models

Figure 4: Performance (MAE) of SVM regression model on avg complexity ratings prediction. In different windows of context
and with different context spans, for all sentences and at different sentence lengths.

(a) SVM models (b) BERT models

Figure 5: Performance (MAE) of SVM regression models and BERT models in the prediction of complexity standard deviation.
In different windows of context and with different context spans, for all sentences and at different sentence lengths.

and the end window we ran the models with i) the
features of the single sentence (no context), ii) the
features of the sentence + the features of the next
sentence (right context) for the begin window, or
+ the features of the previous sentence (left con-
text) for the end window, iii) the features of all the
three sentences (full context, i.e. the whole win-
dow of context); for the center window, we trained
the models with i) no context features, ii) left or
right context features, iii) full context features. We
measured the performance of the models in terms
of mean absolute error (MAE), evaluating their

accuracy in predicting the same average judgment
of complexity assigned by humans and the stan-
dard deviation of the complexity judgments. We
then repeated the same experiments grouping the
sentences according to their length. The baseline
for the models evaluation was calculated (i) in the
case of all sentences, by giving in input to the linear
regression model only the length of the sentence
as feature for the prediction, (ii) in the case of dif-
ferent lengths (binned sentences), by having the
model always assigning the average complexity
value (calculated on the whole set of sentences) to
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each sentence.

Figure 4 reports the results for the prediction of
the average complexity, showing the average MAE
obtained after the 5-fold validation, both for SVM
models and BERT models. The SVM models with
linguistic features outperform BERT models over-
all. BERT models remain close to the baseline in
all cases, despite the amount of context considered
and the length of the sentences. Instead, the SVM
models show significant differences as appropriate.
In the case of all sentences, the performances of
the model are close to the baseline. Adding contex-
tual features slightly helps in the case of the begin
and the end window, while performances worsen in
the case of the center window. When considering
sentences of the same length, the performance of
the model is always helped by the presence of con-
textual features and best results are achieved when
the full context is taken into account, for all the
windows of context. This behavior confirms on one
side that linguistic characteristics of the context are
indeed very influential on complexity, on the other
side that the length of the sentence plays an impor-
tant role on the perception of complexity, as it is
only by binning the sentences that we can exploit
the effect of context in predicting complexity.

Figure 5 shows the results for the prediction
of the standard deviation of complexity, for SVM
models and BERT models. As in the previous case,
BERT models obtain results that are in line with
the baseline and that are not influenced by different
amounts of context. When looking at the results ob-
tained with the explicit linguistic features, the out-
come is quite different. For the all sentences case,
the SVM model cannot predict the standard devi-
ation of complexity, although the error gets lower
for the begin window and the end window when the
full context is used. Conversely, the model shows
large improvement when working on sentences of
the same length. In all windows and for all lengths,
using the features of the whole context significantly
decreases the error in the prediction of standard de-
viation. When running the model with the features
of the single sentence (i.e. no context), the perfor-
mances of the model are in general close to the
ones of the baseline. This suggests that the context
is particularly relevant in predicting how people
will agree on their perception of complexity.

Overall, our results show that information about
the complexity of a sentence is better encoded in
its explicit linguistic features, thus its syntactic and

morphosyntactic structures. On the other hand,
although BERT has been proven to embed a wide
range of linguistic properties, including syntactic
ones (Tenney et al., 2019; Miaschi et al., 2020), our
findings seem to suggest that this model does not
exploit these kind of features to solve a downstream
task like ours, for which few data are available.
Indeed, it has been shown that BERT performs
better on datasets larger than ours (Kumar et al.,
2020). Thus, it is fair to assume that more data may
be needed for BERT to detect phenomenon about
perceived complexity.

Moreover, our results show that the presence of
context plays an important role on complexity. As
the SVM models are always helped by the contex-
tual features, it is fair to assume that annotators
have taken into account the whole context when
expressing their judgment upon complexity, and
that the presence of the context has strongly influ-
enced their perception. Also, contextual linguistic
phenomena are the ones that impact more on the
variation of complexity perception between anno-
tators as they are the ones that help more in the
prediction of this variation.

5 Conclusion

We studied how the context surrounding a sentence
influences the perception of its complexity by hu-
mans. Starting from a newly collected dataset, we
investigated which linguistic phenomena, among
a wide set of lexical, morphosyntactic, and syn-
tactic ones, are more correlated with complexity
judgments and the degree of agreement between
annotators. From a modeling standpoint, we ob-
serve that models using explicit linguistic features
achieve higher accuracy than state-of-the-art neural
language models in predicting the average com-
plexity score assigned to a sentence, as well as
the variation among scores. This is especially true
when they use explicit linguistic features from all
contextual sentences in addition to the linguistic
features of the sole rated sentence.

As many NLP applications are concerned with
the analysis of linguistic complexity, particularly
for text readability and text simplification purposes,
we think that our results emphasize the importance
of considering contextual information both in the
creation of gold benchmarks, which are typically
based only on data paired at sentence level and in
the development of cognitively inspired evaluation
systems driven by how people perceive complexity.
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A Appendix. Results of Correlations between Linguistic Features and Complexity
Average Scores (judg) and between Linguistic Features and Complexity Standard
Deviation (std).

Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

B_aux_+ −0.20 - - - - - - - - - - - - -
B_aux_Fin −0.29 - - - −0.25 - - 0.22 - - - - - -
B_aux_Ind −0.27 - - - - - - - - - - - - -
B_avg_link 0.31 - - - - - - - - - - - 0.21 -
B_avg_max_depth 0.25 - 0.23 - - - - - - - - - 0.29 -
B_avg_max_link 0.36 - - - - - - - - - - - 0.26 -
B_avg_prep_chain - - - - - - - - - 0.20 - - - -
B_avg_sub_chain - - - - - - −0.23 - - - - - - -
B_avg_tok_clause −0.20 - 0.25 - - - - - - - - - - -
B_char_tok - - −0.24 - - - - - - - - - - -
B_dep_advmod - - - - 0.20 - - - - - - - - -
B_dep_amod −0.25 - - - - - - - - - - - - -
B_dep_appos 0.54 - - - - - - - - - - - - -
B_dep_compound 0.27 - - - - −0.22 - - 0.20 - 0.21 - 0.22 -
B_dep_cop −0.25 - - - - - - - - - - - - -
B_dep_det −0.33 - - - - - - - - - - - −0.21 -
B_dep_nsubj −0.43 - - - - - - - - - - - −0.22 -
B_dep_nummod 0.39 - 0.20 - 0.30 - 0.23 - 0.33 - 0.35 - 0.33 -
B_dep_obl:tmod - - - - - - - - - −0.26 - - - -
B_dep_punct - - - - 0.20 - - - - - - - - -
B_dep_root −0.34 - −0.33 - - - - - - - - - −0.32 -
B_dep_xcomp - - - - - - −0.25 - - - - - - -
B_lexical_dens - - - - −0.22 - −0.21 - - - - - - -
B_max_link 0.36 - - - - - - - - - - - 0.26 -
B_n_prep_chain - - - - - - 0.20 - - - - - 0.24 -
B_n_tok 0.34 - 0.33 - - - - - - - - - 0.32 -
B_obj_post - - 0.22 - - - - - - - - - - -
B_princ_prop −0.27 - - - - - - - - - - - - -
B_sub_1 −0.24 - - - - - - - - - - - - -
B_sub_prop - - - - - - −0.22 - - - - - - -
B_subj_pre −0.42 - - - - - - - - - - - - -
B_tok_sent 0.34 - 0.33 - - - - - - - - - 0.32 -
B_ttr −0.20 - - - - - - - - - - - - -
B_ttr_lemma −0.21 - - - - - - −0.20 - - - - - -
B_upos_ADJ −0.26 - - - −0.24 - - - - - - - - -
B_upos_ADP −0.20 - - - - - - - - - - - - -
B_upos_AUX −0.29 - - - - - - 0.23 - - - - - -
B_upos_DET −0.33 - - - - - - - - - - - −0.21 -
B_upos_NUM 0.40 - 0.30 - 0.33 - 0.30 - 0.34 - 0.30 - 0.34 -
B_upos_PART - - - - - - - - - - −0.20 - - -
B_upos_PRON −0.25 - −0.24 - - - - - - - - - - -
B_upos_PUNCT - - - - 0.20 - - - - - - - - -
B_upos_SYM 0.30 - 0.22 - - - 0.27 - 0.29 - 0.31 - 0.28 -
B_upos_VERB −0.30 - - - - - - - - - - - - -
B_verb_edge_0 - - −0.25 - - - - - - - - - - -
B_verb_head_sent −0.42 - - - - - −0.21 - - - - - - -
B_verb_root_perc −0.43 −0.22 - - - - - - - - - - - -
C_aux_+ - - - - - −0.21 - - - - - - - -
C_aux_Fin −0.31 - - - −0.21 - - - - - - - - -
C_aux_Ind −0.32 - - - - - - - - - - - - -
C_aux_Pres −0.23 - - - - - - - - - - - - -
C_aux_Sing+3 −0.29 - - - - - - - - - - - - -
C_avg_link −0.23 - - - - - - - - - - - - -
C_avg_sub_chain −0.24 - - - - - - - - - - - - -
C_avg_tok_clause −0.33 - - - - - - - - - - - - -
C_avg_verb_edge −0.30 - - - −0.21 - - - - - - - - -
C_char_tok 0.28 - - - - - - - - - - - - -
C_dep_aux - - - - −0.21 - - - - - - - - -
C_dep_aux:pass - - - - - - - - - 0.23 - - - -
C_dep_cc −0.23 - - - −0.20 - - - - - - - - -
C_dep_ccomp −0.23 - - - - - - - - - - - - -
C_dep_compound 0.21 - - - 0.24 - - - - - - - - -
C_dep_nmod:poss −0.24 - - - - - - - - - - - - -
C_dep_nsubj - - - - −0.31 - - - - - - - - -
C_dep_nsubj:pass - - - - - - - - - 0.23 - - - -
C_dep_nummod - - - - 0.28 - 0.27 - 0.22 - 0.26 - 0.23 -
C_dep_obj −0.21 - - - - - - - - - - - - -
C_dep_obl −0.25 - - - - - - - - - - - - -
C_dep_root 0.30 - - - - - - - - - - - - -
C_n_tok −0.30 - - - - - - - - - - - - -
C_obj_post −0.24 - - - −0.21 - - - - - - - - -
C_prep_3 0.37 - - - - - - - - - 0.22 - - -
C _princ_prop −0.27 - - - - - - - - - - - - -
C_sub_1 −0.30 - - - - - - - - - - - - -
C_sub_post −0.28 - - - - - - - - - - - - -
C_sub_pre - - - - −0.24 - - - - - - - - -
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Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

C_sub_prop −0.22 - - - - - - - - - - - - -
C_subj_pre −0.39 - - - - - - - - - - - - -
C_tok_sent −0.30 - - - - - - - - - - - - -
C_upos_AUX −0.22 - - - −0.23 - - - - - - - - -
C_upos_CCONJ −0.21 - - - - - - - - - - - - -
C_upos_DET −0.23 - - - - - - - - - - - - -
C_upos_NUM - - - - 0.24 - 0.35 - 0.23 - 0.26 - 0.24 -
C_upos_PART −0.25 - - - - - - - - - - - - -
C_upos_PRON −0.27 - −0.23 - - - - - - - - - - -
C_upos_VERB −0.29 - - - −0.27 - - - - - - - - -
C_verb_edge_5 −0.31 - - - - - - - - - - - - -
C_verb_head_sent −0.38 - - - −0.28 - - - - - - - - -
C_verb_Ind −0.23 - - - - - - - - - - - - -
C_verb_Inf −0.21 - - - - −0.20 - - - - - - - -
C_verb_Part −0.24 - - - - - - - - - - - - -
C_verb_Past −0.29 - - - - - - - - - - - - -
C_verb_Pres - - - - −0.26 - - - - - - - - -
C_verb_root_perc −0.44 - - - −0.29 - - - - - - - - -
C_verb_Sing+3 - - - - −0.25 - - - - - - - - -
E_aux_Fin −0.29 - - - −0.21 - - - - - - - - -
E_aux_Ind −0.22 - - - −0.22 - - - - 0.22 - - - -
E_aux_Pres - - - - −0.24 - −0.21 - - - - - - -
E_avg_link 0.32 - - - 0.31 - - - - - - - - -
E_avg_max_link - - - - 0.29 - - - - - - - - -
E_avg_prep_chain 0.26 - - - - - - - - - 0.23 - - -
E_avg_verb_edge −0.23 - - - - - - - - - - - - -
E_dep_advmod - - −0.25 −0.24 - - - - - - - - - -
E_dep_appos 0.37 - - - 0.21 - 0.23 - - - - - - -
E_dep_det −0.25 - - - - - - - - - - - - -
E_dep_list - - - - 0.22 - - - - - - - - -
E_dep_nmod 0.35 - - - - - - - - - 0.25 - - -
E_dep_nsubj −0.29 - - - −0.25 - - - - - - - - -
E_dep_nummod 0.40 - - - - - - - - - - - 0.21 -
E_dep_obj −0.31 - - - - - - - - - - - - -
E_lexical_dens −0.30 - - - - - - - - - - - - -
E_max_link - - - - 0.29 - - - - - - - - -
E_n_prep_chain 0.32 - - - 0.22 - - - - - 0.20 - - -
E_obj_post −0.28 - - - - - - - - - - - - -
E_prep_1 0.29 - - - - - - - - - - - - -
E _princ_prop −0.23 - - - - - - - - - - - - -
E_sub_pre - −0.21 - - - - - - - - - - - -
E_subj_pre −0.45 - - - - - - - - - - - - -
E_ttr −0.31 - - - −0.29 - - - - - - - - -
E_ttr_lemma −0.30 - - - −0.29 - - - - - - - - -
E_upos_ADP 0.22 - - - - - - - - - - - - -
E_upos_AUX −0.24 - - - −0.27 - - - - - - - - -
E_upos_DET −0.27 - - - - - - - - - - - - -
E_upos_NUM 0.39 - - - 0.23 - - - - - 0.21 - 0.23 -
E_upos_PRON −0.34 - - - - - - - - - - - - -
E_upos_VERB −0.38 - - - - - - - - - −0.24 - - -
E_verb_edge_1 −0.29 - - - - - - - - - - - - -
E_verb_edge_3 −0.23 - - - - - - - - - - - - -
E_verb_Ger - - - - 0.20 - - - - - - - - -
E_verb_head_sent −0.30 - - - - - - - - - - - - -
E_verb_root_perc −0.41 - - - −0.21 - - - - - - - - -

Table 6: Values of correlation for statistically significant (p-value< 0.05) linguistic features with ρ ≥ 0.20 that correlate with
either the average judgment of complexity or the complexity standard deviation. For the begin context window, for all sentences
and for sentences divided according to their length.

Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

B_aux_+ −0.21 - - - - - - - - - - - - -
B_aux_form_Ger - - 0.21 - - - - - - - - - - -
B_aux_form_Inf - 0.20 - - - - - - - - - - - -
B_aux_Pres - - - - - - - - −0.21 - - - - -
B_avg_prep_chain - - - - - - 0.23 - - - - - - -
B_avg_sub_chain −0.24 - - - - - - - - - - - - -
B_dep_aux - - - - - - - - - - −0.28 - - -
B_dep_aux:pass - - - - - - −0.32 - - - - - - -
B_dep_compound - - 0.20 - 0.21 - - - - - 0.22 - 0.21 -
B_dep_flat - - - - - - −0.22 - - - - - - -
B_dep_nmod - - - - - - 0.25 - - - - - - -
B_dep_nsubj - - −0.24 - - - - - - - −0.21 - - -
B_dep_nsubj:pass - - - - - - −0.29 - - - - - - -
B_dep_nummod - - 0.27 - 0.23 - - - - - 0.26 - - -
B_n_prep_chain - - - - - - 0.23 - - - - - - -
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Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

B_princ_prop - - - - −0.24 - - - - - - - - -
B_sub_post −0.22 - - - - - - - - - - - - -
B_subj_pre - - - - - - - −0.20 - - - - - -
B_upos_NUM - - 0.22 - - - - - - - 0.29 - - -
B_upos_PRON - - - - - - - - −0.22 - - - - -
B_upos_PROPN - - 0.21 - - - - - - - - - - -
B_upos_SYM - - - - - - - −0.21 - - 0.21 - - -
B_upos_VERB - - −0.21 - −0.22 - - - - - - - - -
B_verb_edge_1 - - - −0.20 - - - - - - - - - -
B_verb_Past - - - −0.21 - - - - - - - - - -
B_verb_root_perc - - - - −0.25 - - - - - - - - -
C_aux_+ −0.24 - - - −0.24 - - - - - −0.20 - - -
C_aux_form_Fin −0.21 - - - −0.28 - - - −0.22 - - - - -
C_aux_Ind - - - - −0.23 - - - - - - - - -
C_aux_Past - - - - −0.21 - - - - - - - - -
C_aux_Pres −0.21 - - - - - - - −0.22 - −0.24 - - -
C_avg_max_depth 0.21 - 0.31 - - - - - - - - - 0.29 -
C_avg_max_link - - - - - - - - - - - - 0.25 -
C_avg_sub_chain - - - - - - - - −0.20 - −0.38 - - -
C_avg_tok_clause - - - - 0.22 - - - - - 0.26 - - -
C_char_tok - - - - - - - - - - −0.30 - - -
C_dep_amod - - - - −0.24 - - - - - - - - -
C_dep_aux - - −0.22 - −0.21 - - - −0.28 −0.25 −0.29 - - -
C_dep_case - - - - - - - - - - 0.22 - - -
C_dep_ccomp - - - - - - - - - - −0.27 - - -
C_dep_det - - −0.28 - −0.22 - - - - - - - - -
C_dep_mark - - - - - - - - - - −0.23 - - -
C_dep_nmod 0.23 - - - - - - - - - - - - -
C_dep_nsubj −0.22 - - - - - - - - - - - - -
C_dep_nummod 0.21 - 0.32 - 0.25 - - - 0.26 - 0.35 - 0.29 -
C_dep_punct - - - - - - - −0.21 - - - - - -
C_dep_root −0.24 - −0.33 - - - - - - - - - −0.31 -
C_dep_xcomp - - - - - - −0.26 - - - −0.28 - - -
C_lexical_dens - - −0.23 - −0.21 - - - - - −0.27 - - -
C_max_link - - - - - - - - - - - - 0.25 -
C_n_prep_chain 0.23 - - - - - - - - - - - 0.25 -
C_n_tok 0.24 - 0.33 - - - - - - - - - 0.31 -
C_princ_prop - - - - - - - - - - 0.23 −0.21 - -
C_sub_2 - - - - - - - - - - −0.20 - - -
C_sub_4 - - - - - - - - - - −0.24 - - -
C_sub_post - - - - - - - - - - −0.28 - - -
C_sub_prop - - - - - - - - - - −0.29 0.20 - -
C_tok_sent 0.24 - 0.33 - - - - - - - - - 0.31 -
C_upos_ADJ −0.21 - −0.25 - −0.22 - - - - - −0.26 - - -
C_upos_AUX −0.24 - - - −0.27 - - - −0.23 - −0.32 - −0.23 -
C_upos_DET - - −0.28 - −0.21 - - - - - - - - -
C_upos_NUM 0.30 - 0.41 - 0.31 - - - 0.28 - 0.39 - 0.33 -
C_upos_PRON −0.21 - - - −0.21 - - - - - −0.31 - - -
C_upos_PUNCT - - - - - - - −0.21 - - - - - -
C_upos_SYM 0.26 - 0.30 - - - - - - - 0.34 - 0.24 -
C_upos_VERB - - - - - - - - - - −0.24 - - -
C_verb_+ - - - - - - 0.22 - - - - - - -
C_verb_edge_1 - - - - - - - - −0.28 - - 0.20 - -
C_verb_edge_2 - - - - - - - - - - −0.26 - - -
C_verb_form_Fin - - - - - - - - 0.24 - - - - -
C_verb_form_Inf - - - - - - - - - - −0.27 - - -
C_verb_head_sent - - - - −0.23 - - - - - −0.28 - - -
C_verb_Ind - - - - - - - - 0.21 - - - - -
C_verb_root_perc - - - - - - - - - - - −0.22 - -
E_aux_Pres −0.27 - −0.21 - - - - - - - - - - -
E_avg_link −0.29 −0.23 - - - - - - - - - - - -
E_avg_max_depth - - - - - - 0.30 - - - - - - -
E_avg_max_link −0.23 −0.25 - - - - - - - - - - - -
E_avg_sub_chain −0.21 - - - - - - - - - −0.26 - - -
E_avg_tok_clause - - - - - - - - - - 0.25 - - -
E_avg_verb_edge −0.21 - - - - - - - - - - - - -
E_dep_advmod −0.24 - −0.20 - - - - - - - - - - -
E_dep_aux - −0.22 - - - - - - - - - - - -
E_dep_case - - - - - - 0.20 - - - - - - -
E_dep_ccomp - - - - - - - - - - −0.31 - - -
E_dep_nummod - - - - - - 0.28 - - - 0.33 - 0.22 -
E_dep_parataxis - −0.22 - - - - - - - - - - - -
E_dep_root 0.21 0.21 - - - - - - - - - - - -
E_dep_xcomp - −0.21 −0.23 - - - - - - - - - - -
E_lexical_dens - - - - - - −0.25 - - - −0.22 - - -
E_max_link −0.23 −0.25 - - - - - - - - - - - -
E_n_tok −0.21 −0.21 - - - - - - - - - - - -
E_prep_1 - - - - −0.22 - - - - - - - - -
E_prep_2 - −0.20 - - - - 0.20 - - - - - - -
E_sub_post - - - - - - - - - - −0.22 - - -
E_sub_pre - - −0.22 - - - - - - - - - - -
E_sub_prop −0.23 - - - - - - - - - - - - -
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Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

E_tok_sent −0.21 −0.21 - - - - - - - - - - - -
E_upos_ADV - - −0.23 - - 0.22 - - - - - - - -
E_upos_NUM - - - - - - 0.33 - - - 0.34 - 0.22 -
E_upos_PART - - - - - - - - - - −0.23 - - -
E_upos_PRON −0.22 - - - - - - - - - - - - -
E_upos_SYM - - - - - - 0.28 - - - 0.30 - - -
E_upos_VERB - - - - - - - - - - −0.21 - - -
E_verb_edge_3 - - - - - - - −0.22 - - - 0.21 - -
E_verb_edge_4 −0.30 - - - - - - - - - - - - -
E_verb_form_Fin - - - - - - - - 0.21 - - - - -
E_verb_form_Inf - - - - - - - - - - −0.22 - - -
E_verb_head_sent −0.24 - - - - - - - - - - - - -
E_verb_Past - 0.20 - - - - 0.23 - - - - - - -
E_verb_Pres −0.20 −0.30 - - - - - - - - - - - -
E_verb_Sing+3 −0.20 −0.21 - - - - - - - - - - - -

Table 7: Values of correlation for statistically significant (p-value< 0.05) linguistic features with ρ ≥ 0.20 that correlate with
either the average judgment of complexity or the complexity standard deviation. For the center context window, for all sentences
and for sentences divided according to their length.

Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

B_aux_Fin - - - - −0.23 - - - - - - - - -
B_aux_Ind - - - - −0.21 - - - - - - - - -
B_avg_link - - - - −0.25 - - - - - - - - -
B_avg_max_link - - - - −0.24 - - - - - - - - -
B_dep_acl - - - - - −0.23 - - - - - - - -
B_dep_advcl - - - - - - - - −0.20 - - - - -
B_dep_case - - - - −0.21 - - - - - - - - -
B_dep_ccomp - - - - - - - - - - −0.21 - - -
B_dep_nmod:poss - - - - - - - −0.22 - - - - - -
B_dep_obj - - −0.25 - - - - - - - - - - -
B_dep_obl - - - - −0.26 - - - - - - - - -
B_dep_xcomp - - −0.21 - - - - - - - - - - -
B_max_link - - - - −0.24 - - - - - - - - -
B_prep_3 - - - - - - - −0.20 - - - - - -
B_sub_1 - - - - −0.23 - - −0.25 - - - - - -
B_subj_pre - - - - −0.21 - - - - - - - - -
B_ttr - - - - −0.25 - −0.20 - - - - - - -
B_ttr_lemma - - - - −0.22 - −0.22 - - - - - - -
B_upos_ADP - - - - −0.23 - - - - - - - - -
B_upos_AUX - - - - −0.26 - - - - - - - - -
B_upos_NOUN - - - - - - - - - - 0.22 - - -
B_upos_SYM 0.23 - - - - - - - - - - - - -
B_upos_VERB - - - - −0.23 - - - −0.24 - - - - -
B_verb_head_sent - - - - −0.21 - - - - - - - - -
B_verb_Part - - - - −0.26 - - - - - - - - -
B_verb_root_perc - - - - - - - - - - - −0.20 - -
C_aux_Fin −0.21 - −0.21 - −0.26 - - - - - - - - -
C_char_tok - - - - - - - - - - −0.20 - - -
C_dep_appos - - - - 0.26 - - - - - - - - -
C_dep_aux - - −0.27 - - - - - - - - - - -
C_dep_case 0.22 - - - - - - - - - - - - -
C_dep_compound - - 0.22 - 0.22 - - - - - - - - -
C_dep_det −0.21 - - - - - - - - - - - - -
C_dep_fixed - - - - - −0.21 - - - - - - - -
C_dep_nmod 0.22 - - - - - - - - - - - - -
C_dep_nsubj - - - - −0.20 - - - - - - - - -
C_dep_nummod - - - - 0.26 - - - 0.20 - - - - -
C_dep_obl - 0.20 - - - - - - - - - - - -
C_dep_obl:tmod - −0.25 - - - - - - - - - - - -
C_dep_punct - - - - 0.23 - - - - - - - - -
C_sub_2 - 0.22 - - - - - - - - - - - -
C_sub_post - 0.27 - - - - - - - - - - - -
C_sub_pre −0.22 −0.23 - - - - - - - - - - - -
C_sub_prop - 0.22 - - - - - - - - - - - -
C_subj_pre - - - - −0.27 - - - - - - - - -
C_ttr - - - - −0.24 - - - - - - 0.23 - -
C_ttr_lemma - - 0.22 - −0.27 - - - - - - 0.22 - -
C_upos_AUX −0.25 - −0.21 - −0.21 - - - - - - - - -
C_upos_DET −0.23 - - - - - - - −0.22 - - - - -
C_upos_NUM - - - - 0.26 - - - 0.21 - - - - -
C_upos_PRON - - −0.21 - - - - - - - - - - -
C_upos_PROPN - - 0.25 - - - - - - - - - - -
C_upos_PUNCT - - - - 0.23 - - - - - - - - -
C_upos_SYM - - - - - - - - - - 0.26 - - -
C_verb_Past - - 0.28 - - - - - - - 0.23 - - -
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Features Length 10 Length 15 Length 20 Length 25 Length 30 Length 35 All sents
judg std judg std judg std judg std judg std judg std judg std

C_verb_Pres - - −0.20 - - - - - - - - - - -
C_verb_root_perc - - - - −0.28 - - - - - - - - -
E_aux_Fin - - - - −0.23 - - - - - - - - -
E_aux_Inf - - - - - - - - - - −0.25 - - -
E_aux_Pres −0.20 - - - - - - - −0.21 - - - - -
E_avg_link - - - - - - - - - - - - 0.24 -
E_avg_max_depth 0.21 - 0.22 - - - - - - - - - 0.27 -
E_avg_max_link - - - - - - - - - - - - 0.28 -
E_avg_sub_chain - - - - - - - - - - −0.28 - - -
E_avg_tok_clause - - - - - - - - 0.20 - - - - -
E_avg_verb_edge −0.28 −0.21 - - - - - - - - - - - -
E_char_tok - - - - - - −0.22 - - - - - - -
E_dep_acl:relcl - - - - - - 0.21 - - - - - - -
E_dep_advcl - - - - - - - - −0.20 - - - - -
E_dep_advmod - - −0.23 - - - - - - - - - - -
E_dep_amod - - −0.23 - - - - - - - - - - -
E_dep_appos 0.28 - - - - - - - - 0.23 - - - -
E_dep_aux - - - - - - - - - - −0.32 - - -
E_dep_compound 0.20 - 0.27 - - - - - 0.22 - - - 0.21 -
E_dep_det - - −0.30 - −0.33 - - - - - - - - -
E_dep_mark - - - - - - - - - - −0.29 - - -
E_dep_nmod 0.20 - - - - - - - - - - - - -
E_dep_nsubj - - - - - - - - - - - - −0.21 -
E_dep_nummod - - - - 0.27 - 0.23 - 0.21 - 0.25 - 0.22 -
E_dep_obj - −0.22 - - - - - - - - - - - -
E_dep_obl - - - - - - - - - - −0.27 - - -
E_dep_parataxis - - - - - - 0.22 - - - - - - -
E_dep_punct - - - - 0.22 - - - - - - - - -
E_dep_root - - −0.33 - - - - - - - - - −0.33 -
E_lexical_dens - - - - - - −0.29 - - - - - - -
E_max_link - - - - - - - - - - - - 0.28 -
E_n_tok - - 0.33 - - - - - - - - - 0.33 -
E_obj_post - −0.23 - - - - - - - - - - - -
E_sub_2 - - - - - - −0.21 - - - −0.23 - - -
E_sub_post - - - - - - - - - - −0.25 - - -
E_subj_pre −0.32 −0.23 - - - - - - - - - - - -
E_tok_sent - - 0.33 - - - - - - - - - 0.33 -
E_ttr - - - - −0.22 - −0.21 - - - −0.23 - −0.20 -
E_ttr_lemma - - - - −0.22 - - - - - −0.20 - - -
E_upos_ADV −0.21 - - - - - - - - - - - - -
E_upos_AUX - - - - −0.24 - - - - - - - - -
E_upos_DET - - −0.30 - −0.33 - - - - - - - - -
E_upos_NOUN - - - - −0.25 - - - - - - - - -
E_upos_NUM - - 0.21 - 0.28 - 0.27 - - - 0.28 - 0.25 -
E_upos_PART - - - - - - - - - - −0.23 - - -
E_upos_PRON −0.22 - - - - - - - −0.21 - −0.24 - - -
E_upos_PROPN - - - - - - - - - 0.24 - - - -
E_upos_PUNCT - - - - 0.22 - - - - - - - - -
E_upos_SYM - −0.23 - - - - 0.23 - - - 0.27 - 0.21 -
E_upos_VERB - - - - - - - - −0.24 - −0.25 - - -
E_verb_edge_2 - - - - - - - - - - −0.24 - - -
E_verb_edge_3 −0.24 - - - - - - - - - - - - -
E_verb_edge_6 - - - - - −0.21 - - - - - - - -
E_verb_Fin - - - - 0.22 - - - - - - - - -
E_verb_Ger - - - - - - - - −0.25 - - - - -
E_verb_head_sent - - - - −0.20 - - - −0.20 - - - - -
E_verb_Inf - - - - −0.23 - - - - - −0.22 - - -
E_verb_Pres −0.22 - - - - - - - - - - - - -
E_verb_root_perc −0.20 - - - - - - - - - - - - -
E_verb_Sing+3 - - - - 0.23 - - - - - - - - -

Table 8: Values of correlation for statistically significant (p-value< 0.05) linguistic features with ρ ≥ 0.20 that correlate with
either the average judgment of complexity or the complexity standard deviation. For the end context window, for all sentences
and for sentences divided according to their length.
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Abstract

When learning their native language, chil-
dren acquire the meanings of words and sen-
tences from highly ambiguous input without
much explicit supervision. One possible learn-
ing mechanism is cross-situational learning,
which has been successfully tested in labo-
ratory experiments with children. Here we
use Artificial Neural Networks to test if this
mechanism scales up to more natural language
and visual scenes using a large dataset of
crowd-sourced images with corresponding de-
scriptions. We evaluate learning using a se-
ries of tasks inspired by methods commonly
used in laboratory studies of language acqui-
sition. We show that the model acquires rich
semantic knowledge both at the word- and
sentence-level, mirroring the patterns and tra-
jectory of learning in early childhood. Our
work highlights the usefulness of low-level co-
occurrence statistics across modalities in facil-
itating the early acquisition of higher-level se-
mantic knowledge.

1 Introduction

In order to acquire their native language, children
learn both how to associate individual words with
their meanings (e.g., the word “ball” refers to the
object ball and the word “kick” refers to that act of
kicking) and how to map the relationship between
words in a sentence onto specific event configura-
tions in the world, e.g., that the sequence of words
“Jenny kicks the ball” maps on to the event where
the referent of the first noun (i.e., Jenny) is per-
forming the act of kicking on the second (i.e., the
ball). This is a difficult task because it requires
that children learn these associations and rules in
a largely unsupervised fashion from an input that
can be highly ambiguous (Quine, 1960). It is still
unclear how children overcome this challenge.

Previous experimental studies on child lan-
guage acquisition have focused on evaluating chil-

dren’s learning using controlled tasks that typically
take the form of a two-alternative forced-choice
paradigm. For example, in order to test the learn-
ing of an individual word meaning, we can utter
this word to the child (e.g., “ball”) and present her
with two pictures representing correct (i.e., a ball)
and incorrect referents (e.g. a cup), and we test if
the child reliably prefers the correct one (Bergelson
and Swingley, 2012). Similarly, in order to evaluate
children’s understanding of sentence-level seman-
tics such as a the agent-patient relationship, we can
utter a sentence such as “Jenny is tickling Mike”
and present the child with two pictures where either
Jenny or Mike are doing the tickling, and we test
if the child reliably prefers the correct picture (e.g.
Noble et al., 2011; Gertner and Fisher, 2012).

While we have been able to evaluate children’s
knowledge using such controlled tests, research has
been less compelling regarding the mechanism of
learning from the natural, ambiguous input. One
promising proposal is that of cross-situational learn-
ing (hereafter, XSL). This proposal suggests that,
even if one naming situation is highly ambiguous,
being exposed to many situations allows the learner
to narrow down, over time, the set of possible word-
world associations (e.g. Pinker, 1989).

While in-lab work has shown that XSL is cogni-
tively plausible using toy situations (Yu and Smith,
2007), effort is still ongoing to test if this mecha-
nism scales up to more natural learning contexts
using machine learning tools (e.g. Chrupała et al.,
2015; Vong and Lake, 2020). This previous work,
however, has focused mainly on testing the learning
of individual words’ meanings, while here we are
interested in testing and comparing both word-level
and sentence-level semantics.

1.1 The Current Study

The current study uses tools from Natural Lan-
guage Processing (NLP) and computer vision as
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research methods to advance our understanding of
how unsupervised XSL could give rise to semantic
knowledge. We aim at going beyond the limitations
of in-lab XSL experiments with children (which
have relied on too simplified learning input) while
at the same time integrating the strength and preci-
sion of in-lab learning evaluation methods.

More precisely, we first design a model that
learns in an XSL fashion from images and text
based on a large-scale dataset of clipart images
representing some real-life activities with corre-
sponding – crowdsourced – descriptions. Second,
we evaluate the model’s learning on a subset of
the data that we used to carefully design a series
of controlled tasks inspired from methods used in
laboratory testing with children. Crucially, we test
the extent to which the model acquires various as-
pects of semantics both at the word level (e.g., the
meanings of nouns, adjectives, and verbs) and at
the sentence level (e.g. the semantic roles of the
nouns).

Further, in order for an XSL-based model to
provide a plausible language learning mechanism
in early childhood, it should not only be able to
succeed in the evaluation tasks, but also mirror
children’s learning trajectory (e.g., a bias to learn
nouns before predicates). Thus, we record and ana-
lyze the model’s learning trajectory by evaluating
the learned semantics at multiple timesteps during
the training phase.

1.2 Related Work and Novelty

While supervised learning from images and text
has received much attention in the NLP and com-
puter vision communities, for example in the form
of classification problems (e.g. Yatskar et al., 2016)
or question-answering (e.g. Antol et al., 2015; Hud-
son and Manning, 2019), here we focus on cross-
situational learning of visually grounded seman-
tics, which corresponds more to our understanding
of how children learn language

There is a large body of work on cross-
situational word learning (Frank et al., 2007; Yu
and Ballard, 2007; Fazly et al., 2010), some of them
with more plausible, naturalistic input in the form
of images as we consider in our work (Kádár et al.,
2015; Lazaridou et al., 2016; Vong and Lake, 2020).
However, these previous studies only evaluate the
semantics of single words in isolation (and some-
times only nouns). In contrast, our paper aims at
a more comprehensive approach, testing and com-

paring the acquisition of both word-level meanings
(including adjectives and verbs) and sentence-level
semantics.

There has been some effort to test sentence-
level semantics in a XLS settings. For example,
Chrupała et al. (2015) also introduces a model
that learns from a large-scale dataset of natural-
istic images with corresponding texts. To evalu-
ate sentence-level semantics, the model’s perfor-
mance was tested in a cross-modal retrieval task, as
commonly used to evaluate image-sentence rank-
ing models (Hodosh et al., 2013). They show
that sentence to image retrieval accuracy decreases
when using scrambled sentences, indicating that
the model is sensitive to word order. In a subse-
quent study, Kádár et al. (2017) introduces omis-
sion scores to evaluate the models’ selectivity to
certain syntactic functions and lexical categories.
Another evaluation method for sentence-level se-
mantics is to compare learned sentence similarities
to human similarity judgments (e.g. Merkx and
Frank, 2019).

Nevertheless, these previous studies only ex-
plored broad relationships between sentences and
pictures, they did not test the models’ sensitivity
to finer-grained phenomena such as dependencies
between predicates (e.g., adjectives and verbs) and
arguments (e.g., nouns) or semantic/ roles in detail.

2 Methods

2.1 Data

We used the Abstract Scenes dataset 1.1 (Zitnick
and Parikh, 2013; Zitnick et al., 2013), which con-
tains 10K crowd-sourced images each with 6 cor-
responding short descriptive captions in English.
Annotators were asked to “create an illustration
for a children’s story book by creating a realistic
scene” given a set of clip art objects (Zitnick and
Parikh, 2013). The images contain one or two chil-
dren engaged in different actions involving inter-
actions with a set of objects and animals. Further,
the children can have various emotional states de-
picted through a variety of facial expressions. The
corresponding sentences were collected by asking
annotators to write “simple sentences describing
different parts of the scene”1 (Zitnick et al., 2013).

While some studies have used larger datasets
with more naturalistic images (e.g. Lin et al., 2014;

1The annotators were asked to refer to the children by the
names “Jenny” and “Mike”.
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Plummer et al., 2015), here we used the Ab-
stract Scenes dataset since it contains many similar
scenes and sentences, allowing us to create bal-
anced test sets (as described in the following sec-
tion). In other words, the choice of the dataset was
a trade-off between the naturalness of the images on
the one hand and their partial systematicity, on the
other hand, which we needed to design minimally
different pairs of images to evaluate the model.

For the following experiments, we split the im-
ages and their corresponding descriptions into train-
ing (80%), validation (10%) and test set (10%).

2.2 Model

We use a modeling framework that instantiates XSL
from images and texts in the dataset. To learn the
alignment of visual and language representations,
we employ an approach commonly used for the task
of image-sentence ranking (Hodosh et al., 2013)
and other multimodal XSL experiments (Chrupała
et al., 2017; Vong et al., 2021).

The objective is to learn a joint multimodal em-
bedding for the sentences and images, and to rank
the images and sentences based on similarity in this
space. State-of-the-art models extract image fea-
tures from Convoluatinal Neural Networks (CNNs)
and use LSTMs to generate sentence representa-
tions, both of which are projected into a joint em-
bedding space using a linear transformation (Karpa-
thy and Fei-Fei, 2015; Faghri et al., 2018).

As commonly applied in other multimodal XSL
work (Chrupała et al., 2015; Khorrami and Räsä-
nen, 2021), we assume that the visual system of
the learner has already been developed to some de-
gree and thus use a CNN pre-trained on ImageNet
(Russakovsky et al., 2015) (but discard the final
classification layer) to encode the images. Specif-
ically, we use a ResNet 502 (He et al., 2016) to
encode the images and train a linear embedding
layer that maps the output of the pre-final layer of
the CNN into the joint embedding space.

The words of a sentence are passed through a lin-
ear word embedding layer and then encoded using
a one-layer LSTM (Hochreiter and Schmidhuber,
1997). Using a linear embedding layer, the hidden
activations of the last timestep are then transformed
into the joint embedding space.

2We also tried the more recent ResNet 152, but found
results to be inferior. Also, we did not attempt to fine-tune
the parameters of the CNN for the task, which could improve
performance further.

The model is trained using a max-margin loss3

which encourages aligned image-sentence pairs to
have a higher similarity score than misaligned pairs,
by a margin α:

L(θ) =
∑

a

[
∑

b

max(0, γ(ia, sb)−γ(ia, sa)+α)

+
∑

b

max(0, γ(ib, sa)− γ(ia, sa) + α)] (1)

γ(ia, sb) indicates the cosine similarity between
an image i and a sentence s, (ia, sa) denotes a
corresponding image-sentence pair. The loss is cal-
culated for each mini-batch, negative examples are
all examples in a mini-batch for which the sentence
does not correspond to the image.

We train the model on the training set until the
loss converges on the validation set. Details about
hyperparameters can be found in the appendix.

2.3 Evaluation Method

In order to evaluate the model’s acquisition of
visually-grounded semantics, we used a two-
alternative forced choice design, similar to what
is typically done to evaluate children’s knowledge
in laboratory experiments (Bergelson and Swing-
ley, 2012; Noble et al., 2011; Gertner and Fisher,
2012). Each test trial consists of an image, a tar-
get sentence and a distractor sentence: (i, st, sd).
We measure the model’s accuracy at choosing the
correct sentence given the image.

Crucially, we design the test tasks in a way that
allows us to control for linguistic biases. Consider
the example trial on the left in Figure 1. The model
could posit that, say, Jenny (and not Mike) is the
agent of an action even without considering the
image, and only because Jenny may happen to be
the agent in most sentences in the training data. To
avoid such linguistic biases, we paired each test
trial with a counter-balanced trial where the target
and distractor sentence were flipped (cf. Figure 1,
right side), in such a way that a language model
without any visual grounding can only perform at
chance level (50%).

3In preliminary experiments we also applied a max-margin
loss with emphasis on hard negatives (Faghri et al., 2018), but
observed a performance decrease. This could be due to the
fact that our dataset contains many repeating sentences and
semantically equivalent scenes, and consequently we could
find "hard negatives" that should actually be positive learning
examples (because they are semantically equivalent) in many
situations.
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Figure 1: Counter-balanced evaluation of visually-
grounded learning of semantics: Each test trial has a
corresponding counter-example, where target and dis-
tractor sentence are flipped.

More precisely, we made the tasks as follows.
First we searched in the heldout test set for image-
sentence pairs [(ix, sx), (iy, sy)] with minimal dif-
ferences in the sentences given the phenomenon
under study. For example, to study the acqui-
sition of noun meanings, we look for pairs of
sentences where the difference is only one noun
such as sx = "jenny is wearing a crown" and sy =
"mike is wearing a crown" (the corresponding im-
ages ix and iy depict the corresponding scenes, as
shown in Figure 1). Second, based on such a mini-
mal pair, we construct two counter-balanced triads:
(ix, sx, sy) and (iy, sy, sx). The target sentence in
one triad is the distractor in the other triad (and vice-
versa). Using such a pair of counter-balanced tri-
ads, we test whether a model can both successfully
choose the sentence mentioning “Jenny” when pre-
sented with the picture of Jenny and choose the
sentence mentioning “Mike” when presented with
the picture of Mike.

In the following we describe in more detail the
phenomena of semantics we investigated using this
testing setup. We provide an example for each
category of task in Figure 2.

3 Tasks

3.1 Word-level Semantics
To study the acquisition of word meanings, we
collect minimal pairs for the most commonly oc-
curring nouns, adjectives and verbs. An example
can be seen in Figure 1. Across all word-level
categories, we make sure that there is only one ref-
erent present in the scene (this could be a child,
an animal, or inanimate object, depending on the
noun category under study). This ensures that we

only evaluate word learning, and not more complex
sentence-level semantics.4

Nouns We group the nouns into persons, animals
and objects. Regarding persons, we consider the
two children talked about in the dataset, i.e., Jenny
and Mike. Regarding animals, we consider all 6 ani-
mals present in the dataset.5 Regarding objects, we
consider the 12 most frequently occurring words
that are describing physical objects.6

Verbs The category of verbs is a bit tricky to
evaluate because verbs are usually followed with an
object that is tightly connected to them (e.g. kicking
is usually connected to a ball whereas eating is
connected to some food), resulting in a very limited
availability of minimally different sentences with
respect to verbs in the dataset. To be able to create
a reasonable number of test trials, we trimmed the
sentences7 after the target verb and only consider
verbs that can be used intransitively, e.g., “Mike is
eating an apple” becomes “Mike is eating”.

Further, we ensure, that the trials do not contain
pairs of target and distractor sentences where the
corresponding actions can be performed at the same
time. For example, we do not include trials where
the target sentence involves sitting and the distrac-
tor sentence eating, because the corresponding pic-
ture could be ambiguous: If the child in the picture
is sitting and eating at the same, both the target
and distractor sentences could be semantically cor-
rect. The resulting set of possible verb pairings is:
("sitting", "standing"), ("sitting", "running"), ("eat-
ing", "playing"), ("eating", "kicking"), ("throwing",
"eating"), ("throwing", "kicking"), ("sitting", "kick-
ing"), ("jumping", "sitting").

Adjectives The most common adjectives in the
dataset are related to mood (e.g., happy and sad)
and are displayed in the pictures using varied fa-
cial expressions (happy face vs sad face). Due
to the lack of other kinds of adjectives8, we only

4For example, if Mike (without a crown) was present in
the picture to the left in Figure 1, the model would not only
need to understand the difference between Jenny and Mike,
but also understand what it means to wear a crown in order
to correctly judge which sentence is the correct one, that is,
which of Mike and Jenny is the one with the crown.

5("dog", "cat", "snake", "bear", "duck", "owl")
6("ball", "hat", "tree", "table", "sandbox", "slide", "sun-

glasses", "pie", "pizza", "hamburger", "balloons", "frisbee")
7The trimming was only done for the test trails and not in

the training set.
8In the dataset, most of the properties for objects are fixed

(e.g. colors and shapes) and are thus very rarely referred to in
the descriptions. Consequently, we did not find minimal pairs
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Figure 2: Examples for the evaluation of word and sentence-level semantics. Each test trial consists of an image,
a target and a distractor sentence.

focused on mood-related adjectives. In addition,
as there is no clear one-to-one mapping between
each adjective and a facial expression, we only test
the broad opposition between rather positive mood
(smiling or laughing face) and rather negative mood
(all other facial expressions). The resulting set of
pairings was: ("happy", "sad"), ("happy", "angry"),
("happy", "upset"), ("happy", "scared"), ("happy",
"mad"), ("happy", "afraid"), ("happy", "surprised").

Similar to what we did in the case of verbs, we
trimmed the sentences after the target adjective in
order to obtain more minimal pairs in our test set.

3.2 Sentence-level Semantics

In addition to evaluating the learning of word-level
semantics, here we evaluate some (rudimentary)
aspects of sentence-level semantics, that is, seman-
tic phenomena where the model needs to leverage
relationships between words in the sentence to be
able to arrive at the correct solution. We focused
on the following three cases for which a reasonable
number of minimal pairs could be found.

Adjective - Noun Dependency In this task, we
test if the model is capable of recognizing not only

for adjectives describing simple properties like color.

a given adjective (e.g., sad), but also the person
experiencing this emotion (i.e. Jenny or Mike). The
procedure used here is similar to the one we used
to test individual adjectives, except that here the
picture contains not only the person experiencing
the target emotion but also the other person who is
experiencing a different emotion (cf. examples on
bottom left in Figure 2).

Take the following example: “mike is happy”
and its minimally different distractor sentence
“mike is sad” associated with a picture where Mike
is happy and Jenny is sad (see Figure 2). In order to
choose the target sentence over the distractor, the
model needs to associate happiness with Mike but
not with Jenny. In fact, since both persons appear
in the picture and the word Mike appears in both
sentences, the model cannot succeed by relying
only on the individual name “mike” (in which case
performance would be at chance). Similarly, it can-
not succeed only by relying on the contrast “happy”
vs. “sad” since Mike is happy but Jenny is sad (in
which case performance would also be at chance).

Moreover, it cannot succeed even if it combines
information in the words “mike” and “happiness”
without taking into account their dependency in
the sentence (say, if it only relied on a bag-of-
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Evaluation task Accuracy p (best) p (worst) Size

Word-level
Semantics

Nouns: Persons 0.78± 0.05 < 0.001 < 0.01 50
Nouns: Animals 0.93± 0.02 < 0.001 < 0.001 360
Nouns: Objects 0.86± 0.01 < 0.001 < 0.001 372
Verbs 0.83± 0.05 < 0.001 < 0.001 77
Adjectives 0.64± 0.06 < 0.01 0.25 56

Sentence-level
Semantics

Adjective-noun dependencies 0.57± 0.01 < 0.05 < 0.05 192
Verb-noun dependencies 0.72± 0.04 < 0.001 < 0.001 400
Semantic roles 0.75± 0.06 < 0.001 < 0.05 50

Table 1: Accuracy, p-values (for the best and for the worst performing model) and evaluation set size (in number
of trials) for all semantic evaluation tasks. The high variance in terms of number of trials is caused by the limited
availability of appropriate examples in the dataset for some tasks (cf. Footnote 10).

words representation) because both the sentence
and distractor would be technically correct in that
case. More precisely, the bag of words of the target
sentence {“mike”, “happy”} and of the distractor
{“mike”, “sad”} both describe the scene accurately
since the latter contains Mike, Happy, and Sad. The
model can only succeed if it correctly learns that
happiness is associated with Mike in the picture,
suggesting that the model learns “happy” as modi-
fier/predicate for “mike” in the sentence.

To construct test trials for this case, we used
the same adjectives as for the word-level adjective
learning, but we searched for minimal pair sen-
tences with a second child in the scene with the
opposite mood compared the target child.

Verb - Noun Dependencies Similar to adjective-
noun dependencies, we aim to evaluate learning of
verbs as predicate for the nouns they occur with
in the sentence. We use the same verbs as in the
word-learning setup as well as trim the sentences
after the verb. We look for images with a target
and distractor child engaged in different actions
and construct our test dataset based on these scenes
(see example in Figure 2, bottom right).

Semantic Roles In this evaluation, we test the
model’s learning of semantic roles in an action
that involves two participants. We test the model’s
learning of the mapping of nouns to their semantic
roles (e.g., agent vs. patient/recipient).

We look for scenes where both children are
present and engaged in an action. In this action,
one of the children is the agent and the other one
is the patient/recipient. For example, in the sen-
tence “jenny is waving to mike” the agent is Jenny
and the recipient is Mike (see Figure 2, top right).

The distractor sentence is constructed by flipping
the subject and object in the sentence, i.e., “mike is
waving to jenny”. To succeed in the task, the model
should be able to recognize that Jenny, not Mike,
is the one doing the waving. This task is a more
challenging version of the verb-noun dependency
we described above because, here, Jenny and Mike
are not only both present in the picture, they are
also both mentioned in the sentences. To succeed,
the model has to differentiate between agent and
recipient in the sentence. Here again, a null hypoth-
esis that assumes a bag-of-word representation of
the sentence would not succeed: We need to take
into account how each noun relates to the verb.

As with all other evaluation tasks, for each test
trial we have a corresponding counter-balanced
trial where the semantic roles are flipped.

4 Results

To evaluate the learned semantic knowledge, we
measure, for each task, the model’s accuracy at
rating the similarity of the image and the target
sentence γ(i, st) higher than the similarity to the
distractor sentence γ(i, sd). We report both final
accuracy scores after the model has converged as
well as intermediate scores before convergence,
which we take as a proxy for the learning trajectory.

To ensure reproducibility, we make the semantic
evaluation sets as well as the source code for all
experiments publicly available.9

4.1 Acquisition Scores

We ran the model 5 times with different random
initializations and evaluate each converged model

9https://github.com/mitjanikolaus/
cross-situational-learning-abstract-scenes
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Figure 3: Learning trajectory of the models (mean over 5 runs, shaded areas show standard deviation). Accuracies
for all noun categories were averaged. We calculated a rolling average over 30 data points to smooth the curve.
The training set contains ~50K examples, which means that the graph displays development over 15 epochs.

using the proposed tasks. Mean and standard devi-
ation of the resulting accuracy scores can be found
in Table 1. As some of the evaluation sets are
rather small10, we also performed binomial tests to
evaluate whether the accuracy in the binary test is
significantly above chance level (50%). We report
the p-values’ significance levels for the best and for
the worst performing model11 for each evaluation
task.

The results show that the model has learned the
semantics for most nouns very well. The score
for verbs is also relatively high. As for adjectives,
performance is only slightly above chance level
and not always statistically significant, depending
on the random initialization (e.g. the worst model
is not significantly better than chance).

Regarding sentence-level semantics, the results
suggest that the model has learned verb-noun
dependencies and semantic roles relatively well.
In contrast, Adjective-noun dependencies are not
learned very well, which is not surprising given the

10Some evaluation sets are smaller than others due to the
fact that all image-sentence pairs are taken directly from the
test set and no new artificial images or sentences were created.
This was done to ensure that the tests are performed using data
that comes from the same distribution as the training set, i.e.
data that the model has been exposed to.

11Each model corresponds to a different random initializa-
tion.

poor adjective word-learning performance.

4.2 Acquisition Trajectories

In addition to the final evaluation scores, we are
also interested in the learning trajectory of the
model. We calculated the accuracy scores of the
model every 100 batches. Figure 3 shows how
the performance on the semantic evaluation tasks
develops during the training of the model.

The model converged after having seen around
700K training examples (around 14 epochs). The
trajectories show that the model first learns to dis-
criminate nouns and only slightly later the verbs
and then more complex sentence-level semantics.

5 Discussion

This paper dealt with the question of how chil-
dren learn the word-world mapping in their native
language. As a possible learning mechanism, we
investigated XSL, that has received much attention
in the literature. While laboratory studies on XSL
have typically used very simplified learning situ-
ations to test if children are cognitively equipped
to learn a toy language in an XSL fashion. The
question remains as whether such a mechanism
scales up to the learning of real languages where
the learning situations can be highly ambiguous.
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The novelty of our work is that we were inter-
ested not only in the scalability of XSL to learn
from more naturalistic input, but also its scalabil-
ity to the learning of various aspects of semantic
knowledge. These include both the meanings of
individual words (belonging to various categories
such as nouns, adjectives, and verbs) and the mean-
ings of higher level semantics such as the ability to
map how words relate to each other in the sentence
(e.g., subject vs. object) to the semantic roles of
their respective referent in the world (e.g., agent vs.
patient/recipient). We were able to perform these
evaluations using a simple method inspired from
the field of experimental child development and
which has usually been used to test the same learn-
ing phenomena in children, i.e., the two-alternative
forced choice task.

Using this evaluation method, we found that an
XSL-based model trained on a large set of pictures
and their descriptions was able to learn word-level
meanings for nouns and verbs relatively well, but
struggles with adjectives. Further, the model seems
to learn some sentence-level semantics, especially
verb-noun dependencies and semantic roles. Fi-
nally, concerning the learning trajectory, the model
initially learns the semantics of nouns and only
later the semantics of verbs and more complex
sentence-level semantics.

Concerning word-level semantics, the fact that
the model learns nouns better than (and before)
the predicates (adjectives and verbs) resonates with
findings in child development about the “noun bias”
(Gentner, 1982; Bates et al., 1994; Frank et al.,
2021). The model also learns verbs better than
adjectives. However, we suspect this finding is
caused by the limited availability of adjectives in
the dataset.12 In fact, the verb-related actions (e.g.
“sitting” vs. “standing”) were arguably more salient
and easier to detect visually than adjective-related
words (“happy” vs. “sad”) which require a fine-
grained detection of the facial expressions.

Concerning sentence-level semantics, the model
performed surprisingly well on verb-noun depen-
dency task where the model assigned a semantic
role to one participant and on the similar but (ar-
guably) more challenging task of assigning seman-
tic roles to two participants. Further, the fact that
the model shows a rather late onset of understand-
ing of semantic roles, only after a set of nouns and
verbs have been acquired (cf. Figure 3) mirrors

12The data contained mostly mood-related adjectives.

children’s developmental timeline. Indeed, chil-
dren become able to assign semantic roles to nouns
in a sentence correctly when they are around 2
years and 3 months old (Noble et al., 2011), at an
age when they have already acquired a substantial
vocabulary including many lexical categories such
as nouns and verbs (Frank et al., 2021)

In this paper, we used artificial neural networks
to study how properties the input can (ideally) in-
form the learning of semantics. Our modeling did
not purport to account for the details of the cog-
nitive processes that operate in children’s minds
nor did it take into account limitations in children’s
information-processing abilities. Thus, this work is
best situated at the computational level of analysis
(Marr, 1982), which is only a first step towards a
deeper understanding of the precise algorithmic im-
plementation. That said, we can speculate about the
internal mechanisms used by the model to succeed
in the tasks and about their potential insights into
children’s own learning. For example, it is very
likely that the model leverages simple heuristics to
recognize the agent in a sentence, e.g., it may have
learned to associate the first appearing noun in the
sentence to the agent of the action. Research on
child language suggest that children also use such
heuristics (e.g. Gertner and Fisher, 2012). This
suggests that the model, like children, might use
partial representations of sentence structure (i.e.,
rudimentary syntax) to guide semantic interpreta-
tion.

Exploiting structural properties of the input (e.g.,
order of words in a sentence) may be insightful
when it mirrors genuine learning heuristics in chil-
dren. However, a neural network model may also
capitalize on idiosyncratic biases in the dataset (that
do not reflect the natural distribution in the world)
to achieve misleadingly high performance.13 For
example, a misleading bias in the linguistic input
is if a certain noun (e.g., Jenny) occurs more fre-
quently in the dataset as agent, leading the model
to, say, systematically map “Jenny” to agent. Simi-
larly, an example of a misleading bias in visual data
is if the agent is always depicted on the left or right
side of the image, leading the model to capitalize
on this artificial shortcut.

In the current work, we controlled for linguistic
biases by counter-balancing all testing trials. As
for the visual bias, we ruled out some artificial bi-

13For example, Goyal et al. (2017) finds that grounded
language models trained on a visual question answering task
are exploiting linguistic biases of the training set.
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ases such as the agent spatial order in the images.
Indeed, investigation of our semantic roles test set
shows that the agent occurs roughly equally on
the right (52%) and left sides, which means that a
model exploiting such a bias could only perform
around chance level. There could be other biases
we are not aware of and which require performing
further controls. That said, this is an open question
for all research using neural networks as models of
human learning. More generally, our understand-
ing of language acquisition would greatly benefit
from further research on the interpretation of neu-
ral network learning, revealing the content of these
black box models. This would allow us to tease
apart genuine insights about realistic heuristics that
could be used by children and artificial shortcuts
that only reflect biases in the learning datasets.

In future work, we plan to study visual datasets
with even more naturalistic scenes such as COCO
(Lin et al., 2014). In this regard, maybe closer to
our work is the study by Shekhar et al. (2017a,b)
who used COCO to create a set of distractor cap-
tions to analyze whether vision and language mod-
els are sensitive to (maximally difficult) single-
word replacements. Our goal is to go beyond these
analysis to test specific semantic phenomena as
we did here with the Abstract Scenes dataset. An-
other step towards more naturalistic input is the use
speech input instead of text (Chrupała et al., 2017;
Khorrami and Räsänen, 2021).

Finally, this work focused on testing how XSL
scales up to natural language learning across many
semantic tasks. Nevertheless, children’s language
learning involves more than the mere tracking of co-
occurrence statistics: They are also social beings,
they actively interact with more knowledgeable
people around them and are able to learn from such
interactions (Tomasello, 2010). Future modeling
work should seek to integrate both statistical and
social learning skills for a better understanding of
early language learning.
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A Appendix

A.1 Model Details
The hyperparameters of the model were chosen on
general best-practices and not any further tuned.

Minimum word frequency for vocab 5
Word Embeddings Size 100
Joint Embeddings Size 512
LSTM Hidden Layer Size 512
Optimizer Adam
Initial Learning Rate 0.0001
Batch size 32
α (margin for loss term) 0.2
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Abstract
Neural network language models have the abil-
ity to capture the contextualised meanings of
words in a sentence by dynamically evolving
a representation of the linguistic input in a
manner evocative of human language compre-
hension. While researchers have been able
to analyse whether key linguistic regularities
are adequately characterised by these evolving
representations, determining whether they ac-
tivate lexico-semantic knowledge similarly to
humans remains challenging. In this paper, we
perform a systematic analysis of how closely
the intermediate layers from LSTM and trans-
former language models correspond to human
semantic knowledge. Furthermore, in order
to make more meaningful comparisons with
theories of human language comprehension in
psycholinguistics, we focus on two key stages
where the meaning of a particular target word
may arise: immediately before the word’s pre-
sentation to the model (comparable to forward
inferencing), and immediately after the word
token has been input into the network. Our re-
sults indicate that the transformer models are
better at capturing semantic knowledge relat-
ing to lexical concepts, both during word pre-
diction and when retention is required.

1 Introduction

A wide variety of Natural Language Processing
(NLP) tasks have been improved dramatically by
the introduction of LSTM (Hochreiter and Schmid-
huber, 1997) and transformer-based (Vaswani et al.,
2017) neural language models, which can encode
the meanings of sentences in such a way that facili-
tates a range of language tasks (Bengio et al., 2003;
Peters et al., 2018; Radford et al., 2018; Dai et al.,
2019). Furthermore, both recurrent and transformer
networks have been shown to capture a broad range
of semantic phenomena and syntactic structure
(Dyer et al., 2016; Linzen et al., 2016; Bernardy
and Lappin, 2017; Gulordava et al., 2018; Marvin
and Linzen, 2018; Lin et al., 2019; Liu et al., 2019;

Hewitt and Manning, 2019; Tenney et al., 2019a).
Although such models clearly learn aspects of lexi-
cal semantics, it remains unclear whether and how
these networks capture semantic features associ-
ated with conceptual meaning. Some work has
demonstrated that word embeddings do reflect con-
ceptual knowledge captured by property norming
studies (Rubinstein et al., 2015; Collell and Moens,
2016; Lucy and Gauthier, 2017; Derby et al., 2018),
in which human participants produce verbalisable
properties for concepts, such as is green or is an am-
phibian for concepts such as FROG (McRae et al.,
2005; Devereux et al., 2014). Such features cor-
respond to stereotypic tacit assumptions (Prince,
1978); common-sense knowledge we have about
the real world. There is some evidence that lan-
guage models implicitly encode such knowledge
(Da and Kusai, 2019; Weir et al., 2020); however,
coverage of different types of knowledge may be in-
consistent, with evidence to suggest that these mod-
els fail to capture some types of semantic knowl-
edge such as visual perceptual information (Som-
merauer and Fokkens, 2018; Sommerauer, 2020),
as well as questions about the completeness of such
empirical studies (Fagarasan et al., 2015; Bulat
et al., 2016; Silberer, 2017; Derby et al., 2019).
In general, there has been only limited work that
attempts to investigate whether these neural lan-
guage models activate lexico-semantic knowledge
similarly to humans, further restricted by the fact
that such knowledge probing is only performed on
latent representations that have received the target
concept, ignoring theories of language comprehen-
sion and acquisition that emphasise the importance
of prediction (Graesser et al., 1994; Dell and Chang,
2014; Kuperberg and Jaeger, 2016).

In this paper, we contribute to the analysis of
neural language models by evaluating latent se-
mantic knowledge present in the activation patterns
extracted from their intermediate layers. By per-
forming a layer-by-layer analysis, we can uncover
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how the network composes such meaning as the
information propagates through the network, even-
tually emerging as a rich representation of semantic
features that facilitates conditional next word pre-
diction, which is directly dependent on the past
knowledge. We perform our layer probing analysis
at two temporal modalities. That is, we investi-
gate the hidden layer activations of the NNLMs
both before the concept word occurs (which facili-
tates next word prediction), and after the concept
word has been explicitly given to the model. In this
way, we determine how richly these latent repre-
sentations capture real-world perceptual and ency-
clopaedic knowledge commonly associated with
human conceptual meaning.

2 Related Work

The recent popularity of interpretability in NLP has
resulted in strong progress on understanding both
recurrent (Alishahi et al., 2019) and transformer-
based networks (Rogers et al., 2020). A number
of these studies rely on probing techniques, where
supervised models are trained to predict specific
linguistic phenomena from model activations (Adi
et al., 2016; Wallace et al., 2019; Tenney et al.,
2019b; Hewitt and Liang, 2019).

There exists some work that analyses semantic
knowledge in such networks, though to date this
has been more limited than investigations of syn-
tax. Koppula et al. (2018) focused on the recurrent
layers of LSTM and GRU networks and attempted
to interpret their semantic content by using a set
of decoders to predict the previous network inputs.
Ettinger (2020) devised a set of psycholinguistic
diagnostic tasks to evaluate language understand-
ing in BERT, demonstrating that some phenomena
such as semantic role labelling and event knowl-
edge are well-inferred, though others such as nega-
tion are less so. Similar to our work, Ethayarajh
(2019) mined sentences with words in context to
demonstrate that context representations are highly
anisotropic, while Bommasani et al. (2020) built
static word embeddings from contextual represen-
tations using pooling methods, analysing their per-
formance on semantic similarity benchmarks.

Language models have also been successfully
employed for predicting activation patterns in the
brain during human language comprehension (Jain
and Huth, 2018; Toneva and Wehbe, 2019). Such
work is particularly relevant from the perspective of
predictive coding theories of human language com-

prehension (Kuperberg and Jaeger, 2016), which
posits that high-level representations of an unfold-
ing utterance facilitate active prediction of subse-
quent lexical content in the sentence. Neurolinguis-
tic studies provide evidence that such predictions
can be of wordform identity (DeLong et al., 2005),
or of the semantic features that are expected for the
upcoming word (for example, whether the upcom-
ing word is animate or not; Wang et al., 2020).

3 Neural Language Models

Due to the compatibility issues, we limit our inves-
tigation to left-to-right language models that are
trained to perform conditional next word predic-
tion, as other SOTA models such as Bert (Devlin
et al., 2018) fail to capture the desired criterion that
facilities similar mechanisms in language compre-
hension. For the LSTM-based network, we make
use of a very large-scale and influential neural lan-
guage model developed by Jozefowicz et al. (Joze-
fowicz et al., 2016), which we refer to as JLM1.
The model’s architecture consists of character-level
embeddings with CNNs, followed by a two-layer
LSTM with projection layers to reduce dimension-
ality and a final linear layer with softmax activa-
tion. The vocabulary of the output layer consists
of 800000 words, and the model is trained using
the One Billion Word corpus (Chelba et al., 2013).
For the transformer-based model, we make use of
the GPT-2 (345M) model (Radford et al., 2019),
which consists of 24 multi-head attention layers.

3.1 De-Contextualising Representations

There are several problems that emerge when look-
ing to compare concrete conceptual representations
of meaning with these neural layer activations. The
first is that representations from these latent lay-
ers are highly contextualised, which may make it
difficult to recover semantic information about a
particular concept. The second problem is that
recovering a pre-target representation is challeng-
ing since it requires contextual information to be
supplied to the network before the target word oc-
curs. For our work, we follow a similar approach
to Bommasani et al. (2020), and mine a number
of sentences from a corpus of text where each tar-
get word occurs and then extract representations
from each layer of the network before and after
the words are presented. For this, we choose a

1https://github.com/tensorflow/models/
tree/archive/research/lm_1b
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predefined set of target words which are based on
the overlap of words in the JLM vocabulary and
several intrinsic evaluation benchmarks which are
employed in the analyses below. We then sam-
ple the training corpus for up to 500 sentences for
each target, selecting sentences in which the target
word occurred in any position except the start of
the sentence. By analysing how the representations
perform on the semantic benchmarks, we can infer
how these language models compose meaning over
the layers of the network.

3.2 Feature Pooling
To construct these decontextualized representa-
tions, we first compute a hidden state from each
of our sentences, and then aggregate them into a
single static vector, both at the position of the target
word and immediately before. More formally, for
each word w ∈ W , where W is our lexicon, we
retrieve a set of K sentences {S1, S2, . . . Sk} from
the corpus with corresponding timepoints T =
{t1, t2 . . . tk} denoting the position of the word
w in the sentences, such that Si[ti] = w for 1 ≤
i ≤ K. Let fL be the function that maps each sen-
tence fragment to a contextual representation from
the model f for each layer L in the network. We
construct our word-level representation before and
after the word w occurs at layer L as follows:

before[w]L =
1

K

K∑

i=1

fL(S)[ti−1]

after[w]L =
1

K

K∑

i=1

fL(S)[ti]

This gives us two sets of word embedding vectors
for each layer in each network, one set built from
activations immediately before the target words
and one built from activations immediately after
the target words. Since the context differs depend-
ing on the sentence, the aggregation performed in
the calculations above should preserve only the in-
formation associated with the target word. As the
model is tasked with predicting the word w, the
vectors from the before timestep should contain
some semantic information relevant to the target
word, even if the word has not been explicitly given
to the network.

In the case of GPT-2, input tokens are deter-
mined using byte pair encodings, and a given word
will correspond to several input units in this en-
coding. For target words that consist of a number

of smaller units that combine into the word, we
average the representation over all these positions
for the after representations. For the before repre-
sentations, we take the token immediately before
the target word. In the results that follow, we refer
to the two sets of embedding vectors for language
model M and layer L using the naming conven-
tion M[L]-before and M[L]-after. For example,
for GPT-2, the word vectors for the fifth multi-head
attention layer just before the target word is pre-
sented to the network would be GPT2[5]-before.

Note that while LSTMs accumulate a representa-
tion of the unfolding utterance at each timestep, this
is not entirely true for transformers, which directly
combine information from all previous words in the
sequence at every layer of the network, guided by
attention. In our work, we only care about how the
semantic information of the network evolves when
it must predict the target word and immediately
after.

4 Evaluation Tasks

For our empirical analysis, we first analyse these
layers on classic intrinsic benchmarks that deter-
mine their ability to explain human semantic judg-
ments scores on word association, to first determine
how well these networks capture the semantic con-
tent of the word. We then probe these layers to
determine whether they capture a rich set of se-
mantic features related to upcoming concepts and
whether such representations are retained by the
network for functional use on the prediction task.

4.1 Semantic Similarity Benchmarks

Semantic similarity benchmarks, where a set of
word pairs are scored by human annotators based
on how similar they are, can be used to determine
how correlated word pair distances from a set of
embedding vectors are with human judgements of
similarity for the same words. For the embedding
vectors (from each network and network layer), co-
sine similarity can be used to determine how similar
the word vectors are, and these cosine similarities
can then be compared with the human judgements
using Spearman correlation. Of course, the no-
tion of similarity that informs human judgements
is highly dependent on a number of factors such
as context, the stimulus set of word pairs, and the
instructions given to the human raters (Batchkarov
et al., 2016). For this reason, we make use of a
number of benchmarks which can be partitioned
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into two types of relationships, known as semantic
similarity and semantic relatedness. For seman-
tic relatedness, we use WordSim353-rel (Agirre
et al., 2009) and MEN (Bruni et al., 2012), where
a high score between word pairs indicates a greater
chance of occurring in the same sentence with some
syntactic relation (for example “coffee" and “cup").
For semantic similarity, we use WordSim353-sim
(Agirre et al., 2009) and SimLex999 (Hill et al.,
2015), where a high score between word pairs in-
dicates a high overlap in semantic attributes or re-
placeability in a sentence (for example “coffee" and
“tea"). Though it does not clearly fall into either the
similarity or relatedness categories, we also include
the original version of the WordSim judgements,
WordSim353 (Finkelstein et al., 2001). Evalua-
tions were performed using the Vecto-ai python
package (Rogers et al., 2018).

4.2 Neural Activation Similarity
As an extension to these results, we also evaluate
how reliable the vector representations from each
layer of the networks are in terms of their ability
to predict brain imaging data gathered from par-
ticipants viewing a set of concept words. In this
analysis, we use BrainBench (Xu et al., 2016)2, a
semantic evaluation platform that includes fMRI
and MEG neuroimaging data from humans for 60
concept words. This benchmark evaluates how
well the semantic models can make predictions
about the patterns of neural activations observed in
the human participants. For a set of words V , we
calculate two pairwise word correlation matrices
MD,MB ∈ R|V |×|V | for a distributional semantic
model (D) and the brain imaging data (B). We
then perform a 2 vs. 2 test between MD and MB ,
where, for all pairs of words w1, w2 ∈ V , we count
how often the similarity structure observed for D
agrees with B, i.e. how often

r(MD(w1),MB(w1)) + r(MD(w2),MB(w2))

> r(MD(w1),MB(w2)) + r(MD(w2),MB(w1))

where r is Pearson’s correlation and M(w1) and
M(w2) denote the rows of values corresponding
to the concepts w1 and w2, omitting the columns
that correspond to the correlation between w1 and
w2. The final score is the proportion of positive
cases across all word pairs, with 0.5 indicating
chance. Intuitively, this is a measure of how well

2http://www.langlearnlab.cs.uvic.ca/
brainbench/

the similarity profile of the semantic model matches
the similarity profile of the brain data.

4.3 Human Property Knowledge
Next, we determine how well the embedding vec-
tors for each network and layer capture common-
sense aspects of meaning reflected in conceptual
models from cognitive psychology. We achieve
this by using probes to determine whether explicit
lexico-semantic knowledge from human-derived
property norms can be reliably decoded from these
embeddings. For example, for the concept APPLE,
can we predict from the embedding vector whether
human-elicited properties of that concept such as
is-round or grows-on-trees are true? For this anal-
ysis, we make use of a dataset of human-elicited
property knowledge (the CSLB norms; Devereux
et al., 2014)3, which lists semantic properties for
638 concept words. These semantic properties are
partitioned into five distinct categories, which char-
acterise the different types of information they rep-
resent: visual (e.g. is-green; is-round), functional
(e.g. is-eaten; used-for-cutting), taxonomic (e.g. is-
a-fruit; is-a-tool), encyclopedic (e.g. has-vitamins;
uses-fuel), and other-perceptual (e.g. is-tasty; is-
loud). While property norming studies provide an
insight into the types of information characterised
by human conceptual representations, supported by
human agreement on feature attributes, it should
be noted that they are not a literal description of
human lexical-semantic representation (Barsalou,
2003).

4.3.1 Probing methodology
For the probing analysis, we fit a number of L2-
regularised logistic regression models, in order to
predict whether or not a semantic feature is decod-
able from our embedding vectors, largely following
previous work (Collell and Moens, 2016; Lucy and
Gauthier, 2017; Derby et al., 2018). Due to the
small sample size, each model uses class weight
balancing and decodability is scored using the F1
score over 5 cross-validation folds. More specifi-
cally, we preprocess the CSLB dataset to exclude
features occurring for fewer than five words. For
each feature, we then partition the concepts into
five folds using stratified sampling and perform
5-fold cross-validation on each feature.

Due to the high likelihood of overfitting, we
also regularise each logistic regression by adding λ

3https://cslb.psychol.cam.ac.uk/
propnorms
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Figure 1: Results (Spearman correlations) for the before (on the left) and after word embedding vectors across all
24 GPT-2 layers.

Model WS353-Rel WS353-Sim WS353 SimLex999 MEN fMRI MEG

LSTM-based Representations

JLM[1]-before 0.198 0.496 0.338 0.151 0.353 0.636 0.625
JLM[2]-before 0.314 0.549 0.428 0.115 0.423 0.650 0.638
JLM[1]-after 0.444 0.709 0.557 0.409 0.644 0.681 0.701
JLM[2]-after 0.280 0.580 0.414 0.423 0.544 0.669 0.692

Transformer-based Representations

GPT2[Best]-before 0.251 [23] 0.439 [23] 0.334 [23] 0.124 [ 3] 0.409 [23] 0.627 [23] 0.648 [23]
GPT2[Best]-after 0.544 [ 2] 0.749 [ 8] 0.612 [ 2] 0.561 [ 3] 0.730 [ 6] 0.673 [14] 0.696 [16]

Table 1: Results (Spearman correlations) for each embedding model on the word similarity benchmarks, along
with BrainBench results (accuracy) for the fMRI and MEG data. For GPT-2, we include the best performance
across all 24 layers from the before and after representations (best layer number given in [brackets]).

times the L2 norm of the coefficient weights to the
loss, where λ is a scaling parameter. Since we want
to predict each individual property, we determine
what value of λ to use by first performing 5-fold
cross-validation for each property over a range of
potential values, and choosing the best for each
feature.

To calculate a decodability score for each fea-
ture, we run 5-fold cross-validation using the best
λ value for each feature, for which we obtain the
final F1 score on the predictions from the test folds.
Furthermore, we repeat this cross-validation pro-
cess three times and take the average score over
each run. We note that just because a linear model
does not predict the presence of a property does not
mean that it is not encoded in the representation
(Collell and Moens, 2016). Nevertheless, linear
read-out from model activation patterns (and brain
activation patterns) remains a useful tool for de-
termining the presence of high-level information

such as linguistic structure in those representations
(Hewitt and Liang, 2019).

5 Results

5.1 Semantic Similarity Benchmarks
The similarity benchmark results are displayed in
Table 1 and Figure 1. For both JLM and GPT-2,
the word vector representations computed after the
target word has been presented as an input token
to the model perform better in comparison to when
the network must predict the target word (the be-
fore representations). This result is not surprising,
since in the after scenario the models have access
to the target word itself. Nevertheless, we still see
high correlations for the before representations for
most models and layers, indicating that the repre-
sentational state of the language models immedi-
ately before the target word reflect semantic content
of the to-be-predicted word. GPT-2 produces the
strongest correlations with human similarity judge-
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Figure 2: Results (accuracy %) on BrainBench for the MEG and fMRI data for each before (on the left) and after
(on the right) word embedding models for each of the 24 layer of GPT-2. Scores are measured using accuracy
from a 2vs. 2 test, with a score of 0.5 indicating random chance (see text).

ments overall (particularly in earlier layers of the
after representations; Fig. 1B). Interestingly, JLM
outperforms GPT-2 in how accurately it predicts
the brain data, perhaps due to a more cognitively
plausible neural architecture that incrementally in-
tegrates information over the course of a sentence.

Focusing on the before representations, we see
that the JLM-before semantic representations tend
to perform better than the GPT2-before represen-
tations. This is likely because the LSTM is directly
trained on the sampled sentences, which produces
a lower perplexity measure than the transformer
network, and thus it yields more accurate predic-
tions about the target word. Comparing the before
representations from different layers in each model,
we see that JLM better represents semantic infor-
mation in the second of its two layers, while for
GPT-2 the results are more complex, though later
layers are generally better, with the second last
layer (23) being best for most evaluations. For both
models, then, the upper layers tend to have the best
overall semantic representations of the upcoming
target word, which follows from the fact that the
upper layers directly feed into predictions about
the upcoming word in the language modelling task,
with the models reflecting the predicted semantic
content of that word.

When the target word is available to the model
(the after representations), we would expect the
network to represent meaningful information about
the concept, which is why this approach is the most
common method for building contextual represen-
tations. Our results support this notion, since the

after representations consistently outperform the
before representations, on both the word similarity
and brain imaging data (see Fig. 2 for the GPT-2
BrainBench results). Notably, JLM[1]-after out-
performs JLM[2]-after, since the activation pat-
terns from the second layer should aim to predict
the next word in the sequence (i.e. the word fol-
lowing the target word). Similarly, the GPT2-after
representations retain semantic information of the
word quite well for all but the final layer, with early
layers performing well in the semantic similarity
evaluations (Fig. 1B and Fig. 2B). GPT2[24]-after
experiences a dramatic loss in performance, similar
to what is observed for the JLM[2]-after represen-
tations.

Overall, this pattern or results supports the hy-
pothesis that later layers of the language models
best reflect semantic information about the to-be-
predicted word, whilst earlier layers best reflect se-
mantic information about the just-presented word,
though all layers in both models reflect this infor-
mation to some extent. In the next section, we
investigate in more detail the specific kinds of se-
mantic knowledge that is available in different lay-
ers of the models.

5.2 Semantic Feature Decoding

The results on the property decoding task are pre-
sented in Table 2 and Figure 3. Overall, we see that
the GPT-2 layers encode more information about
common sense property knowledge than the JLM
layers, particularly in the after representations.

Focusing on the before representations we see
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Figure 3: Graph which displays the average cross-validation F1 scores×100 for each before (on the left) and after
(on the right) transformer-based representations from each layer of GPT-2.

Model Encyclo. Functional Taxonomic Visual Other Perceptual Overall

LSTM-based Representations

JLM[1]-before 21.74 24.92 42.31 29.48 28.91 28.56
JLM[2]-before 26.41 30.22 47.75 32.66 33.39 32.85
JLM[1]-after 33.21 38.29 60.71 38.44 36.83 40.01
JLM[2]-after 33.86 39.06 62.82 39.32 40.01 41.14

Transformer-based Representations

GPT2[Best]-before 30.94 [23] 35.25 [23] 51.95 [23] 36.25 [23] 38.12 [23] 38.35 [23]
GPT2[Best]-after 37.69 [23] 42.74 [21] 62.79 [23] 42.47 [23] 43.98 [23] 45.72 [21]

Table 2: Average cross-validation F1 scores ×100 for each model and for each of the five property classes. For
GPT-2, we include the best performance for each property type across all layers.

that GPT-2 tends to capture more knowledge about
conceptual properties than JLM. Most notably,
compared to JLM, the GPT-2 model does better
at encoding knowledge related to attributive prop-
erties (i.e. non-taxonomic properties), which tend
to be much more difficult to capture (Rubinstein
et al., 2015). Both models show better property
decoding performance in the later before layers.
As these properties are related to conceptual knowl-
edge plausibly associated with the upcoming word,
it makes sense that the embedding vectors converge
on some particular space related to the semantic
restrictions on the upcoming word, which is partic-
ularly reflected in the case of taxonomic properties.

Turning to the after representations, we see that
property knowledge seems to be best reflected in
the upper layers of both language models. This is a
particularly interesting result, as previous work has
demonstrated that the lower layers contain more
explicit information relating to the target word such

as part-of-speech (Peters et al., 2018) and word as-
sociation (see Section 5.1). Furthermore, while the
JLM-after and GPT2-after representations per-
form similarly when predicting taxonomic features,
GPT-2 does much better at capturing perceptual,
functional, and encyclopedic knowledge. The re-
sults indicate that the GPT-2 representation appear
to narrow the gap between taxonomic and attribu-
tive properties, which distributional models have
historically struggled to accomplish. Finally, the
network seems to retain and improve performance
as we move through the layers.

6 Discussion

6.1 Last Layer Performance

First, we wish to discuss why there is a consistent
loss in performance from the representations con-
structed from the final layer of the network, which
is notable given the widespread use of the final
layer for transfer learning. To better understand
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the results for the GPT2-before embedding vec-
tors on our evaluation tasks, consider the work of
Ethayarajh (2019), who demonstrated that the lay-
ers of GPT-2 become more context-specific as we
move through the network, more so than LSTM-
based networks such as Elmo. In particular, Etha-
yarajh (2019) investigated intra-sentence similar-
ity, which measures the average cosine distance
between the individual word representations and
the sentence representation. In their work, sentence
representations were constructed by averaging over
the hidden states from all time steps in the sentence,
which is similar to the before representations (aver-
aging the vectors across sentences given the target
word’s position). They showed that, when adjusted
for anisotropy, the intra-sentence similarity of GPT-
2 tends to decrease until layer 4, before uniformly
increasing again through the rest of layers. Hence,
word representations from different time steps tend
to be highly dissimilar from one another by the
nature of the network, which demonstrates one lim-
itation of feature pooling. While a limitation, we
also note that this approach works well in general
for building static word embeddings, supported by
previous work (Bommasani et al., 2020)

6.2 Semantic Knowledge

From our initial results on the human judgement
benchmarks, we can infer at what layers of the net-
work semantic information about the concept is
most representative. When the network must per-
form next word prediction on the concept, we see
that the final layer is most representative, whilst
after the word has been given to the network, we
see that the semantic information about the concept
decreases through as we move through the network.
Such a result is not surprising as the network must
gradually accumulate information that may be re-
lated to the next possible word, focusing less on
the previous concept. Generally, the transformer
outperforms the LSTM model after the network has
received the concept in the lower layers, though the
LSTM contained more representative information
about the concept during next word prediction.

When probing for human conceptual knowledge,
we see that the transformers perform better than
the LSTMs, with the transformers performing quite
well at predicting attributive features in compari-
son to taxonomic properties, for which there has
historically been a large gap in performance (Ru-
binstein et al., 2015). These results may indicate

that context, for which transformers produce highly
contextualised representations (Ethayarajh, 2019),
plays an important role in representing conceptual
knowledge such as that reflected in semantic prop-
erty norms. The most interesting result from our
investigation is that the semantic knowledge is not
forgotten in the later layers of both LSTM and
transformer-based networks after receiving the con-
cept, unlike the previous results. These findings
may indicate that these networks gradually accumu-
late such knowledge as the sentence is processed in
order to facilitate anticipation of the future. Such
ideas have recently been proposed by Ferreira and
Chantavarin (2018) who suggested that, in order
to reconcile the differences between earlier models
of integration (building associations between new
concepts and previous information (Kintsch and
Van Dijk, 1978; Gernsbacher, 1991)) with more
recent theories of prediction, we should replace the
notion of Prediction with Preparedness. Instead
of considering direct prediction of future lexical
items, which is usually rare (Luke and Christian-
son, 2016), the authors suggest that given some
new information which is processed along with
the past information with appropriate background
knowledge, a new rich semantic representation is
produced containing informative semantic features
that facilitate anticipation. Our results indicate that
these language models may similarly build and
retain rich semantic representations that aid the
network in its learning objective (conditional next
word prediction).

7 Conclusion

In this paper, we present a novel approach to gain-
ing a better understanding of the kinds of seman-
tic information encoded within the layers of large-
scale language models. Our analysis allows us
to peer inside the hidden state representations of
neural language models, and examine how semanti-
cally relevant information is encoded in each layer
of the networks. We examine the language models
on their ability to capture semantic meaning from
two perspectives, when the network is predicting
the target word, and when the target word is the
most recent input. The results demonstrate that
the transformer model is much better at capturing
attributive features than the LSTM model, whilst
both models are able to retain rich semantic repre-
sentations of the concept after the concept has been
given to the network.
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Abstract
Many current language models such as BERT
utilize attention mechanisms to transform se-
quence representations. We ask whether we can
influence BERT’s attention with human reading
patterns by using eye-tracking and brain imag-
ing data. We fine-tune BERT for relation ex-
traction with auxiliary attention supervision in
which BERT’s attention weights are supervised
by cognitive data. Through a variety of metrics
we find that this attention supervision can be
used to increase similarity between model atten-
tion distributions over sequences and the cogni-
tive data without significantly affecting classifi-
cation performance while making unique errors
from the baseline. In particular, models with
cognitive attention supervision more often cor-
rectly classified samples misclassified by the
baseline.

1 Introduction

For humans, the task of determining semantic rela-
tionships may entail complicated inference based
on concepts’ contexts (Yee and Thompson-Schill,
2016; Zhang et al., 2020) and commonsense knowl-
edge (e.g., causal relations; Chiang et al., 2021),
and for labeling relations between entities in texts
the task may depend on the genre of the text (e.g.
biomedical, biographical) and constraints indicated
by annotator instructions (Mohammad, 2016). The
advent of crowdsourcing for machine learning ap-
proaches to Natural Language Processing (NLP)
creates challenges in collecting high quality anno-
tations (Ramírez et al., 2020). A platform such as
Amazon Mechanical Turk (MTurk) allows accessi-
ble, sophisticated task design (Stewart et al., 2017)
but defaults to simple templates for NLP tasks,
and is susceptible to self-selection bias (raters may
not represent the population) and social desirabil-
ity bias or demand effects, where judges seek to
confirm the inferred hypotheses of experimenters
(Antin and Shaw, 2012; Mummolo and Peterson,
2019; Aguinis et al., 2020).

Cognitive research has shown that self-reports
are frequently inaccurate (Vraga et al., 2016), and
that subjects are unable to effectively introspect
about or recall their eye movements during reading
(Võ et al., 2016; Clarke et al., 2017; Kok et al.,
2017). This encourages the use of precise, objec-
tive recordings of non-conscious language process-
ing behavior to use as model training data, rather
than relying solely on reader annotations. As em-
phasized by Hollenstein et al. (2019), when read-
ing humans produce reliable patterns that can be
recorded, such as tracking gaze trajectories or mea-
suring brain activity. These signals can associate
linguistic features with cognitive processing and
subsequently be applied to NLP tasks. The record-
ing of eye movements during reading can be traced
to psychology and physiology in the late 1800s
(Wade, 2010), but the use of eye-tracking data in
NLP is a relatively new phenomenon (Mishra and
Bhattacharyya, 2018). Brain data has a longstand-
ing relationship with language processing and in
recent years has been investigated with NLP mod-
els (Schwartz et al., 2019), leveraged notably by
Mitchell et al. (2008) to predict fMRI activity from
novel nouns.

The working intuition in using cognitive data in
recent NLP studies is that signals produced by hu-
mans during naturalistic reading can be leveraged
by artificial neural networks to induce human-like
biases and potentially improve natural language
task performance. For example, recognizing and re-
lating entities while reading sentences might elicit
patterns of activation or particular gaze behaviors
in human readers which can be transferred to and
recovered by models given the same text sequences
as inputs. Models might then generalize learned
biases to similar text inputs. One route for aug-
menting neural networks with cognitive data is
to regularize attention, such as with eye-tracking
(Barrett et al., 2018) and/or electroencephalogra-
phy (EEG) data (Muttenthaler et al., 2020). Eye-
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Phrase Relation
<e> ford </e> became an engineer with the <e> edison illuminating company </e> Employer
<e> ford </e> became an <e> engineer </e> Job Title
<e> ford </e> was born on a prosperous farm in <e> springwells township </e> Birthplace
<e> mary litogot </e> ( c1839-1876 ) , immigrants from <e> county cork </e> Visited

Table 1: Some example phrases for sentences 3 and 5.

tracking (ET) is an indirect estimate of processes
such as attentional focus and cognitive strategies
(Eckstein et al., 2017) by associating eye move-
ments with performance; EEG is a direct measure-
ment of brain activity, by recording the electric
potentials along the scalp generated by the firing of
populations of neurons. We focus in this work on
deep learning-based approaches to NLP and seek
to induce human-like biases in the self-attention
distributions produced by BERT1 (Devlin et al.,
2019) by fine-tuning the base language model for
relation classification (RC) with a multi-task learn-
ing (MTL) approach, supervising attention with
ET and EEG data taken from the Zurich Cognitive
Language Processing Corpus (ZuCo2; Hollenstein
et al. 2018) as the auxiliary task.

2 Related Work

Mathias et al. (2020) describe the key terms used in
gaze behavior studies; eye-tracking appears to be
the more robust and proven measurement modality
for augmenting machine learning models. In par-
ticular, fixations are the eyes’ focused pauses on
Areas of Interest (AOIs); saccades are rapid move-
ments from one point to another. These movements
can be progressive or regressive, moving to later
or earlier AOIs (e.g., the words in a sentence), and
occur on the order of milliseconds. Hollenstein
et al. (2019) combine the indirect signals of ET
with EEG data, moving beyond inferences based
on eye-screen positioning (e.g., that content words
are more likely to be fixated upon, and unfamiliar
words have longer fixation durations). In general,
EEG provides a high temporal resolution but due to
interference from the scalp exhibits a poorer spatial
resolution than other brain imaging methods such
as magnetoencephalography (MEG; Hollenstein
et al., 2020). To understand cognitive processes
involved in, e.g., longer fixation durations, EEG
can complement ET, where larger amplitudes for

1https://huggingface.co/
bert-base-uncased

2https://osf.io/2urht/

event-related potentials (ERPs) such as N400 cor-
respond to less frequent or less predictable words
and semantic processing (Frank et al., 2015).

A number of studies have applied cognitive data
to NLP tasks, among them: sentiment analysis
(Mishra et al., 2016), part-of-speech (POS) tagging
(Barrett et al., 2016), and named entity recogni-
tion (NER) (Hollenstein and Zhang, 2019). Hol-
lenstein et al. (2019) apply both gaze and brain
data to a suite of NLP tasks (Hollenstein et al.,
2019), including relation classification. For senti-
ment analysis, Mishra et al. (2018) use MTL for a
bidirectional Long Short-Term Memory (biLSTM)
network, learning gaze behavior as the auxiliary
task. Malmaud et al. (2020) predict ET data with
a variant of BERT as an auxiliary to question an-
swering. Bautista and Naval (2020) predict gaze
features with an LSTM to evaluate on sentiment
classification and NER tasks. Barrett et al. (2018)
supervise model attentions with ET data by adding
attention loss to the main classification loss so the
model jointly learns a sentence classification task
and the auxiliary task of attending more to tokens
on which humans typically focus. Muttenthaler
et al. (2020) follow this paradigm using EEG data.

A number of studies impose schemata or mecha-
nisms to encourage BERT to learn more structured
RC representations: Soares et al. (2019) fine-tune
BERT for RC, experimenting with the use of ad-
ditional special entity tokens from BERT’s final
hidden states to represent relations, rather than the
last layer’s classification token, [CLS]: the [CLS]
token is conventionally used as the sentence rep-
resentation for tasks such as classification (Devlin
et al., 2019), as well as attention analysis (Clark
et al., 2019). For joint entity and relation extraction
Xue et al. (2019) fine-tune BERT using focused
attention to mask what the [CLS] token attends to,
so that it attends only to entities. Su and Vijay-
Shanker (2020) fine-tune BERT for RC by sum-
marizing the other tokens’ final hidden states with
either LSTM or attention, concatenating the result
to the [CLS] representation.
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Relation Train Train % Test Test % Total
Awarded 9 1.77% 1 1.75% 10
Birthplace 68 13.36% 8 14.04% 76
Deathplace 17 3.34% 2 3.51% 19
Education 36 7.07% 4 7.02% 40
Employer 31 6.09% 3 5.26% 34
Founder 13 2.55% 1 1.75% 14
Job Title 136 26.72% 15 26.32% 151
Nationality 38 7.47% 4 7.02% 42
Political Affiliation 13 2.55% 2 3.51% 15
Visited 129 25.34% 15 26.32% 144
Wife 19 3.73% 2 3.51% 21
Totals 509 100% 57 100% 566

Table 2: Statistics for the static, stratified train and test splits on 566 phrase samples derived from 300 ZuCo
sentences, as a given sentence may contain multiple binary relations among entities.

3 Data

Hollenstein et al. (2018) created ZuCo, a corpus of
ET and EEG recordings in which 12 adult subjects
(fluent English speakers) read full sentences at their
own speed, with brain recordings synchronized to
eye fixations. The sentences used by the corpus
were written English: 400 review excerpts from
Stanford Sentiment Treebank (Socher et al., 2013)
and 707 biographical sentences from a Wikipedia
relation extraction dataset (Culotta et al., 2006).
In this work we use a subset of 300 relation sen-
tences (7,737 tokens) divided into 566 phrases3 by
Hollenstein et al. (2019) to encompass the multi-
ple binary relation statements, and annotated with
markers around entity mentions. The dataset uses
11 relation types, as seen in Table 2.

For ET we had access to five features for each
word, including first fixation duration (FFD), gaze
duration (sum of fixations), and total reading time
(TRT: the sum of the word’s fixations including
regressions to it). The features for EEG we use
are the 105 electrode values mapped to first-pass
fixation onsets to create fixation-related potentials
(FRPs), so that each word has 105 values. We aver-
age ET and EEG values over all subjects, which has
been shown to reduce variability of results (Hol-
lenstein et al., 2020) and overfitting (Bingel et al.,
2016). To obtain a single ET value for each token,
Barrett et al. (2018) used the mean fixation duration
(MFD), by dividing TRT by number of fixations.
There is no best practice to our knowledge, and
in this study we use TRT as a proxy for overall

3https://github.com/DS3Lab/zuco-nlp/
tree/master/relation-classification/data

attention to a word. For EEG electrode values, we
obtain a scalar for each word by taking the mean
(Hollenstein et al., 2019), rather than the maximum
(Muttenthaler et al., 2020).

4 Method

We split the English-language ZuCo samples into
90% training and 10% test sets. We perform 9-fold
cross-validation on the training data for 6 epochs
with batch size 16 and otherwise default hyperpa-
rameters, averaging validation results over folds.
We fine-tune the final models on the full training
data, choosing 4 epochs based on cross-validation
accuracy, reserving the test data for later compar-
ison. For the main RC task, categorical cross-
entropy loss LRC is calculated for each sequence
j in batches of size M with sequence-level predic-
tions for the C classes, ŷ ∈ RM×C , and a vector of
target class indices t ∈ ZM where 0 ≤ tj < C:

LRC(ŷ, t) = −
1

M

M∑

j

ln atj (1)

where atj is the tj-th value of the softmax of
sample j’s C prediction scores ϕ(ŷj):

a = ϕ(ŷj) atj =
eŷjtj

C∑
k

eŷjk

We additionally compute auxiliary attention
losses. BERT takes an input of sequence hidden
states ∈ RN×d (N tokens, d = 768 features) and
uses 12 attention heads at each layer to create 12
token-token attention weight matrices ∈ RN×N .

224



Model Loss Accuracy Precision Recall Weighted F1
Baseline 0.61 0.88 0.83 0.80 0.88
ET 0.60 0.87 0.82 0.80 0.87
EEG 0.62 0.86 0.80 0.77 0.87
ET+EEG 0.63 0.86 0.82 0.80 0.85
Random ET 0.64 0.85 0.78 0.78 0.86
Random EEG 0.62 0.86 0.82 0.79 0.86
Random ET+EEG 0.62 0.87 0.83 0.80 0.86

Table 3: Metrics at 4 epochs, averaged over 4 runs. Bold are best values, italics worst. Weighted macro-F1 is
intended to account for class imbalances.

Specifically, in these matrices, there is a row for
every token in the sequence–a distribution of N
attention weights, where each scalar weight cor-
responds to a token’s similarity to a token in the
sequence. The resulting matrices are multiplied
with the input to transform the tokens’ features and
produce a context matrix ∈ RN×d. Each token con-
text vector c contains a blend of features from the
sequence’s tokens: each feature for c is a weighted
sum dominated by that feature’s values from tokens
most attended by c. For instance, the features in the
context vector for [CLS] will reflect the features
of those tokens given highest attention by [CLS],
with the features of lower weighted tokens scaled
down and contributing minimally.

These operations are founded on the conception
of attention emerging from relationships between
tokens in sequence contexts, or the notion of each
token attending to the others, and computations
occur in the subspaces of heads’ attention weights:
this is incompatible with the concept of a single ab-
stracted human reading a displayed word sequence.
Therefore, to intervene on the production of contex-
tualized model representations using the ZuCo data
as proxies for attention, we seek a single distribu-
tion of weights from the multiple token-token atten-
tion matrices for a given sequence, analogous to the
competitive attention given by a human reader. Due
to its use as the sequence representation used for
classification, we take from each matrix the row of
weights accorded by [CLS], resulting in 12 vectors,
treating [CLS] as our model reader. We average
these vectors along the head axis to obtain a [CLS]-
token vector α ∈ R1×N of attention weights. This
aggregate is supervised during training: in this way,
each independent representation subspace (head)
is informed by the human values, influencing the
features of the sequence representation used for the
RC task.

We then obtain human scores for the sequence
tokens. Previous studies used “type-aggregated”
(Barrett et al., 2016; Hollenstein et al., 2019) cog-
nitive data, where values are averaged over corpus
word occurrences to obtain an aggregated value
for that word type. This method exchanges spe-
cific sample contexts for the ability to synthesize
distributions for samples not in the original data
through type lexicon queries, using 0 for unknown
word types. For relation extraction, previously Hol-
lenstein et al. (2019) discretized and binned ZuCo
features which were used in an auxiliary task. To
preserve context, we extract from ZuCo the raw
ET and EEG values for each sample without type-
aggregating, so that ZuCo coverage of tokens in
the samples is complete: every token has a ZuCo
value, excluding special model tokens, which are
assigned zeros.

Because BERT uses subword tokenization, to al-
low matching entries to be found in the ZuCo word-
level data we split the ZuCo words into BERT to-
kens, evenly dividing values between each subword
piece (e.g., “delicacy”→ “del”, “##ica”, “##cy”,
each piece allotted a third of the ZuCo value), a
technique used by Malmaud et al. (2020). We pre-
serve entity markers “<e>” and “</e>” in each
sample by adding them as special tokens to the
BERT tokenizer so their embeddings are learned
with other tokens during fine-tuning. Human ET
and EEG token values zET and zEEG are passed
through softmax to obtain two distributions over
sequences, vectors α′′ET and α′EEG. ET features
such as TRT are much larger, measured in millisec-
onds, than the small EEG microvoltages (µV ), so
the raw ET values’ softmax output α′ET would be
much peakier than α′EEG, providing an extremely
low entropy signal where weights are forced onto
one or two tokens. To combat this, we reduce each
ET token value by dividing by the maximum value
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Figure 1: Plots of baseline and attention-supervised model attentions against ZuCo ET and EEG values where
the baseline is correct and attention-supervised model is incorrect. Note that piece attentions are combined (e.g.,
“may”: 0.1004 + “##sville” 0.0939→ “maysville”: 0.1943). The ET+EEG model in the top plot was influenced to
emphasize the location “maysville” alongside “born in” and predicts “Visited” rather than the correct “Birthplace”,
whereas the baseline places relatively more emphasis on “she was” and “born”. At bottom, the baseline attends
strongly to “died” whereas the ET+EEG model has learned a more uniform attention distribution.

for its sequence (Eq. 3), returning softmax output
α′′ET . Each sequence thereby has a context-specific
distribution, reflecting the averaged responses of
the human subjects. Following other studies that
implemented attention supervision (Qiuxia et al.,
2020; Sharan et al., 2019; Sood et al., 2020; Zhang
et al., 2019), we compute attention losses based
on the Kullback-Leibler divergence (DKL

4) from
the aggregate model attention weights α to the hu-
man weights α′′ET and α′EEG. We do so for each
sequence j in batches of size M for each modal-
ity, obtaining eye-tracking loss LET and EEG loss
LEEG. By toggling binary coefficients λ, one
or both losses are added to RC categorical cross-
entropy loss to give us the overall multi-task fine-
tuning loss, LMTL.

LET =
1

M

M∑

j

DKL(α
′′ET
j || αj) (2a)

LEEG =
1

M

M∑

j

DKL(α
′EEG
j || αj) (2b)

4For this computation, zeros are set to 1e-12.

LMTL = LRC + λETLET + λEEGLEEG (2c)

where α′′ET
j is the softmax of the max-

normalized vector of ET token values for sequence
j:

zET
j

max(zET
j )

(3)

5 Experimental Results

5.1 Ablations

We perform ablations comparing base BERT fine-
tuned for four runs with arbitrary random seeds
and varying combinations of the cognitive data.
The baseline used in ablations is the result of fine-
tuning on the ZuCo data without attention super-
vision. For the ET model, we add only the loss
computed from the ET data. For the EEG model
we do likewise with the EEG loss, and for the com-
bined ET+EEG model we compute and add both
auxiliary losses to the main classification loss. We
similarly create random ET, EEG, and ET+EEG
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Figure 2: Confusion matrices of accuracies averaged over four runs for baseline and ET+EEG models. Models
often misclassified “Deathplace” (which comprises roughly 3.5% of the splits’ samples) as “Visited” (25%) or
“Nationality” (7%) as “Job title” (26%), and “Visited” was occasionally misclassified as “Education” (7%).

models. For random models, we replace the modal-
ity’s ZuCo values with values uniformly sampled
from the fixed minimum and maximum range of
the modality’s ZuCo values. This should allow us
to distinguish the effects of learning regularities in
ZuCo token attention values versus the effects of
constraining the range of magnitudes given by the
ZuCo values.

After training, we evaluated the final models on
the held-out test data of 57 samples. Table 3 shows
evaluation results. Two-sided Pitman’s permutation
tests (Dror et al., 2018) were performed on final
accuracies to assess statistical significance, com-
paring each of the six models against the baseline.
Averaging over four runs, there are no statistically
significant differences (p > 0.05) between base-
line vs. ET, EEG, ET+EEG, and random versions
thereof, respectively. Figure 2 displays confusion
matrices for the models, showing similar per-class
results, with some cases where classes with few
samples such as “Deathplace” (19 samples) were
classified as more dominant categories such as “Vis-
ited” (144 samples).

5.2 Attention Similarity

Sen et al. (2020) define a behavioral similarity met-
ric to quantify the extent to which model attentions
focus on the same words as the human attention; in
their work, human attention maps are binary vec-

tors used as the ground truth against which the con-
tinuous model attention maps are compared using
Area Under the Curve (AUC), a binary classifica-
tion metric. In a similar vein, in order to assess
whether models learn a generalizable bias in atten-
tion we create a measurement to assess the amount
of token overlap between continuous human and
model attention vectors for phrases in the test set.
Results of this measurement as well as relative en-
tropies are shown in Table 4.

We compare a fixed top-k tokens for sequences
using a variety of k values, for tokens scored by
model attentions after fine-tuning and the scores
given by human data. We run the models on all
splits, using the methods described in §4 to ob-
tain model attentions α, and compute the atten-
tion similarity for the test set by pairwise compar-
ison of each model’s attentions with the human
data. Specifically, as Equation 4 describes, for each
model we obtain sets of all samples’ token indices
and values for the top k attention weights from both
ZuCo values α′ and α, and divide the cardinality
of the sets’ intersection by k to obtain an overlap
ratio. To factor the k weights’ salience into the
similarity, we divide their total weight given by the
model by their total ZuCo weight and multiply this
percentage–capped at 1.0–with the overlap ratio.
For example, if both the baseline and an attention-
supervised model have the same tokens in the top k
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k=1 k=2 k=3 k=4 DKL

Model EEG ET EEG ET EEG ET EEG ET EEG ET
Baseline 4.26 3.50 8.23 7.70 12.90 13.69 20.10 17.37 0.36 0.44
ET 12.11 26.09 27.53 36.28 32.57 45.59 36.35 48.58 0.05 0.04
EEG 9.48 3.29 16.38 9.09 21.58 16.06 25.49 20.33 0.02 0.07
ET+EEG 14.21 18.48 25.64 26.62 33.21 35.57 36.61 41.39 0.03 0.05
Random ET 11.92 6.82 20.61 16.99 29.80 29.28 33.88 33.79 0.04 0.05
Random EEG 13.11 9.29 17.50 18.27 27.77 30.38 34.68 36.69 0.06 0.07
Random ET+EEG 12.98 8.09 20.11 16.88 29.35 30.26 34.67 36.87 0.05 0.06

Table 4: Overlapping top-k and batch Kullback-Leibler divergence for model vs. sample-specific human attentions
on the test set. Averaged over 4 runs, bold cells are best, italics worst.

attention, the model that weighs these tokens simi-
larly to the ZuCo data should have a greater score.
We take the average over each sample j in dataset
D:

sim(αj , α
′
j) =

1

D

D∑

j



|okj |
k
×min



1,

okj∑
i
αji

okj∑
i
α′ji







(4)
where okj is the set of intersecting indices of

the top k attention values for sequence j and α′

corresponds separately to α′′ET (Eq. 3) or α′EEG:

okj = αk
j ∩ α′kj (5)

As Table 4 shows, baseline and random models
have less overlap than the ET model for all sets. Cu-
riously, after the baseline, EEG overlap was weak-
est for the model supervised with EEG, including
for the random models. This might indicate a diffu-
sion of attention that makes top-k overlap difficult
to differentiate, as EEG overlap values reach par-
ity with non-EEG models with k > 10. Figure
1 visualizes the respective final [CLS] attention
weights averaged over attention heads for baseline
vs. attention-supervised models against the ET and
EEG ZuCO data values used to supervise the latter
models.

5.3 Unique Errors

While task performance is not significantly differ-
ent, we can see that model attentions are affected.
To detect the possible effects of these attentional
differences, where alternative features may be em-
phasized or diminished in the sequence represen-
tations used for RC, we analyze errors made by

Model MM Fixes Breaks AvB
Baseline 0.00 0.00 0.00 0.00
ET 20.59 0.07 0.02 0.16
EEG 24.16 0.11 0.02 0.16
ET+EEG 28.90 0.11 0.04 0.22
Random ET 20.24 0.03 0.03 0.18
Random EEG 20.83 0.03 0.03 0.18
Random ET+EEG 25.55 0.11 0.03 0.18

Table 5: MM (mismatches): The percentage of unique
errors between model errors and baseline errors out of
all errors for both models. Fixes refers to the percentage
of allMb’s errors thatMa correctly predicted. Breaks
refers to the percentage of allMb’s correct answers that
Ma incorrectly predicted. AvB refers to the percentage
of allMa’s errors thatMb correctly predicted. Bold
cells are the highest, italicized lowest.

the baseline models against those of the attention-
supervised models on a sample by sample basis.
For each model Ma paired with baseline model
Mb (fine-tuned without attention supervision), we
examine the proportion of the pair’s mismatched
errors out of all errors on the test set (Equation 6);
that is, the size of the symmetric difference (4)
betweenMa’s errorsMinc

a andMb’s errorsMinc
b

divided by the size of the union of errors made by
each model:

mismatches(Ma,Mb) =
|Minc

a 4Minc
b |

|Minc
a ∪Minc

b |
(6)

As seen in Table 5, we note that models with
non-random ZuCo attention supervision have more
unique errors compared with the baseline than
those with random supervision. In this case, the
EEG-based attention loss seems to be the source
of the small differences, as ET and Random ET
models have similar mismatches. Lin et al. (2020)
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examine fixes: instances where the baseline is in er-
ror, but the modified baseline is correct. We analyze
the percentages of fixes and also breaks, which we
define to occur when the baseline is correct, but the
model with supervised attention is incorrect. These
are also shown in Table 5. Compared to random
models, the ZuCo models seem to more frequently
predict correctly samples that the baseline labeled
incorrectly.

6 Conclusions and Future Work

Overall, BERT models with multiple modes of
human attention supervision converged to accu-
racy for the relation classification task that does
not differ significantly from the fine-tuned base
BERT model, despite possessing attention distribu-
tions that were shifted toward the cognitive data.
Measured by overlap, attention supervision with
eye-tracking data was most influential on the final
layer’s [CLS]-assigned attention weights. In ad-
dition, we have shown that the behavior of these
models differs from the baseline consistently by
misclassifying different samples, exposing patholo-
gies which may be of interest for research in neural
network-based human language processing.

Barrett and Hollenstein (2020) have pointed to
distinct reading patterns evident in eye-tracking
studies for unfamiliar proper nouns which may
be more readily apparent in the ET values. On
the other hand, it may be that the EEG data were
too noisy and that dimensionality reduction to find
the most predictive electrode values, such as per-
formed by Muttenthaler et al. (2020), is needed to
provide a consistent signal. Additionally, Hollen-
stein et al. (2019) and Muttenthaler et al. (2020)
incorporated EEG frequency bands into their ZuCo-
based studies; the α frequency band has been as-
sociated with attention (Feldmann-Wüstefeld and
Awh, 2020) and supervision with this band might
yield different results. The cognitive data used in
this study were not specifically produced from an
entity-related reading task, but Brédart (2017) has
noted the increased difficulty of processing proper
names which is reflected in behavioral studies, with
a double dissociation between common nouns and
proper names where production of one type of noun
is impaired but the other is intact. A more careful
use of neuroimaging data may be needed to lever-
age signals reflecting the differing brain mecha-
nisms involved in human lexical access.

Typically, researchers implicitly seek to induce

a human-like bias in classifiers so they correlate
more highly with human judgments by using self-
reported annotations to supervise learning. This
supervision is limited insofar as self-reports can not
specify responses inaccessible to annotator intro-
spection, such as the brain’s electrical activity or de-
tailed gaze behavior. Models additionally biased by
non-conscious physiological responses may learn
to more robustly reflect human language process-
ing, incorporating both subjective and objective sig-
nals. Human annotations are conventionally taken
as ground truth. Yet cognitive data may offer valid
judgments, as well. For example, in sentiment
analysis, a false negative according to a self-report
could be a true negative according to physiologi-
cal affective responses. Cognitive data may reveal
inconsistencies and gradations obscured by labels.
In the case of relation extraction, cognitive data
might uncover patterns more reflective of different,
potentially novel categories of semantic relation,
or different dynamics, due to linguistic ambiguity
and/or changing contexts and readerships. In terms
of limitations, we did not investigate the breadth or
depth of influence of our method of [CLS]-based
aggregate attention supervision on the model atten-
tions across layers and heads, nor the supervision
of specific layers or heads as done by Strubell et al.
(2018). We did not explore trade-off coefficients
on the multiple losses, such as the convex combi-
nation used by Malmaud et al. (2020). We used
a relatively small English dataset, which limited
generalizability and robustness.

Hollenstein et al. (2020) describe some ethical
concerns in the recording and use of cognitive data,
including voluntary data procured but not recorded
by NLP researchers. This includes loss of privacy
with the identification of subjects, an overrepre-
sentation and normalization of particular demo-
graphics, and the perpetuation of fossilized human
prejudices. Sen et al. (2020) have described the po-
tential for human attention supervision to address
the validity of attention as a faithful, human-like
explanation for model decisions while Pruthi et al.
(2019) have discussed the potential for deception
by manipulating attention to make models appear
less biased. Future work could scrutinize whether
human attention supervision can provide a basis
for exploring cognitive biases learned by models,
or align attention-based explanations to model out-
comes: enabling performant models to adhere faith-
fully to auditor expectations.
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Abstract

This paper concerns the structure of phono-
logical neighbourhood networks, which are a
graph-theoretic representation of the phono-
logical lexicon. These networks represent
each word as a node and links are placed be-
tween words which are phonological neigh-
bours, usually defined as a string edit distance
of one. Phonological neighbourhood networks
have been used to study many aspects of the
mental lexicon and psycholinguistic theories
of speech production and perception. This pa-
per offers preliminary graph-theoretic observa-
tions about phonological neighbourhood net-
works considered as a class. To aid this ex-
ploration, this paper introduces the concept of
the hyperlexicon, the network consisting of all
possible words for a given symbol set and their
neighbourhood relations. The construction of
the hyperlexicon is discussed, and basic prop-
erties are derived. This work is among the first
to directly address the nature of phonological
neighbourhood networks from an analytic per-
spective.

1 Motivation

Recent work in phonological psycholinguistics
has investigated the structure of the lexicon
through the use of phonological neighbourhood
networks (Chan and Vitevitch, 2010; Turnbull and
Peperkamp, 2017; Siew, 2013; Siew and Vitevitch,
2020; Shoemark et al., 2016). A phonological
neighbourhood network is a representation of the
lexicon where each word is treated as a node and
a link is placed between nodes if and only if those
two nodes are phonological neighbours. Two words
are neighbours if their string edit distance, in terms
of phonological representation, is one. In other
words, the neighbours of a word w are all the
words that can be formed by the addition, dele-
tion, or substitution of a single phoneme from w.
The neighbourhood relation is symmetric (if w is a
neighbour of w′, then w′ is necessarily a neighbour

plan

flan
clan

plane

plaque

pan
plans

planned

planner

plant

Figure 1: Example phonological neighbourhood net-
work centred around the English word plan. Note that
some neighbours of a word are neighbours of each
other. Adapted from Turnbull and Peperkamp (2017).

ofw), intransitive (ifw is a neighbour ofw′, andw′

is a neighbour of w′′, it is not necessarily the case
that w is a neighbour of w′′), and anti-reflexive (w
cannot be a neighbour of itself).

Figure 1 shows an abbreviated phonological
neighbourhood network for some words of English.
One advantage of this representation is that it per-
mits analysis with the methods of network science
and graph theory, and work so far has shown a good
deal of promise in modeling psycholinguistic prop-
erties of the lexicon with these methods (Chan and
Vitevitch, 2010; Vitevitch, 2008). A common analy-
sis technique within network science is to compare
a given network with a randomly generated one
that has the same number of nodes and links. No-
table features of the target network relative to the
random network are likely due to intrinsic proper-
ties of the target network, rather than chance. From
this structure one can then infer details about the
organising principles that generated the network
originally.

For phonological neighbourhood networks, how-
ever, this method is often inappropriate, as many
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logically possible network structures are not pos-
sible phonological neighbourhood networks. This
fact is because the links between nodes—the neigh-
bourhood relations—are intrinsic to the definitions
of the nodes themselves. Changing a link between
nodes necessarily means changing the content of
a node, which then could entail other changes to
other links. This problem was highlighted by Turn-
bull and Peperkamp (2017),1 who instead chose to
randomly generate lexicons and derive networks
from those lexicons. However, randomly gener-
ated lexicons do not guarantee the same number
of links will be present in the resulting network,
making it difficult to compare like with like. For
this reason, studying phonological neighbourhood
networks as a class, and discovering their defin-
ing characteristics, is an important methodological
goal for psycholinguists.

This research therefore seeks to answer the fol-
lowing broad questions: What are the distinctive
characteristics of phonological neighbourhood net-
works, including their definitions in terms of edge
sets and vertex sets, their extremal properties, and
characterization of forbidden subgraphs? Is there
an effective and efficient method by which phono-
logical neighbourhood graphs can be distinguished
from other graphs? The present paper lays the
mathematical foundations for future investigations
of both of these questions.

2 Preliminaries

This section briefly defines the basic mathematical
definitions and operations used in the remainder of
the paper. The reader is referred to standard text-
books in graph theory, such as Trudeau (1993) or
Diestel (2005), for more details. As mathematical
terminology and notation can vary between sub-
fields, alternative names and characterizations of
some objects are mentioned in the ensuing sections,
but they are not strictly necessary to understand the
arguments of this paper.

Networks can be modeled as mathematical ob-
jects known as graphs, which consist of vertices
(nodes) and edges (links). Let G be an undirected
graph with no self-loops with vertex set V (G) and
edge set E(G). Let Kn denote the complete graph
with n vertices and all possible edges.

A graph H is said to be a subgraph of a graph
G if V (H) ⊆ V (G) and E(H) ⊆ V (G), that is,

1See also Gruenenfelder and Pisoni (2009) for related con-
cerns.

if the the edges and vertices of H are subsets of
those of G. A subgraph H is an induced subgraph
of G if every edge in E(G) whose endpoints are
both in V (H) is present in E(H). In other words,
an induced subgraph can be obtained by the pro-
cess of removing vertices (and any incident edges)
from a graph, but not removing edges on their own.
Figure 2 provides illustrative examples.

The diamond is K4 with one edge removed. A
circle Ck has the set of nodes {1, 2, ..., k} and edge
set {{1, 2}, {2, 3}, ..., {(k − 1), k}, {k, 1}}. (Cir-
cle graphs that are induced subgraphs of a larger
graph are also known as k-holes.) Figure 3 depicts
the diamond and C5.

A star Sk is a graph with one central vertex
which is connected to k other unique vertices. No
other vertices or edges exist. Figure 4 depicts the
stars S3 (also known as a claw), S4, and S6.

The Cartesian product A×B of two sets A and
B is defined as

A×B = {(a, b)|a ∈ A, b ∈ B}, (1)

that is, the Cartesian product of A and B is
the set of all ordered pairs where the first el-
ement is a member of A and the second el-
ement is a member of B. For example, the
Cartesian product of {a, b, c} and {x, y} is
{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}.

The Cartesian product G�H of two graphs G
and H has the vertex set

V (G�H) = V (G)× V (H). (2)

A given vertex (a, x) is linked with another vertex
(b, y) if a = b (the first elements are identical) and
{x, y} ∈ E(H) (the second elements are linked in
H), or if x = y (the second elements are identical)
and {a, b} ∈ E(G) (the first elements are linked
in G). To aid understanding, Figure 5 depicts an
example of the Cartesian product of two graphs,
G and H . Graph G has V (G) = {a, b, c} and
E(G) = {{a, b}, {b, c}}. Graph H has V (H) =
{x, y} and E(H) = {{x, y}}. Observe how G
and H can be seen in G�H as two orthogonal
dimensions. Note also that the total number of
vertices in G�H is equal to the product of the
number of vertices in G and H .

We further denote the Cartesian exponent of a
graph G as

G�n = G�G�G . . .G︸ ︷︷ ︸
n

, (3)
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G H J

a b

c d

a b

d

a b

d

Figure 2: Three graphs. H is an induced subgraph of G formed through the removal of vertex c and its incident
edges. J is also a subgraph of G, but it is not an induced subgraph due to the fact that the edge between vertices a
and d is missing.

diamond C5

Figure 3: The diamond graph and C5.

S3 S4 S6

Figure 4: Star graphs S3, S4, and S6.

a

b

c

x

y

(a, x)

(b, x)

(c, x) (c, y)

(b, y)

(a, y)

G H G�H

Figure 5: Graphs G and H and the Cartesian product G�H .
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Figure 6: The complete graph K2 and Cartesian exponent K�3
2 , i.e. K2�K2�K2.
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Figure 7: The hyperlexicon H(2, {1, 2, 3}). Here the alphabet is defined as {0, 1} but any set of two symbols
is possible. Edges between layers (i.e. phoneme additions/deletions) are drawn in grey; edges within layers (i.e.
phoneme substitutions) are drawn in black.

that is, the Cartesian product of G with itself n− 1
times. Figure 6 depicts the graphs K2 and K�3

2 .
It can be seen that K�2

2 is a square, K�3
2 is a

cube, and K�n
2 is an n-dimensional hypercube.2

Likewise, the vertex labels of K�n
m are equivalent

to all strings of length n drawn from an alphabet
of m symbols. The edges of K�n

m are equivalent to
the neighbourhood relations of such strings. These
facts establish the basis upon which we can use
these tools to model phonological neighbourhood
networks.

3 The Hyperlexicon

In this paper we introduce the concept of the hy-
perlexicon. A hyperlexiconH(φ,L) is defined as
the phonological neighbourhood network gener-
ated from all possible string sequences of lengths
{`1, . . . `n} for ` ∈ L over an alphabet of length φ.

Figure 7 depicts the hyperlexicon of all ‘words’
of length 1, 2, and 3, over the alphabet of 0 and 1.
Stella and Brede (2015) observed that the set of all
possible phoneme sequences (i.e. the hyperlexicon)
is composed of multiple ‘layers’, each correspond-
ing to a distinct member of L. This layered struc-

2More generally, K�n
m is an m × m Rook’s graph in n

dimensions.

ture can be clearly seen in Figure 7. Edges within
a layer correspond to neighbours by substitution,
while edges between layers correspond to neigh-
bours by deletion or insertion. Note further that
each layer is isomorphic to K�`

φ , the `th Cartesian
exponent of the complete graph with φ vertices.3

Imagine now a hypothetical lexicon consisting of
the words 1, 00, 10, and 110. The phonological
neighbourhood network of this lexicon is depicted
in Figure 8, overlaid on the hyperlexicon from Fig-
ure 7. It can be seen that this lexicon’s network is
an induced subgraph of the hyperlexicon.

Indeed, phonological neighbourhood networks
are necessarily induced subgraphs of the hyperlex-
icon. For example, the English lexicon consists
of strings of varying lengths, with the set of En-
glish phonemes as its ‘alphabet’. There are some
strings of English phonemes which are not part of
the English lexicon—i.e. nonwords such as blick
and pmisgkr. The set of words in the English lex-
icon, then, is a subset of the set of all logically
possible strings of English phonemes. A hyper-
lexicon corresponds to the neighbourhood network
derived from a set of all logically possible strings

3Each layer can also be characterized as an expansion of
the hypercube graph Q`, or as a Hamming graph Ham(`, φ).
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Figure 8: The phonological neighbourhood network (in black) of the lexicon 1, 00, 10, and 110, depicted as a
subgraph of the hyperlexiconH(2, {1, 2, 3}) (in grey).

of length L, given some set of phonemes of length
φ. Any subset of this set of strings will correspond
to an induced subgraph of the hyperlexicon. Any
phonological neighbourhood network, then, with
words of lengths in L constituted from φ distinct
phonemes, is necessarily an induced subgraph of
the hyperlexiconH(φ,L). Studying properties of
the hyperlexicon therefore gives us insight into the
possible structures of phonological neighbourhood
networks.

The vertex set of the hyperlexicon is given by

V (H(φ,L)) =
⋃

`∈L
V (K�`

φ ), (4)

that is, the set union of each layer’s vertices. The
number of vertices of H(φ,L) is the sum of the
size of each layer, which is

L∑
φ`. (5)

If L is contiguous, H(φ,L) is necessarily con-
nected (i.e. there is exactly one connected com-
ponent); if L is not contiguous,4 thenH(φ,L) has
multiple connected components.

4 The Edges between the Layers of the
Hyperlexicon

Defining the edge set of H(φ,L) is less straight-
forward than the vertex set and is not fully solved.
Within each layer, the edges are the same as in
the graph K�`

φ . Between the layers the situation is
considerably more complex. To begin, we first de-
termine the number of possible unique neighbours
for any word. For a word of length ` in a language

4Such a scenario is plausible for languages with strict
phonotactics requiring an obligatory onset and forbidding
codas, i.e. all syllables must be CV. For such languages, L =
{2, 4, 6, 8, . . . }. Hua (Blevins, 1995) and Senufo (Kientz,
1979) have been reported to have this kind of syllable structure.

with φ distinct phonemes, neighbours are generated
through the addition, deletion, or substitution of
a single phoneme. The number of possible neigh-
bours can be shown to depend upon word length `,
alphabet size φ, and the number of pairs of adjacent
identical phonemes, described below.

4.1 Substitutions
It is straightforward to demonstrate that there are

φ`− ` (6)

possible substitutions. This statement follows from
the fact that neighbourhood is an anti-reflexive rela-
tion, so vacuously substituting a phoneme for itself
will not generate a neighbour.

4.2 Additions
The number of additions can be derived from the
fact that each of φ symbols can be added to `+ 1
positions, which gives φ(`+1). However, for each
insertion position, one of these φ phonemes will
result in a string which is identical to an insertion
of the same phoneme at a different location. For
example, prefixing a onto the beginning of ab is
equivalent to inserting a into the middle of ab:
they both result in aab. The number of additions
is therefore

φ(`+ 1)− ` (7)

which simplifies to Equation (6) plus φ:

φ`− `+ φ. (8)

4.3 Deletions
The number of deletions is not constant and de-
pends upon the structure of the word. For example,
although there are three distinct deletion positions
in a possible word aaa, all three of them lead to
the same unique word aa; so practically speaking
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K5 C4

Figure 9: In attempting to generate C4 (right) from K5 (left), a single vertex must be removed. However, as shown
by the middle graph, removal of a single vertex (in grey) results in a graph with too many edges. This is true
no matter which vertex we choose to remove. C4 is therefore not an induced subgraph of K5; we can call C4 a
forbidden subgraph of K5.

there is only one possible deletion. On the other
hand, all three possible deletions on abc result in
three unique strings (namely, bc, ac, ab), so it has
three deletions.

The actual number of possible deletions depends
on the number of pairs of identical adjacent sym-
bols.5 Pairs of identical adjacent symbols act as a
single symbol for the purposes of counting possible
deletion sites. The number of deletions is therefore

`− a, (9)

where a is the number of pairs of adjacent identical
symbols in the word. For example abba has only
3 possible deletions, despite being of length 4. (For
this word, a deletion at position 2 is equivalent
to a deletion at position 3; the sequence bb can
be essentially treated as a single symbol for the
purposes of counting deletion sites.)

All words allow at least 1 deletion, and some
words allow as many as ` deletions.

4.4 Vertex Degree

From the sections above, it follows that each vertex
inH(φ,L) has φ`− ` edges to other nodes in the
same layer as it. If there is a higher layer, then each
node also has φ`− `+ φ edges leading to nodes in
that layer. If there is a lower layer, then each node
has between 1 and ` edges leading to that layer.

5 Forbidden Subgraphs

Finally, we begin to attempt to characterize the
class of hyperlexicons in terms of forbidden sub-
graphs. A forbidden subgraph of G is any graph
which is not isomorphic to any induced subgraph
of G. For example, there is no induced subgraph

5Using the terminology of combinatorics on words, a “pair
of identical adjacent symbols” can be understood as a square
of length 2.

of K5 which is isomorphic to C4. This fact is il-
lustrated in Figure 9. C4 is therefore a forbidden
subgraph of K5. Graph structures which are im-
possible within a hyperlexicon are also impossible
within real phonological networks, because real
phonological networks are induced subgraphs of
a hyperlexicon. Understanding the forbidden sub-
graphs of a hyperlexicon therefore allows us to
understand possible natural language networks.

5.1 Forbidden Subgraphs of individual layers

A hyperlexicon is composed of layers. Each layer
is K�`

φ , the `th cartesian exponent of Kφ. For the
special case of ` = 2 (i.e. words of length two),
these graphs have been studied in the mathematical
literature under the names of Rooks’ graphs, grid-
line graphs, adjacency graphs, and graphs of (0, 1)
matrices. Peterson (2003) studied these graphs in
cases where ` > 2, and established that the dia-
mond and C5 are among the forbidden subgraphs
of K�`

φ .
The 3-star S3 has been shown to be a forbidden

subgraph of K�2
φ (Hedetniemi, 1971). More gen-

erally, no layer at length ` has S`+1 as an induced
subgraph. This observation follows from the pi-
geonhole principle: the first ` vertices of S`+1 can
be found in the ` dimensions of the graph. The final
vertex must be in one of the dimensions already
considered, and therefore must be adjacent to an
existing vertex. This leads to a triangle, meaning
the induced subgraph is no longer a star.

These structures, forbidden from each individual
layer of the hyperlexicon, are not forbidden from
the hyperlexicon as a whole. Within the hyperlexi-
con H(3, {1, 2, 3}) we observe both the diamond
and C5; see Figures 10 and 11.6 Similarly, for a hy-

6We have been unable to find any induced C5 in cases
where φ < 3. While this conjecture might be of mathematical
interest, it is not relevant to our main use-case of phonological
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aa

ba

a

ab

Figure 10: The diamond graph as an induced subgraph
of a hyperlexicon.

ac

a b

cb

acb

ac

a b

cb

cc

Figure 11: C5 as two induced subgraphs of a hyperlex-
icon.

perlexicon with max(L) = 4, the star S5 is present
as an induced subgraph, as shown in Figure 12.

Since these structures cannot occur within each
layer, it follows that their existence within a hyper-
lexicon must necessarily span more than one layer.
Indeed, we hypothesize that in the case of S`+1

where ` = max(L), this structure must necessarily
span three layers.

5.2 Forbidden Subgraphs of the Entire
Hyperlexicon

No hyperlexicon hasKφ+2 as an induced subgraph.
Kφ exists, as this constitutes the ‘dimensions’ of
each layer. From Kφ it is possible to induce Kφ+1

by adding a vertex from one layer down. For exam-
ple, the string a is adjacent to aa, ab, ac, and so
on. However there is no other vertex in the lower
layer which is adjacent to all of a’s neighbours
and to a itself. Kφ+2 is therefore not an induced
subgraph of the hyperlexicon.

6 Conclusion

This paper has reviewed the basic structure of hy-
perlexicon graphs. Induced subgraphs of hyperlex-
icon graphs typify the class of phonological neigh-
bourhood networks. It is hoped that the preliminary
results presented here will spur further work on the

networks, as all known natural languages possess considerably
more than 3 phonemes.

abbc acc

ab bc

babc

abc

Figure 12: S5 as an induced subgraph of a hyperlexicon
with max(L) = 4.

nature of phonological neighbourhood networks
as formal objects. This work in turn has method-
ological implications for evaluating and measur-
ing phonological neighbourhood networks derived
from natural languages.
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Abstract

Expectation-based theories of sentence pro-
cessing posit that processing difficulty is deter-
mined by predictability in context. While pre-
dictability quantified via surprisal has gained
empirical support, this representation-agnostic
measure leaves open the question of how to
best approximate the human comprehender’s
latent probability model. This work presents
an incremental left-corner parser that incor-
porates information about both propositional
content and syntactic categories into a sin-
gle probability model. This parser can be
trained to make parsing decisions condition-
ing on only one source of information, thus
allowing a clean ablation of the relative con-
tribution of propositional content and syntac-
tic category information. Regression analy-
ses show that surprisal estimates calculated
from the full parser make a significant contri-
bution to predicting self-paced reading times
over those from the parser without syntactic
category information, as well as a significant
contribution to predicting eye-gaze durations
over those from the parser without proposi-
tional content information. Taken together,
these results suggest a role for propositional
content and syntactic category information in
incremental sentence processing.

1 Introduction

Much work in sentence processing has been dedi-
cated to studying differential patterns of processing
difficulty in order to shed light on the latent mecha-
nism behind online processing. As it is now well-
established that processing difficulty can be ob-
served in behavioral responses (e.g. reading times,
eye movements, and event-related potentials), re-
cent psycholinguistic work has tried to account for
these variables by regressing various predictors of
interest. Most notably, in support of expectation-
based theories of sentence processing (Hale, 2001;
Levy, 2008), predictability in context has been

quantified through the information-theoretical mea-
sure of surprisal (Shannon, 1948). Although there
has been empirical support for n-gram, PCFG, and
LSTM surprisal in the literature (Goodkind and
Bicknell, 2018; Hale, 2001; Levy, 2008; Shain,
2019; Smith and Levy, 2013), as surprisal makes
minimal assumptions about linguistic representa-
tions that are built during processing, this leaves
open the question of how to best estimate the hu-
man language comprehender’s latent probability
model.

One factor related to memory usage that has re-
ceived less attention in psycholinguistic modeling
is the influence of propositional content, or mean-
ing that is conveyed by the sentence. Early psy-
cholinguistic experiments have demonstrated that
the propositional content of utterances tends to be
retained in memory, whereas the exact surface form
and syntactic structure are forgotten (Bransford
and Franks, 1971; Jarvella, 1971). This suggests
that memory costs related to incrementally con-
structing a representation of propositional content
might manifest themselves in behavioral responses
during online sentence processing. In addition,
there is evidence suggesting that parsing decisions
are informed by the ongoing interpretation of the
sentence (Brown-Schmidt et al., 2002; Tanenhaus
et al., 1995).

Based on this insight, prior cognitive modeling
research has sought to incorporate propositional
content information into various complexity met-
rics. A prominent approach in this line of re-
search has been to quantify complexity based on
the compatibility between a predicate and its argu-
ments (i.e. thematic fit, Baroni and Lenci 2010,
Chersoni et al. 2016, Padó et al. 2009). How-
ever, these complexity metrics can only be eval-
uated at a coarse per-sentence level or at critical
regions of constructed stimuli where predicates and
arguments are revealed, making them less suitable
for studying online processing. A more distribu-
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a) lexical attachment decision `t b) grammatical attachment decision gt

ad
t−1

bd
t−1

wt

⇒
a`t

m`t = 1

ad
t−1

bd
t−1

wt

⇒ ad
t−1

bd
t−1

a`t

m`t = 0

ad
t−1

bd
t−1

a`t

⇒
agt

bgt

mgt = 1

ad
t−1

bd
t−1

a`t

⇒ ad
t−1

bd
t−1

agt

bgt

mgt = 0

Figure 1: Left-corner parser operations: a) lexical match (m`t =1) and no-match (m`t =0) operations, creating new
apex a`t , and b) grammatical match (mgt =1) and no-match (mgt =0) operations, creating new apex agt and base bgt .

tional approach has also been explored that relies
on word co-occurrence to calculate the semantic
coherence between each word and its preceding
context (Mitchell et al., 2010; Sayeed et al., 2015).
Although these models allow more fine-grained per-
word metrics to be calculated, their dependence on
an aggregate context vector makes it difficult to
distinguish ‘gist’ or topic information from propo-
sitional content.

Unlike these models, our approach seeks to in-
corporate propositional content by augmenting a
generative and incremental parser to build an on-
going representation of predicate context vectors,
which is based on a categorial grammar formalism
that captures both local and non-local predicate-
argument structure. This processing model can be
used to estimate per-word surprisal predictors that
capture the influence of propositional content dif-
ferentially with that of syntactic categories, which
are devoid of propositional content.1 Our experi-
ments demonstrate that the incorporation of both
propositional content and syntactic category infor-
mation into the processing model significantly im-
proves fit to self-paced reading times and eye-gaze
durations over corresponding ablated models, sug-
gesting their role in online sentence processing.
In addition, we present exploratory work showing
how our processing model can be utilized to exam-
ine differential effects of propositional content in
memory-intensive filler-gap constructions.

1Note that this distinction of propositional content as re-
tained information about the meaning of a sentence and syn-
tactic categories as unretained information about the form of
a sentence may differ somewhat from notions of semantics
and syntax that are familiar to computational linguists – in
particular, predicates corresponding to lemmatized words fall
on the content side of this division here because they are re-
tained after processing, even though it may be common in
NLP applications to use them in syntactic parsing.

2 Background

The experiments presented in this paper use sur-
prisal predictors calculated by an incremental pro-
cessing model based on a probabilistic left-corner
parser (Johnson-Laird, 1983; van Schijndel et al.,
2013). This incremental processing model provides
a probabilistic account of sentence processing by
making a single lexical attachment decision and a
single grammatical attachment decision for each
input word.2

Surprisal can be defined as the negative log of a
conditional probability of a word wt and a state qt

at some time step t given a sequence of preceding
words w1..t−1, marginalized over these states:

S(wt)
def
= − log

∑

qt

P(wt qt | w1..t−1) (1)

These conditional probabilities can in turn be de-
fined recursively using a transition model:

P(wt qt | w1..t−1) def
=
∑

qt−1

P(wt qt | qt−1)·
P(wt−1 qt−1 | w1..t−2) (2)

A probabilistic left-corner parser defines its tran-
sition model over possible working memory store
states qt = a1

t /b
1
t , . . . , a

D
t /b

D
t , each of which con-

sists of a bounded number D of nested derivation
fragments ad

t /b
d
t . Each derivation fragment spans a

part of a derivation tree below some apex node ad
t ,

lacking a base node bd
t yet to come.

At each time step, the parser generates a lexical
attachment decision `t, a word wt, a grammatical at-

2Johnson-Laird (1983) refers to lexical and grammatical
attachment decisions as ‘shift’ and ‘predict’ respectively.
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many (λx1 some (λe1 person e1 x1)

(λe1 true))

(λx1 some (λx3 some (λe3 pasta e3 x3)

(λe3 true))

(λx3 some (λe2 eat e2 x1 x3)

(λe2 true)))

Figure 2: Lambda calculus expression for the proposi-
tional content of the sentence Many people eat pasta,
using generalized quantifiers over discourse entities
and eventualities.

tachment decision gt, and a resulting store state qt:

P(wt qt | qt−1) =
∑

`t ,gt

P(`t | qt−1) ·
P(wt | qt−1 `t) ·
P(gt | qt−1 `t wt) ·
P(qt | qt−1 `t wt gt) (3)

As shown in Figure 1, the lexical attachment de-
cision `t generates a new complete node a`t based
on (m`t ) whether the word matches the base of the
most recent derivation fragment; and the grammati-
cal attachment decision gt generates a new deriva-
tion fragment agt/bgt based on (mgt ) whether the
parent of a grammar rule with this new complete
node as a left child matches the base of the most
recent remaining derivation fragment.

The semantic processing model described in this
paper extends the above left-corner parser to incor-
porate propositional content by conditioning lexi-
cal and grammatical decisions on sparse vectors of
predicate contexts had

t
and hbd

t
in addition to cate-

gory labels cad
t

and cbd
t

in apex and base nodes ad
t

and bd
t . These predicate context vectors for nodes

in a derivation tree of a sentence can be defined in
terms of argument positions of variables signified
by these nodes in predicates of a logical form trans-
lation of that sentence. For example, in Figure 2,
the variable e2 (signified by the word eat) would
have the predicate context EAT0 because it is the
zeroth (initial) participant of the predication (eat
e2 x1 x3).3 Similarly, the variable x3 would have
both the predicate context PASTA1, because it is the
first participant (counting from zero) of the predica-
tion (pasta e3 x3), and the predicate context EAT2,
because it is the second participant (counting from

3Participants of predications are numbered starting with
zero so as to align loosely with syntactic arguments in canoni-
cal form.

S
PERSON1,−1

VP
PERSON1,−1

eat

⇒
S

PERSON1,−1

VP
PERSON1,−1

VT
EAT0

Figure 3: Derivation fragments resulting from example
lexical decisions made at the word eat in the sentence
People eat pasta. Note that the predicate contexts in-
stead of predicate context vectors are displayed here for
clarity. The predicate context PERSON1,−1 represents an
eventuality that takes the first argument of a PERSON
predicate as its first argument.

zero) of the predication (eat e2 x1 x3). These predi-
cate contexts are obtained by reannotating the train-
ing corpus using a generalized categorial grammar
of English (Nguyen et al., 2012), which is sensitive
to syntactic valence and non-local dependencies.

Lexical attachment probabilities. The proba-
bility of each lexical decision `t in this parser is
therefore decomposed into one term for generating
a match decision m`t and a predicate context vec-
tor h`t , and another term for generating a syntactic
category label c`t for the new complete node a`t :

P(`t | qt−1) =

P(m`t h`t | qt−1) · P(c`t | qt−1 m`t h`t ) (4)

The probability of generating the match decision
and the predicate context vector depends on the
base node bd

t−1 of the previous derivation fragment:

P(m`t h`t | qt−1) =

SOFTMAX
m`t h`t

( FFθL[δd
>, [δ>cbd

t−1

,h>
bd

t−1
] EL] ) (5)

where FF is a feedforward neural network, δi

is a Kronecker delta vector consisting of a one
at element i and zeros elsewhere, depth d =

argmaxd′{ad′
t−1,⊥} is the number of non-null deriva-

tion fragments at the previous time step, and EL is
a matrix of jointly trained dense embeddings for
each syntactic category and predicate context. The
probabilities of category labels are calculated us-
ing relative frequency estimation on training data
based on the base node of the previous derivation
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fragment. The new complete node a`t then depends
on the match decision m`t (see Figure 3):

a`t

def
=


ad

t−1 if m`t = 1
c`t ,h`t if m`t = 0

(6)

Word probabilities. Probabilities for generat-
ing words are estimated as the probability of gener-
ating their character sequence using a recurrent neu-
ral network implementation of a character model.

Grammatical attachment probabilities. The
probability of each grammatical decision gt in this
parser is similarly decomposed into a term for gen-
erating a match decision mgt and a composition
operator for a grammar rule ogt ,

4 and terms for cat-
egory labels cgt and c′gt

at the apex and base nodes
of the new derivation fragment:

P(gt | qt−1 `t wt) = P(mgt ogt | qt−1 `t wt) ·
P(cgt | qt−1 `t wt mgt ogt ) ·
P(c′gt

| qt−1 `t wt mgt ogt cgt )
(7)

The probability of generating the match decision
and the composition operator depends on the base
node of the previous derivation fragment and the
new complete node a`t :

P(mgt ogt | qt−1 `t wt) =

SOFTMAX
mgt ogt

( FFθG[δd
>, [δ>c

b
d−m`t
t−1

,h>
b

d−m`t
t−1

, δ>ca`t
,h>a`t ] EG] )

(8)

where EG is a matrix of jointly trained dense em-
beddings for each syntactic category and predicate
context. The probabilities of category labels cgt

and c′gt
in Equation 7 are calculated using relative

frequency estimation on training data based on the
base node of the previous derivation fragment. The
composition operator ogt in Equations 7 and 8 is
associated with sparse composition matrices Aogt

,
which can be used to compose predicate context
vectors associated with the apex node agt of the
new derivation fragment,

agt

def
=


ad−mgt

t−1 if mgt = 1
cgt ,Aogt

ha`t if mgt = 0
(9)

and sparse composition matrices Bogt
, which can

be used to compose predicate context vectors asso-
ciated with the base node bgt of the new derivation

4Examples of composition operators include using the
predicate context of the left child as a modifier or an argument,
as well as introducing or discharging filler-gap dependencies.

S
PERSON1,−1

VP
PERSON1,−1

VT
EAT0

⇒

S
PERSON1,−1

EAT0

NP
EAT2

Figure 4: Derivation fragments resulting from example
grammatical decisions made at the word eat in the sen-
tence People eat pasta.

fragment (see Figure 4):

bgt

def
=


c′gt
,Bogt

[h
b

d−m`t
t−1

>,ha`t
>]> if mgt=1

c′gt
,Bogt

[0>,ha`t
>]> if mgt=0

(10)

These composition matrices allow predicate con-
texts to propagate appropriately through the tree
to allow parsing decisions to depend on predicates
that may be several words away.

Resulting store state probabilities. In order
to update the store state based on the lexical and
grammatical decisions, derivation fragments above
the most recent nonterminal node are carried for-
ward, and derivation fragments below it are set to
null (⊥),

P(qt | . . .) def
=

D∏

d=1



Jad
t, b

d
t = ad

t−1, b
d
t−1K if d < d′

Jad
t, b

d
t = agt , bgtK if d = d′

Jad
t, b

d
t = ⊥,⊥K if d > d′

(11)
where the indicator function JϕK = 1 if ϕ is true
and 0 otherwise, and d′ = argmaxd{ad

t−1,⊥} + 1 −
m`t − mgt . Together, these probabilistic decisions
generate the n unary branches and n − 1 binary
branches of a parse tree in Chomsky normal form
for an n-word sentence.

3 Isolating Content and Category
Contributions

In order to examine the contribution of proposi-
tional content on the content-sensitive processing
model, the model is modified to allow it to be
trained to make lexical and grammatical decisions
without conditioning on the predicate context vec-
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tors,

P(m`t h`t | qt−1) =

SOFTMAX
m`t h`t

( FFθL[δd
>, [δ>cbd

t−1

, 0>] EL] ) (12)

P(mgt ogt | qt−1 `t wt) =

SOFTMAX
mgt ogt

( FFθG[δd
>, [δ>cbd

t−1

, 0>, δ>cpt
, 0>] EG] ) (13)

where 0 is a vector of 0s.
Likewise, to examine the contribution of syntac-

tic category information on the content-sensitive
processing model, the model is modified to allow it
to be trained to make decisions without condition-
ing on the syntactic category labels:

P(m`t h`t | qt−1) =

SOFTMAX
m`t h`t

( FFθL[δd
>, [0>,h>

bd
t−1

] EL] ) (14)

P(mgt ogt | qt−1 `t wt) =

SOFTMAX
mgt ogt

( FFθG[δd
>, [0>,h>

bd
t−1
, 0>,h>pt

] EG] ) (15)

These two ablated models will respectively be
referred to as the content- and category-ablated
models in the following experiments.

4 Experiment 1: Linguistic Accuracy

4.1 In-domain Linguistic Accuracy

In order to assess the parsing performance of the
content-sensitive processing model outlined in Sec-
tion 2, a linguistic accuracy evaluation was con-
ducted on the development set and test set (i.e. sec-
tions 22 and 23 respectively) of the Wall Street
Journal (WSJ) corpus of the English Penn Tree-
bank (Marcus et al., 1993). The performance of the
content-sensitive processing model is compared to
the incremental left-corner parser of van Schijndel
et al. (2013), which is based on a PCFG with sub-
categorized syntactic categories from the Berkeley
latent variable inducer (Petrov et al., 2006).

The content-sensitive processing model was
trained on a generalized categorial grammar
(Nguyen et al., 2012) reannotation of sections 02
to 21 of the WSJ corpus. Choices regarding hy-
perparameters were made based on the parsing
performance on the development set of the WSJ
corpus. In order to account for sensitivity to initial

Parsing model WSJ22 WSJ23 NS

vS et al. (2013) 85.20 84.08 69.60
Full model (avg.) 84.60 82.45 71.64

Con-ablated (avg.) 81.64 79.86 69.88
Cat-ablated (avg.) 75.63 74.45 64.19

Table 1: Bracketing F1 scores on sentences with 40 or
fewer words for the incremental parsing models. WSJ:
Wall Street Journal, NS: Natural Stories.

parameters, the average performance of the content-
sensitive processing model trained using three dif-
ferent random seeds is reported. Likewise, the
left-corner parser of van Schijndel et al. (2013) was
trained on the same generalized categorial grammar
reannotation of sections 02 to 21 of the WSJ cor-
pus, using four iterations of the split-merge-smooth
algorithm (Petrov et al., 2006). Both parsers used
beam search decoding with a beam width of 5,000
to return the most likely sequence of parsing deci-
sions.

The unlabeled WSJ bracketing F1 scores from
both parsers are presented in the WSJ22 and
WSJ23 columns of the vS et al. and Full model
rows of Table 1.5 The results show that the
two parsers achieve comparable performance on
WSJ22 and WSJ23, indicating that the current pro-
cessing model is a reasonable model of syntactic
parsing.

4.2 Cross-Domain Linguistic Accuracy

The two parsers were also evaluated on the Natural
Stories Corpus (Futrell et al., 2018). This corpus
consists of 10 naturalistic stories (10,245 tokens)
adapted from existing texts such as fairy tales and
short stories. As can be seen in the NS column of
the vS et al. and Full model rows of Table 1, parsing
accuracy on this corpus is substantially lower. This
is likely due to the “deceptively naturalistic” na-
ture of the Natural Stories Corpus; this corpus was
designed to over-represent rare words and syntac-
tic constructions, therefore representing a different
“syntactic domain” from the WSJ corpus. Inter-
estingly, the content-sensitive processing model
seems to generalize better to the Natural Stories do-
main than the model based on the Berkeley latent

5It should be noted that the performance of the van Schi-
jndel et al. (2013) parser here is lower than their reported
performance because they trained their parser on data with
PTB-style annotation, which has substantially fewer syntactic
categories than the GCG annotation scheme.
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variable inducer. This could be the result of the
latent-variable subcategorized syntactic categories
overfitting to the WSJ domain.

4.3 Linguistic Accuracy of Ablated Models

To determine the differential effect of propositional
content and syntactic categories, models with each
of the propositional content and syntactic category
components ablated (i.e. the content- and category-
ablated models) were evaluated against the full pro-
cessing model.6 As with the full model, the ablated
models were trained using three different random
seeds to account for sensitivity to initial parameters.
The results in the Con-ablated and Cat-ablated rows
of Table 1 show substantial contributions of both
components to parsing accuracy in all domains.
On Natural Stories, bootstrap significance tests re-
vealed that seven out of nine (3 × 3) pairwise com-
parisons between the full model and the content-
ablated model, and all nine pairwise comparisons
between the full model and the category-ablated
model were statistically significant at the p < 0.05
level, which are both highly significant overall by
a binomial test.

5 Experiment 2: Self-paced Reading

In order to evaluate the contribution of proposi-
tional content and syntactic categories to predict-
ing behavioral responses, surprisal predictors were
calculated from the content-sensitive processing
model and its two ablated versions, which are out-
lined in Section 3. Subsequently, linear mixed-
effects models containing common baseline predic-
tors and one or more surprisal predictors were fitted
to self-paced reading times. Finally, a series of like-
lihood ratio tests (LRTs) were conducted in order
to evaluate the contribution of the surprisal predic-
tor from the full processing model to regression
model fit.

5.1 Response Data

Experiments described in this paper used the Nat-
ural Stories Corpus (Futrell et al., 2018), which
contains self-paced reading times from 181 sub-
jects that read 10 naturalistic stories consisting of
10,245 tokens. The data were filtered to exclude
observations corresponding to sentence-initial and
sentence-final words, observations from subjects

6Source code is available at https://github.com/
modelblocks/modelblocks-release.

who answered fewer than four comprehension ques-
tions correctly, and observations with durations
shorter than 100 ms or longer than 3000 ms. This
resulted in a total of 768,584 observations, which
were subsequently partitioned into an exploratory
set of 383,906 observations and a held-out set
of 384,678 observations. The partitioning allows
model selection to be conducted on the exploratory
set and a single hypothesis test to be conducted
on the held-out set, thus eliminating the need for
multiple trials correction. All observations were
log-transformed prior to model fitting.

5.2 Predictors

The baseline predictors commonly included in all
regression models are word length measured in
characters, index of word position within each
sentence, and 5-gram surprisal. The 5-gram sur-
prisal predictor is calculated from a 5-gram lan-
guage model estimated using the KenLM toolkit
(Heafield et al., 2013) trained on the Gigaword 4
corpus (Parker et al., 2009).7

In addition to the baseline predictors, surprisal
predictors were calculated from the full content-
sensitive processing model, the content-ablated
model, and the category-ablated model trained as
part of Experiment 1 (FullSurp, NoConSurp, and
NoCatSurp). To account for the time the brain
takes to process and respond to linguistic input, it
is standard practice in psycholinguistic modeling to
include ‘spillover’ variants of predictors from pre-
ceding words (Rayner et al., 1983; Vasishth, 2006).
However, as including multiple spillover variants of
predictors leads to identifiability issues in mixed-
effects modeling (Shain and Schuler, 2019), the
FullSurp, NoConSurp, and NoCatSurp predictors
were all spilled over by one position. Moreover,
preliminary analysis showed that the surprisal pre-
dictors are highly collinear, which may result in
identifiability issues for the regression model if in-
cluded together as predictors. In order to mitigate
this problem, the difference between the surprisal
predictors from the ablated model and those from
the full model (∆ConSurp, ∆CatSurp) were also
calculated as predictors that represent the contribu-
tion of the full model over an ablated model. All

7Although word frequency is also often included as a base-
line predictor in the form of unigram surprisal, it was excluded
in the current study in light of results showing no significant
effect of unigram surprisal over and above 5-gram surprisal
when predicting reading times from the Natural Stories Corpus
(Shain, 2019).
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predictors were centered and scaled prior to model
fitting.

5.3 Likelihood Ratio Testing

Two sets of nested linear mixed-effects models
were fitted to reading times in the held-out set us-
ing using lme4 (Bates et al., 2015). The first set
manipulated the contribution of propositional con-
tent by including ∆ConSurp in the full regression
model over the base model that contains the base-
line predictors and NoConSurp. Similarly, the sec-
ond set manipulated the contribution of syntactic
categories by including ∆CatSurp in the full re-
gression model over a base model that contains the
baseline predictors and NoCatSurp. All regression
models included by-subject random slopes for all
fixed effects and random intercepts for each word
and subject-sentence interaction. Subsequently, a
series of LRTs were conducted between nested
regression models in order to assess the contribu-
tion of surprisal predictors from the full processing
model to regression model fit. As there were three
variants of each surprisal predictor, a total of nine
(3 × 3) LRTs were performed for each ablated sur-
prisal predictor.8

5.4 Results

The results show that the ∆CatSurp predictor made
a statistically significant contribution to model fit
over NoCatSurp in eight out of nine LRTs,9 which
is highly significant according to a binomial test
(p < 0.001). In contrast, no significant contribution
of ∆ConSurp over NoConSurp was observed, with
none of the nine LRTs indicating significantly im-
proved model fit.10 This demonstrates that the full
processing model captures the influence of propo-
sitional content and syntactic category information
differentially, the latter of which contributed to pre-
dicting self-paced reading times.

8Despite the risk of convergence issues, the LRTs were
also replicated with full regression models that include raw
FullSurp in addition to the baseline predictors and either No-
CatSurp or NoCatSurp.

9Any LRT in which either the base or full regression model
failed to converge was considered as a null result. Regression
models in one LRT failed to converge. In the replication
using raw FullSurp, regression models in five LRTs failed to
converge. However, the remaining four LRTs were statistically
significant, which is highly significant according to a binomial
test (p < 0.001).

10Regression models in one LRT failed to converge. In the
replication using raw FullSurp, regression models in five LRTs
failed to converge, with the remaining four LRTs indicating
non-significance. Additionally, removing 5-gram surprisal
from the baseline did not change the pattern of significance.

6 Experiment 3: Eye-tracking Data

In order to examine whether the results observed
in Experiment 2 generalize to other latency-based
measures, linear-mixed effects models were fitted
on the Dundee eye-tracking corpus (Kennedy et al.,
2003). Following similar procedures to Experi-
ment 2, a series of LRTs were conducted to test the
contribution of propositional content and syntactic
category information.

6.1 Procedures
The set of go-past durations from the Dundee Cor-
pus (Kennedy et al., 2003) provided the response
variable for the regression models. The Dundee
Corpus contains gaze durations from 10 subjects
that read 20 newspaper editorials consisting of
51,502 tokens. The data were filtered to exclude
unfixated words, words following saccades longer
than four words, and words at starts and ends of sen-
tences, screens, documents, and lines. This resulted
in the full set with a total of 195,296 observations,
which were subsequently partitioned into an ex-
ploratory set of 97,391 observations and a held-out
set of 97,905 observations. In the base regression
models, word length in characters, index of word
position in each sentence, and saccade length were
included. Additionally, either NoConSurp or No-
CatSurp spilled over by one position was included
as a baseline predictor. Similarly to Experiment
2, the first set of LRTs examined the contribution
of propositional content by including ∆ConSurp,
and the second set of LRTs examined the contribu-
tion of syntactic category information by including
∆CatSurp in the full regression models.

6.2 Results
The results show that the ∆ConSurp predictor made
a statistically significant contribution to model fit
over NoConSurp in all nine LRTs.11 A significant
contribution of ∆CatSurp over NoCatSurp was ob-
served as well, with three of the nine LRTs indi-
cating significantly improved model fit (p = .008
according to a binomial test).12 Interestingly, con-
trary to Experiment 2 that showed only a robust
contribution of syntactic category information to

11In the replication using raw FullSurp, regression models
in five LRTs failed to converge. However, the remaining four
LRTs were statistically significant, which is highly significant
according to a binomial test (p < 0.001).

12Regression models in all LRTs converged. In the replica-
tion using raw FullSurp, regression models in five LRTs failed
to converge, with two out of four remaining LRTs indicating
statistical significance (p = .071 according to a binomial test).

247



predicting self-paced reading times, a strong influ-
ence of propositional content in predicting eye-gaze
durations is observed. This corroborates the finding
that the full processing model captures the distinct
influence of propositional content and syntactic cat-
egory information, the ablation of which results
in qualitatively different predictions. In addition,
this differential contribution of ∆ConSurp across
self-paced reading and eye-tracking data suggests
that these self-paced reading times and eye-gaze
durations may capture different aspects of online
processing difficulty.

7 Experiment 4: Filler-gap
Constructions

Observing that surprisal from the full processing
model did not contribute significantly to predict-
ing broad-coverage self-paced reading times on top
of its content-ablated counterpart in Experiment
2, we focus on filler-gap constructions,13 in which
information about the extracted object is thought
to strongly influence the processing of the verb.
In order to explore the extent to which integra-
tion costs associated with filler-gap constructions
could be explained by the influence of proposi-
tional content, a series of LRTs were conducted to
assess the contribution of surprisal from the full
processing model to predicting reading times of
object-extracted verbs.

7.1 Procedures

The subset of self-paced reading times from the
Natural Stories Corpus corresponding to object-
extracted verbs provided the response variable for
the regression models. The object-extracted verbs
were identified using a version of the Natural Sto-
ries Corpus that had been reannotated using a deep
syntactic annotation scheme (Shain et al., 2018).
Applying the same data exclusion criteria as Ex-
periment 2 resulted in an exploratory set of 1,537
observations and a held-out set of 1,523 observa-
tions. As the number of data points for regression
model fitting was substantially smaller in compar-
ison to the full set used in Experiment 2, the re-
gression models had to be simplified for reliable
convergence. First, the 5-gram surprisal predictor
was excluded as its effect estimate was not stable

13For example, in the sentence It was a match that the girl
rubbed _ on the wall, the extracted object a match has to be
retrieved from memory and integrated to the transitive verb
rubbed.

on the exploratory set. In addition, the random ef-
fects structure was simplified to include only the
by-subject random intercept.

In the base regression models, word length in
characters, index of word position within each
sentence, and NoConSurp were fitted to the log-
transformed reading times in the held-out set. The
contribution of propositional content was incorpo-
rated by including FullSurp in the full regression
models. NoConSurp and FullSurp were spilled
over by one position, and all predictors were cen-
tered and scaled. The same three variants of each
surprisal predictor were used, which resulted in a
total of nine LRTs testing the contribution of Full-
Surp.

7.2 Results

The results showed that the FullSurp predictor
made a statistically significant contribution to
model fit over NoConSurp in all nine LRTs. The
inclusion of FullSurp consistently improved model
fit, indicating that integration costs associated with
object-extracted filler-gap constructions can be par-
tially explained by the influence of propositional
content.

8 Conclusion

This paper presents a generative and incremental
content-sensitive processing model which factors
the contribution of propositional content and syn-
tactic category information. This model can be
cleanly ablated to calculate surprisal predictors that
differentially isolate the influence of the two com-
ponents. Subsequent experiments demonstrate the
utility of both components in predicting human be-
havioral responses; the inclusion of propositional
content resulted in significantly better fits to broad-
coverage eye-gaze durations and self-paced reading
times of object-extracted verbs. Additionally, the
inclusion of syntactic category information signif-
icantly improved fits to both broad-coverage self-
paced reading times and eye-gaze durations. Taken
together, these results suggest a role for proposi-
tional content and syntactic category information
in incremental sentence processing.
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