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relies on metrics that moderately correlate with human judgments on the simplicity achieved
by executing specific operations (e.g., simplicity gain based on lexical replacements). In this
article, we investigate how well existing metrics can assess sentence-level simplifications where
multiple operations may have been applied and which, therefore, require more general simplicity
judgments. For that, we first collect a new and more reliable data set for evaluating the correlation
of metrics and human judgments of overall simplicity. Second, we conduct the first meta-
evaluation of automatic metrics in Text Simplification, using our new data set (and other
existing data) to analyze the variation of the correlation between metrics’ scores and human
judgments across three dimensions: the perceived simplicity level, the system type, and the set of
references used for computation. We show that these three aspects affect the correlations and, in
particular, highlight the limitations of commonly used operation-specific metrics. Finally, based
on our findings, we propose a set of recommendations for automatic evaluation of multi-operation
simplifications, suggesting which metrics to compute and how to interpret their scores.
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1. Introduction

Text Simplification consists of modifying the content and structure of a text in order
to make it easier to read and understand, while preserving its main idea and as much
as possible of its original meaning. Human editors simplify through several rewriting
operations, such as lexical paraphrasing (i.e., replacing complex words/phrases with
simpler synonyms and some rewording for fluency), changing the syntactic structure of
sentences (e.g., splitting or reordering components), or removing information deemed
non-essential to understand the main idea of the original text (Petersen 2007; Aluı́sio
et al. 2008; Bott and Saggion 2011; Xu, Callison-Burch, and Napoles 2015). Modern sys-
tems for Automatic Text Simplification are sentence-level, and attempt to replicate this
multi-operation rewriting process by leveraging corpora of parallel original-simplified
sentence pairs (Alva-Manchego, Scarton, and Specia 2020). However, the simplicity of
automatic sentence-level simplifications is measured with metrics that evaluate sin-
gle specific operations. For instance, SARI (Xu et al. 2016) was designed to estimate
simplicity gain when just lexical paraphrasing was being assessed, whereas SAMSA
(Sulem, Abend, and Rappoport 2018b) attempts to quantify structural simplicity by
verifying the correctness of sentence splitting. In a recent study, Alva-Manchego et al.
(2020) showed that, for the same set of original sentences, human judges preferred
manual simplifications where multiple edit operations had been applied over those
where only one operation had been performed (i.e., only lexical paraphrasing or only
splitting). However, the authors also provided preliminary evidence that both a general
metric like BLEU (Papineni et al. 2002), and an operation-specific one like SARI had
poor correlations with judgments of overall simplicity when computed using multi-
operation manual references.

In this article, we study the extent to which evaluation metrics can estimate the
simplicity of automatic sentence-level simplifications where multiple rewriting oper-
ations may have been applied. In order to do so, we: (1) create a new data set with
direct assessments of simplicity; (2) perform the first meta-evaluation of automatic
metrics for sentence-level Text Simplification, focused on their correlation with human
judgments on simplicity; and (3) propose a set of guidelines for automatic evaluation
of sentence-level simplifications, seeking to improve the interpretation of automatic
scores, especially for multi-operation simplifications.1

In the remainder of the article, we first review manual and automatic evaluation
methods in Sentence Simplification (Section 2). Then, we describe two existing data sets
with human judgments on simplicity gain and structural simplicity of system outputs,
whose limitations motivate the collection of a new data set with overall simplicity scores
crowdsourced through Direct Assessment (Section 3). After that, we study the variation
in sentence-level correlations between automatic metrics and human judgments under
three test conditions: the level of perceived simplicity, the approach implemented by
the simplification systems, and the set of manual simplification references (Section 4).
For direct assessments of simplicity, in particular, we show that: (a) metrics can more
reliably score low-quality simplifications; (b) most metrics are better at scoring system
outputs from neural sequence-to-sequence models; and (c) computing metrics using all
available manual references for each original sentence does not significantly improve
their correlations. We also propose explanations on the low-to-moderate correlations

1 Our new data set and the code to reproduce our experiments are available at
https://github.com/feralvam/metaeval-simplification.
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achieved by simplification-specific metrics. Based on our findings, we propose a set
of recommendations for better evaluation of automatic sentence-level simplifications
and suggest ways to improve current practices (Section 5). Among these, we suggest to
first compute BERTScore (Zhang et al. 2020) to verify that the system output is of high
quality, and then use SARI and/or SAMSA to measure the gains in simplicity. Finally,
we summarize our results, highlighting our contributions and conclusions (Section 6).

2. Background

The preferred method for evaluating the quality of automatic simplifications is eliciting
human judgments on grammaticality, meaning preservation, and simplicity. However,
these can be costly to obtain while tuning simplification models, especially at large scale.
This creates scenarios where automatic metrics act as proxies for human judgments, so
it is important to understand how these metrics behave under different circumstances,
to better interpret their scores. We first review common practices for collecting human
judgments on the simplicity of system outputs against which metrics are evaluated, and
motivate our choice of Direct Assessment as our data labelling methodology. Then, we
briefly explain the main automatic metrics to assess simplicity and motivate conducting
a meta-evaluation on them.

2.1 Human Evaluation of Simplicity

When obtaining human judgments on the simplicity of system outputs, there are three
components to consider: the question to elicit the judgment, what the judges are shown,
and how they submit their judgment. It is generally agreed to show both the original
and simplified sentences so that raters can determine if the latter is simpler than the
former. However, several variations have been tested for the other two components.

It is common to ask how much simpler the system output is compared to the
original sentence, using Likert scales of 0–5, 1–4, or 1–5 (the higher the better) to submit
discrete scores (Woodsend and Lapata 2011; Wubben, van den Bosch, and Krahmer
2012; Feblowitz and Kauchak 2013; Narayan and Gardent 2014, 2016; Zhang and Lapata
2017; Alva-Manchego et al. 2017; Vu et al. 2018; Guo, Pasunuru, and Bansal 2018; Dong
et al. 2019; Kriz et al. 2019; Kumar et al. 2020; Jiang et al. 2020). A variation in the scale
is presented in Nisioi et al. (2017), with –2 to +2 scores instead, allowing to distinguish
instances with no changes in their simplicity (0), and instances where the automatic
system hurts the readability of the original sentence (−1 or −2).

Most work does not specify what “being simpler” entails, and trusts human judges
to use their own understanding of the concept. In contrast, Xu et al. (2016) experimented
with Simplicity Gain, asking judges to count “how many successful lexical or syntactic
paraphrases occurred in the simplification”. The authors argue that this framing of the
task allows for easier judgments and more informative interpretation of the scores,
while reducing the bias toward models that perform minimal modifications. In a similar
fashion, Nisioi et al. (2017) and Cooper and Shardlow (2020) asked judges to count the
number of changes made by automatic systems, and then to identify how many of them
were “correct” (i.e., preserved meaning and grammaticality, while making the sentence
easier to understand). On a different line of work, Sulem, Abend, and Rappoport
(2018b,c) focused on Structural Simplicity, requesting judges to use the −2 to +2 scale to
answer “is the output simpler than the input, ignoring the complexity of the words?” This is
intended to focus the evaluation in a specific operation: sentence splitting.

For the data set collected as part of our study (Section 3.3), we follow common
practice and present human judges with both original sentences and their automatic
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simplifications. Furthermore, because the focus of this article is on multi-operation
simplifications, we rely on a general definition of simplicity instead of one for a specific
(set of) operation(s). Finally, as in Alva-Manchego et al. (2020), we experiment with
collecting continuous scores following the Direct Assessment methodology (Graham
et al. 2017), since they can be standardized to remove individual rater’s biases, resulting
in higher inter-annotator agreement (Graham et al. 2013).

2.2 Automatic Evaluation of Simplicity

BLEU (Papineni et al. 2002) and SARI (Xu et al. 2016) are the most commonly used
metrics in Sentence Simplification. Although BLEU scores can be misleading for several
text generation tasks (Reiter 2018), in the case of Simplification they have been shown
to correlate well with human assessments of grammaticality and meaning preservation
(Wubben, van den Bosch, and Krahmer 2012; Štajner, Mitkov, and Saggion 2014; Xu
et al. 2016; Sulem, Abend, and Rappoport 2018a; Alva-Manchego et al. 2020). SARI, on
the other hand, is better suited for evaluating the simplicity of system outputs produced
via lexical paraphrasing. It does so by comparing the automatic simplification to both
the original sentence and multiple manual references, and measuring the correctness
of the words added, kept, and deleted. Although not widely adopted, SAMSA (Sulem,
Abend, and Rappoport 2018b) is another simplicity-specific metric, but focused on sen-
tence splitting. It validates that each simple sentence resulting from splitting a complex
one is correctly formed (i.e., it corresponds to a single Scene with all its Participants).

Studies on the correlation of human judgments on simplicity and automatic scores
have been performed when introducing new metrics or data sets.2 Xu et al. (2016)
argued that SARI correlates with crowdsourced judgments of Simplicity Gain when
the simplification references had been produced by lexical paraphrasing, while SAMSA
was shown to correlate with expert judgments of Structural Simplicity. When intro-
ducing HSplit (Sulem, Abend, and Rappoport 2018a), a data set of manual references
for sentence splitting, the authors argued that BLEU (Papineni et al. 2002) was not a
good estimate for (Structural) Simplicity. However, these studies did not analyze if the
absolute correlations varied in different subgroups of the data. In contrast, our study
shows that correlations are affected by the perceived quality of the simplifications, the
types of the simplification systems, and the set of manual references used.

3. Data Sets with Human Judgments on Simplicity

In this section, we describe the data sets that will be used in our meta-evaluation study.
Each data set is composed of a set of original sentences, their automatic simplifications
produced by various simplification systems, and human evaluations on some form of
simplicity for all system outputs. These data sets were chosen (or created) because:

1. Each provides a different simplicity judgment: Simplicity Gain (Xu et al.
2016), Structural Simplicity (Sulem, Abend, and Rappoport 2018c), and
Direct Assessments of Simplicity (new). This allows studying the behavior
of metrics along varied ways of measuring simplicity (Section 4.2).

2 Štajner, Mitkov, and Saggion (2014) analyzed several MT metrics without introducing a new resource, but
focused on human judgments of grammaticality and meaning preservation.
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2. Each includes system outputs from different types of simplification
approaches. This allows analyzing the impact of the system type in the
correlation of metrics (Section 4.3). Table 1 presents brief descriptions of
the most representative models in these data sets.

3. All original sentences come from TurkCorpus (Xu et al. 2016). This allows
exploiting the alignment between TurkCorpus, HSplit (Sulem, Abend, and
Rappoport 2018a), and ASSET (Alva-Manchego et al. 2020) to investigate
the effect in the correlations of using different sets of manual references
when computing the metrics (Section 4.4).

Furthermore, we compare the data sets in terms of their human evaluation re-
liability using both inter-annotator agreement (IAA) and correlation coefficients, as
suggested in Amidei, Piwek, and Willis (2019). For IAA, we compute intraclass cor-
relation (ICC, Shrout and Fleiss 1979) with the implementation available in pingouin

Table 1
Descriptions of simplification systems included in the studied data sets. Similarly to
Alva-Manchego, Scarton, and Specia (2020), we classified them into phrase-based MT (PBMT),
syntax-based MT (SBMT), neural sequence-to-sequence (S2S), and semantics-informed rules
(Sem) by themselves or coupled with one of the previous types (i.e., Sem+PBMT, Sem+S2S).

Type Name Description

PBMT PBMT-R (Wubben, van den
Bosch, and Krahmer 2012)

Phrase-based MT model that chooses the
candidate simplification that is most dissimilar
to the original sentence.

SBMT SBMT-SARI (Xu et al. 2016) Syntax-based MT models trained on paraphrases
SBMT-BLEU (Xu et al. 2016) from the Paraphrase Database (Ganitkevitch,
SBMT-FKBLEU (Xu et al. 2016) Van Durme, and Callison-Burch 2013) and tuned

using SARI, BLEU, or FKBLEU.

S2S

NTS (Nisioi et al. 2017) Neural models with standard encoder-decoder
architectures with attention.

Dress-Ls (Zhang and Lapata
2017)

RNN-based encoder-decoder with attention
combined with reinforcement learning.

DMASS-DCSS (Zhao et al.
2018)

Transformer-based encoder-decoder
(Vaswani et al. 2017) and memory-augmentation
with paraphrasing rules from the Simple
Paraphrase Database (Pavlick and
Callison-Burch 2016).

ACCESS (Martin et al. 2020) Transformer-based encoder-decoder that
conditions the generation of simplifications on
explicit desired text attributes (e.g., length
and/or dissimilarity with original input).

Sem DSS (Sulem, Abend, and
Rappoport 2018c)

Hand-crafted rules for sentence splitting based
on either automatic or manual UCCA (Abend
and Rappoport 2013) semantic annotations.

Sem+PBMT Hybrid (Narayan and Gardent
2014)

Phrase-based statistical MT model coupled with
semantic analysis to learn to split sentences.

Sem+S2S SENTS (Sulem, Abend, and
Rappoport 2018c)

Uses DSS for sentence splitting and then the
resulting output goes through a MT-based model
for further paraphrasing.
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Figure 1
Distribution of Simplicity Gain scores in the data set of Xu et al. (2016).

(Vallat 2018).3 For computing ratings correlations, we account for multiple annotators
per instance by simulating two raters as follows: (1) we randomly choose one score
as rater A and the average of the others as rater B; (2) we compute the Spearman’s
rank correlation coefficient between raters A and B using SciPy;4 and (3) we repeat this
process 1,000 times to report the mean and variance of all iterations. For interpreting the
values of both calculations, we use the scale of Landis and Koch (1977) for IAA and the
scale of Rosenthal (1996) for nonparametric correlation coefficients.

3.1 Simplicity Gain Data Set

Xu et al. (2016) created this data set to study the suitability of metrics for measuring
the Simplicity Gain of automatic simplifications. The authors simplified 93 original
sentences using four Sentence Simplification systems: PBMT-R, SBMT-BLEU, SBMT-
FKBLEU, and SBMT-SARI. For the Simplicity Gain judgments, workers on Amazon
Mechanical Turk (AMT) were asked to count the number of “successful lexical or syn-
tactic paraphrases occurred in the simplification” (Xu et al. 2016). The judgments from five
different workers were averaged to get the final score for each instance. In order to
measure human evaluation reliability, we computed an ICC of 0.176 and a Spearman’s
ρ of 0.299 ± 0.036. The ICC only points to slight agreement between the annotators, and
the Spearman’s ρ implies a small correlation between the human ratings.

This data set has limitations that could prevent generalizing findings based on its
data. For instance, the number of evaluated instances (372) is small, and they were pro-
duced by only four automatic systems, three of which have very similar characteristics.
In addition, as shown in Figure 1, the evaluated systems did not perform significant
simplification changes (as judged by humans), since most instances were rated with
Simplicity Gain scores below 1, with a high frequency of values between 0 and 0.25.

3.2 Structural Simplicity Data Set

Sulem, Abend, and Rappoport (2018c) created this data set to evaluate the performance
of Sentence Simplification models that mix hand-crafted rules (based on a seman-
tic parsing) for sentence splitting, with standard MT-based architectures for lexical

3 https://pingouin-stats.org/generated/pingouin.intraclass_corr.html.
4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html.
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Figure 2
Distribution of Structural Simplicity scores in the data set of Sulem, Abend, and Rappoport
(2018c).

paraphrasing. Sulem, Abend, and Rappoport (2018a) further exploited this data to
examine the suitability of BLEU for assessing Structural Simplicity.5 The authors simpli-
fied 70 sentences using 25 automatic systems: Hybrid; SBMT-SARI; four versions of NTS
mixing initialization with default or word2vec embeddings, and selecting the highest or
fourth-best hypothesis according to SARI; two versions of DSS, with either automatic
or manual semantic annotations; eight versions of SENTS that first use a version of DSS
for sentence splitting and then the resulting output goes through a version of NTS; and
many variations of SENTS where NTS is replaced by Moses (Koehn et al. 2007).

Native English speakers were asked to use a 5-point Likert scale (−2 to +2 scores) to
measure Structural Simplicity: “is the output simpler than the input, ignoring the complexity
of the words?” (Sulem, Abend, and Rappoport 2018c). The judgments from three different
annotators are averaged to obtain the final score for each instance. Our computation of
human evaluation reliability found an ICC of 0.465 and a Spearman’s ρ of 0.508 ± 0.013.
The ICC points to a moderate agreement between the annotators, and the Spearman’s ρ
implies a medium correlation between the human ratings.

Compared to the Simplicity Gain data set, this one is bigger (1,750 instances) and
with more variability in the system outputs collected. In addition, Figure 2 shows
that the distribution of scores span across all possible values, indicating that some
systems even hurt the Structural Simplicity of the original sentence. Despite the over-
representation of simplifications with scores between 0 and 0.5, around 32% of instances
improve Structural Simplicity, indicating that an analysis based on perceived quality
across different levels is possible.

3.3 The New Simplicity-DA Data Set

We introduce a new data set with human judgments of simplification quality elicited via
Direct Assessment (DA, Graham et al. 2017), a commonly used methodology in Machine
Translation Shared Tasks (Bojar et al. 2018; Barrault et al. 2019). Leveraging publicly
available system outputs on the test set of TurkCorpus (Xu et al. 2016), we collected sim-
plifications from six systems: PBMT-R, Hybrid, SBMT-SARI, Dress-Ls, DMASS-DCSS,

5 Sulem, Abend, and Rappoport (2018b) also collected a Structural Simplicity data set, but used
simplification instances from PWKP (Zhu, Bernhard, and Gurevych 2010), making it unsuitable for our
analysis since: (1) it does not contain manual references, but automatic alignments to sentences from
Simple Wikipedia; and (2) it is single-reference, which is unfair to reference-based metrics.
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Table 2
Summary of characteristics of the data sets with human ratings of simplicity used for the
meta-evaluation study.

Simplicity Gain Structural Simplicity Simplicity-DA

General Statistics
Number of Instances 372 1,750 600
Ratings per Instance 5 3 15
Type of Rating Discrete (count) Discrete (Likert scale) Continuous
System Types PBMT, SBMT PBMT, SBMT, S2S, Sem,

Sem+PBMT, Sem+S2S
PBMT, SBMT, S2S,
Sem+PBMT

Human Evaluation Reliability
ICC 0.176 0.465 0.386
Spearman’s ρ 0.299 ± 0.036 0.508 ± 0.013 0.607 ± 0.026

and ACCESS. For each system, we randomly sampled 100 automatic simplifications, not
necessarily all from the same set of original sentences, but ensuring that the system out-
put was not identical to the original sentence. Then, we crowdsourced human ratings
using AMT. Workers were asked to assess the quality of the automatic simplifications
in three aspects: fluency, meaning preservation, and simplicity. For each aspect, raters
needed to submit a score between 0 and 100, depending on how much they agreed
with a specific question. For simplicity, in particular, they were asked: Rate your level of
agreement to the statement: “The Simplified sentence is easier to understand than the Original
sentence”. This is inspired by the DA methodology and, thus, we refer to this kind of
simplicity judgments as Simplicity-DA. Each Human Intelligence Task (HIT) in AMT
consisted of five sentences, with a maximum time of one hour for completion, and a pay-
ment of $0.50 per HIT. For quality control, workers had to pass a qualification test before
participating in the rating task. All submissions to this test were manually reviewed
to ensure understandability of the instructions.6 This crowdsourcing methodology is
similar to the preliminary metrics’ correlation study in Alva-Manchego et al. (2020).
However, our new Simplicity-DA data set includes more automatic simplifications than
those collected before (600 vs. 100), allowing better generalization of our findings.

For each simplification instance, we collected 15 ratings per quality aspect (fluency,
meaning preservation, and simplicity), which are then standardized by the mean and
standard deviation of each worker to reduce individual biases. The average of all 15
standardized ratings (also called zscore) is the final score for the instance per quality
aspect. Our computation of human evaluation reliability found an ICC of 0.386 and
a Spearman’s ρ of 0.607 ± 0.026. The ICC points to a fair agreement between the
annotators, and the Spearman’s ρ implies a large correlation between the human ratings.

The annotation reliability for the collected ratings in our data set is higher than that
for the Simplicity Gain data set, and comparable to that of the Structural Simplicity
data set. In addition, our data set is bigger in size and offers more variability of sys-
tem outputs than the Simplicity Gain data set. In particular, we included state-of-the-
art neural sequence-to-sequence models, the current trend in automatic simplification
systems. See Table 2 for a summary comparing the characteristics of the three data

6 The Qualification Test and Rating Task, with the instructions given to the workers, can be found at:
https://github.com/feralvam/metaeval-simplification/tree/main/HIT_designs.
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Figure 3
Distribution of Simplicity zscores in the newly collected Simplicity-DA data set.

sets. Furthermore, Figure 3 shows that the Simplicity-DA ratings are more diversely
distributed across all scores values than the other data sets. This benefits our meta-
evaluation since one of our intended dimensions of study is the perceived low or high
quality (in terms of simplicity) of the system outputs. Overall, we argue that the newly
collected Simplicity-DA data set provides a valid alternative view at human judgments
of simplicity. In particular, it is more reliable for analyzing automatic metrics in a multi-
operation simplification scenario since the judgments are not tied to the correctness of
a specific rewriting operation.

4. Meta-Evaluation of Automatic Evaluation Metrics

In this section, we study how the correlations between automatic scores and human
judgments vary across different dimensions. Our investigation is inspired by research
in Machine Translation evaluation—in particular, by the WMT Metrics Shared Tasks
that compare standard and new metrics in a common setting using human judgments
collected through Direct Assessment (Graham et al. 2017), primarily in the latest years
(Bojar et al. 2016; Bojar, Graham, and Kamran 2017; Ma, Bojar, and Graham 2018; Ma
et al. 2019; Mathur et al. 2020). Data from these WMT Shared Tasks has allowed to
further study the behavior of metrics at sentence level across different dimensions
(Fomicheva and Specia 2019), to analyze the protocols for evaluating metrics at system
level (Mathur, Baldwin, and Cohn 2020), to study the effect of the quality of references
used to compute metrics (Freitag, Grangier, and Caswell 2020), among others.

In our study, we analyze the behavior of automatic metrics at sentence level since
the data sets described previously contain human judgments for each individual sim-
plification instance. Also, metrics explicitly developed to measure some form of sim-
plicity, such as SARI and SAMSA, operate by definition at the sentence-level.7 Our
meta-evaluation analyzes the variation of correlations between automatic metrics with
human judgments across three dimensions: the level of simplicity of the system outputs,

7 SARI has a corpus-level version that is commonly reported to compare the performances of automatic
systems. However, its authors only validated the correlation of SARI with human judgments at
sentence-level, not system-level (https://github.com/cocoxu/simplification/issues/9).
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the approaches used by the simplification systems, and the set of manual references
used to compute the metrics.

4.1 Experimental Setting

Our study focuses on metrics developed to estimate the simplicity of system outputs,
or that have been traditionally used for this task:8 BLEU, SARI, SAMSA, FKGL (Kincaid
et al. 1975), FKBLEU (Xu et al. 2016), and iBLEU (Sun and Zhou 2012).9 We also
experiment with the arithmetic mean (AM) and geometric mean (GM) of BLEU-SARI
and SARI-SAMSA. Finally, we include BERTScore (Zhang et al. 2020), a reference-based
metric that computes the cosine similarity between tokens in a system output and in
a manual reference using contextual embeddings, namely, BERT (Devlin et al. 2019).
This metric provides three types of scores: BERTScoreRecall matches each token in the
reference to its most similar in the system output, BERTScorePrecision matches each
token in the system output to its most similar in the reference, and BERTScoreF1 com-
bines the two. When multiple references are available, BERTScore compares the system
output against all references and returns the highest value. In the context of Sentence
Simplification, a modified version of BERTScore has been used to create artificial data
for training a model that ranks candidate simplifications, obtaining promising results
(Maddela, Alva-Manchego, and Xu 2021).

We used the implementations of these metrics provided by EASSE (Alva-Manchego
et al. 2019).10 Most of the metrics are sentence-level by definition, with the exception of
BLEU and derivations. In this case, we used a smoothed version with method floor and
default value 0.0 in SacreBLEU (Post 2018).11 For a fair comparison, we detokenized
and recased all original sentences and system outputs in the three data sets. Then,
we set EASSE to compute all metrics with the same configuration: tokenization using
SacreMoses12 and case-sensitive calculation.

In order to compare the automatic evaluation metrics, we followed the method-
ology of recent editions of the WMT Metrics Shared Task (Ma, Bojar, and Graham
2018; Ma et al. 2019). First, we computed the correlations between automatic scores and
human judgments via Pearson’s r for each metric. Because the simplicity ratings in our
human evaluation data sets are absolute instead of relative rankings between instances,
this method is better suited and easier to apply than Kendall’s Tau. Furthermore, we
performed Williams significance tests (Williams 1959) to determine if the increase in
correlation between two metrics is statistically significant or not.

4.2 Metrics across Simplicity Quality Levels

Our first dimension of analysis is the perceived quality of the automatic simplifications.
We investigate whether it is easier or harder for metrics to evaluate low-quality or high-
quality simplifications, as determined by their human judgments on simplicity. In order
to do this, we split the instances in each data set into two groups according to their
simplicity score, and compute the Pearson’s r between metrics and human judgments
for the top 50% (“High”), the bottom 50% (“Low”), and “All” available instances.

8 Details of these and other metrics can be found in Alva-Manchego, Scarton, and Specia (2020).
9 Even though FKGL is a document-level metric, we include it in our study following Xu et al. (2016).

10 https://github.com/feralvam/easse.
11 https://github.com/mjpost/sacrebleu.
12 https://github.com/alvations/sacremoses.
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4.2.1 Simplicity-DA. Table 3 presents the correlations in each quality split of this data
set. Reference-based metrics were computed using manual simplifications from ASSET,
since the Simplicity-DA judgment is not limited to a particular operation being per-
formed, and simplifications in ASSET were created applying several of them.

When “All” instances are considered, BERTScorePrecision shows a strong correlation
with direct assessments of Simplicity, and no metric is better than that one. Flesch-based
metrics (FKGL and FKBLEU) have the lowest correlations, providing further evidence
that these type of metrics are unsuitable for sentence-level evaluation. Simplification-
specific metrics, SARI and SAMSA, also fare poorly. One possible explanation is that
they were developed to assess the execution of particular simplification operations
(lexical paraphrasing and sentence splitting, respectively), whereas the Simplicity-
DA judgments are not operation-specific, but rather perceptions of general simplicity.
Computing their arithmetic or geometric means does not yield good correlations in
this data set either. BLEU shows a moderate correlation, and combining it with SARI
through arithmetic or geometric mean does not significantly improve the correlation
with Simplicity-DA judgments in this data set.

When comparing the correlations between the “Low” and “High” splits, we can no-
tice that the ones in the latter are much lower. This could be interpreted as: low scores of
some metrics indicate “bad” quality of a simplification (in terms of Simplicity-DA),
but high scores do not necessarily imply “good” quality. Figure 4 further illustrates
this behavior for three representative metrics. This could be explained by how (most of)
the metrics assess the system outputs (i.e., by computing their similarity to the manual
references), and by the question used to elicit Simplicity-DA judgments.

One possible reason is that simplifying a sentence may be limited to a few im-
portant changes that improve its readability (e.g., replacing some words or splitting
a long sentence into two), while keeping the rest of the original sentence as is. Not
performing these key modifications or executing unnecessary ones would be penalized

Table 3
Absolute Pearson correlations between Simplicity-DA and metrics scores computed using
references from ASSET, for low/high/all quality splits (N is the number of instances in the
split). Correlations of metrics not significantly outperformed by any other in the quality split
are boldfaced.

Metric Low High All
(N = 300) (N = 300) (N = 600)

Reference-based

BERTScorePrecision 0.512 0.287 0.617
BERTScoreRecall 0.471 0.172 0.500
BERTScoreF1 0.518 0.224 0.573
BLEU 0.405 0.235 0.496
iBLEU 0.398 0.253 0.504
SARI 0.336 0.139 0.359
BLEU-SARI (AM) 0.417 0.239 0.503
BLEU-SARI (GM) 0.408 0.215 0.476
SARI-SAMSA (AM) 0.203 0.050 0.166
SARI-SAMSA (GM) 0.222 0.024 0.156
FKBLEU 0.131 0.006 0.098

Non-Reference-based FKGL 0.272 0.093 0.117
SAMSA 0.103 0.010 0.058
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Figure 4
Scatter plots showing the correlation (r) between BERTScorePrecision, BLEU, and SARI, with
human rating of Simplicity-DA, for different quality levels.

by the human judges, resulting in low Simplicity-DA scores. However, similarity-based
metrics could still provide high scores that, in fact, are indicative of the overlap between
the system output and the references due to some degree of meaning preservation, but
not of the changes that improve simplicity. The first example in Table 4 illustrates this
scenario. The reference selected by BERTScorePrecision as the most similar to the system
output is a clever simplification that uses the adverb “successfully” to replace the clause
“and was victorious” from the original sentence. Because the rest of the sentence is
unchanged, it has a high overlap with the system output that merely deleted the “and
was victorious” clause.

Finally, there could be a disagreement between the changes the human judges
deemed necessary for a good Simplicity-DA score, and what the editors that created
ASSET considered as valid simplifications. The second and third examples in Table 4
illustrate this scenario. The selected references are almost identical to the corresponding
system outputs, and thus BERTScorePrecision scored them very high. However, the
human judges considered the changes insufficient to grant a high value of Simplicity-
DA for improved simplicity. This may not be indicative that references in ASSET are
incorrect, but rather that not all of them have the same degree of simplicity.

4.2.2 Simplicity Gain. Table 5 presents the correlations in each quality split of this data
set. Reference-based metrics were computed using manual simplifications from Turk-
Corpus, since the Simplicity Gain judgment is limited to counting lexical paraphrases,
and references in TurkCorpus were created by only applying that operation.

In this data set, SARI has a moderate correlation, and the highest among all metrics
when “All” evaluation instances are considered, similar to the results in Xu et al. (2016).
Just like in the Simplicity-DA data set, Flesch-based metrics and SAMSA show low
correlations, while BLEU and its variants have correlations in the middle of the group.
The different versions of BERTScore are second-best, and have similar performances,
i.e., there is no statistically significant difference between them. Also, combining SARI
with BLEU does not improve its individual correlation. When comparing the correla-
tions between the “Low” and “High” quality splits (also see Figure 5), most metrics
have lower Pearson’s r in “High.” However, this is not a consistent behavior, and the
differences are not as considerable as observed in the Simplicity-DA data set.
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Table 4
Examples of original sentences with some of their simplification references in ASSET, and system
outputs with corresponding human and automatic scores from the Simplicity-DA data set. The
reference selected by the automatic metric as most similar to the system output is emphasized.

Original Sentence In 1998, Culver ran for Iowa Secretary of State and was victorious.
System Output In 1998, Culver ran for Iowa Secretary of State.
Sample References Culver ran and won Iowa’s secretary of State in 1998.

In 1998, Culver successfully ran for Iowa Secretary of State.
In 1998, Culver ran for Iowa Secretary of State. He won the election.

Simplicity-DA 0.551 BERTScorePrecision 0.984

Original Sentence Below are some useful links to facilitate your involvement.
System Output Below is some useful links to help with your involvement
Sample References Here are good links to get you to do it.

Below are some useful links to help with your involvement.
Here are some useful links to help you.

Simplicity-DA 0.327 BERTScorePrecision 0.934

Original Sentence He was appointed Companion of Honour (CH) in 1988.
System Output He was appointed Companion of Honour in 1988.
Sample References He was made the Companion of Honour (CH) in 1988.

He was appointed Companion of Honour in 1988.
In 1988 he was chosen as a Companion of Honour.

Simplicity-DA 0.436 BERTScorePrecision 1.000

Table 5
Absolute Pearson correlations between Simplicity Gain and metrics scores computed using
references from TurkCorpus, for low/high/all quality splits (N is the number of instances in the
split). Correlations of metrics not significantly outperformed by any other in the quality split are
boldfaced.

Metric Low High All
(N = 186) (N = 186) (N = 372)

Reference-based

BERTScorePrecision 0.209 0.231 0.241
BERTScoreRecall 0.221 0.217 0.241
BERTScoreF1 0.215 0.236 0.247
BLEU 0.178 0.132 0.123
iBLEU 0.181 0.136 0.128
SARI 0.292 0.240 0.331
BLEU-SARI (AM) 0.223 0.172 0.187
BLEU-SARI (GM) 0.246 0.177 0.214
FKBLEU 0.041 0.007 0.092

Non-Reference-based FKGL 0.045 0.101 0.147
SAMSA 0.120 0.042 0.013

We hypothesize that the overall moderate-to-low correlations is due to most of the
metrics not directly measuring Simplicity Gain. Almost all metrics compute the similar-
ity between the system output and the references. However, measuring Simplicity Gain
implies identifying the changes made by the system, and then verifying that they are
correct. In order to do this, it is necessary to take the original sentence into consideration,
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Figure 5
Scatter plots showing the correlation (r) between BERTScorePrecision, BLEU, and SARI, with
human rating of Simplicity Gain, for different quality levels.

Table 6
Examples of original sentences and system outputs with corresponding human and automatic
scores from the Simplicity Gain data set. Changes related to lexical paraphrasing are boldfaced.

Original Sentence Jeddah is the principal gateway to Mecca, Islam’s holiest city, which able-
bodied Muslims are required to visit at least once in their lifetime.

System Output Jeddah is the main gateway to Mecca, Islam’s holiest city, which sound
Muslims must visit at least once in life.

Simplicity Gain 1.83 SARI 0.462

Original Sentence The Great Dark Spot is thought to represent a hole in the methane cloud
deck of Neptune.

System Output The Great Dark Spot is thought to be a hole in the methane cloud deck of
Neptune.

Simplicity Gain 1.25 SARI 0.587

and not just the system output and the references. SARI is the only metric that at-
tempts to follow this logic, by computing the correctness of the n-grams kept, deleted,
and added. Lexical paraphrasing is, however, strongly related to performing replace-
ments, an operation that SARI does not directly identify and measure. The examples in
Table 6 show how this limitation hurts the metric: Whereas in the second instance there
are fewer correct replacements than in the first one (1 < 3), the SARI score is higher
(0.587 > 0.462). By not directly counting correct replacements, the metric is affected by
the conservative nature of the outputs and references that copy most of the original
sentences. It is the correctness of kept and deleted n-grams that contributes to getting a
high score. Consequently, SARI is not measuring Simplicity Gain, which explains why
the correlation with human judgments is barely moderate.13

13 While the examples in Table 6 were cherry-picked, the low overall correlation shows that SARI and
Simplicity Gain are not measuring the same thing. The examples are only illustrative of where this is the
case. A more in-depth analysis is left for future work.
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The concept of Simplicity Gain is easy to understand: It is the number of correct
changes. If metrics were able to measure it accurately, automatic scores would be more
straightforward to interpret, facilitating the comparison of simplifications generated
by different systems. However, collecting this type of human judgment is difficult,
especially in instances where multiple rewriting operations may have been applied, and
identifying where the changes happened (and counting them) is not trivial. In addition,
the Simplicity Gain data set from Xu et al. (2016) that we use in this study is quite
small (only 372 evaluated instances), and contains automatic simplifications from only
four systems, three of which are of similar characteristics (SBMT-based), without any
current state-of-the-art neural models. All of this impedes generalizations that could be
relevant in Sentence Simplification research.

4.2.3 Structural Simplicity. Table 7 presents the correlations in each quality split of this
data set. Reference-based metrics were computed using manual simplification from
HSplit, since the Structural Simplicity judgment is limited to qualifying sentence split-
ting, and references in HSplit were created by only applying that operation.

In this data set, most metrics have moderate correlations with human judgments
when “All” evaluated instances are used. BLEU obtains the highest correlation, but it is
not the best overall because its differences with BLEU-SARI (GM) and BERTScoreRecall
are not statistically significant. This would seem to contradict the findings of Sulem,
Abend, and Rappoport (2018a), who argued that BLEU does not correlate well with
Structural Simplicity. However, as will be shown in the next section, the magnitude of
the correlation depends on the approach of the systems included in the study. Whereas
Sulem, Abend, and Rappoport (2018a) only used models tailored for sentence splitting
to reach that conclusion, in this first analysis we are using all available system outputs
in the data set. The low correlation of SAMSA is surprising, since this metric was
specifically designed to evaluate sentence splitting, and it showed better performance

Table 7
Absolute Pearson correlations between Structural Simplicity and metrics scores computed
using references from HSplit, for low/high/all quality splits (N is the number of instances in the
split). Correlations of metrics not significantly outperformed by any other in the quality split are
boldfaced.

Metric Low High All
(N = 875) (N = 875) (N = 1, 750)

Reference-based

BERTScorePrecision 0.552 0.310 0.090
BERTScoreRecall 0.411 0.601 0.430
BERTScoreF1 0.483 0.529 0.325
BLEU 0.421 0.643 0.443
iBLEU 0.408 0.635 0.436
SARI 0.137 0.418 0.313
BLEU-SARI (AM) 0.346 0.599 0.431
BLEU-SARI (GM) 0.329 0.589 0.438
BLEU-SAMSA (AM) 0.289 0.608 0.420
BLEU-SAMSA (GM) 0.293 0.569 0.370
FKBLEU 0.395 0.608 0.364

Non-Reference-based FKGL 0.070 0.165 0.228
SAMSA 0.103 0.431 0.284
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Figure 6
Scatter plots showing the correlation (r) between BERTScorePrecision, BLEU, and SAMSA, with
human rating of Structural Simplicity, for different quality levels.

in the data set of Sulem, Abend, and Rappoport (2018b). However, they measured the
correlation at the system-level, whereas we are analyzing it at the sentence-level. Finally,
BERTScorePrecision, the best metric in the Simplicity-DA data set, has the poorest corre-
lation in the “All” data split. From previous results, we know that BERTScorePrecision is
good at measuring the similarity between a system output and a reference. As such, its
low correlation would indicate that simple similarity matching is not enough to measure
Structural Simplicity.

When comparing the correlations between the “Low” and “High” splits (also see
Figure 6), we can notice that the ones in the former are much lower for all metrics
but BERTScorePrecision. In fact, this metric has the highest correlation in the “Low”
split, with a substantial increase over its own correlation in the “All” data split. This
could also be explained by our previous argument. A low score in Structural Simplicity
implies that the system output does not contain any sentence splitting, or that the
changes made are not structural. In these situations, BERTScorePrecision would not be
able to match a reference in HSplit, since they most likely contain only sentence splitting.
In turn, the metric returns a low score that correlates well with a low human judgment.

We further analyze the behavior of SAMSA, a metric specifically designed to eval-
uate Structural Simplicity. By design, SAMSA first uses a semantic parser to identify
the Scenes in the original sentence, and a syntactic parser to identify the sentence
splits in the system output. Then, it counts how many of the words corresponding
to the Participants of each Scene align with words in each sentence split. Ideally, all
Participants of a single Scene should appear in a single sentence split. The first example
in Table 8 illustrates a case where this logic may be problematic. SAMSA identifies that
there is only one Scene in the original sentence and only one sentence split in the system
output. Because both sentences are identical, the word alignment is perfect and SAMSA
gives the simplification the highest possible score. However, the human judges gave
the instance a score of 0 because no changes were performed. On the one hand, this
could suggest that SAMSA should only be used when sentence splitting was actually
performed in the simplification instance. On the other hand, it could be argued that the
original sentence was already structurally simple, and that no splitting was necessary,
making the human score of 0 unfair. This points out possible issues in the data collection,
and that perhaps using a −2 to +2 scale is unsuitable for these scenarios.
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Table 8
Examples of original sentences and system outputs with corresponding human and automatic
SAMSA scores from the Structural Simplicity data set.

Original Sentence Orton and his wife welcomed Alanna Marie Orton on July 12 2008.
System Output Orton and his wife welcomed Alanna Marie Orton on July 12 2008.

Structural Simplicity 0.00 SAMSA 1.00

Original Sentence Graham attended Wheaton College from 1939 to 1943, when he
graduated with a BA in anthropology.

System Output Graham attended Wheaton College from 1939 to 1943. He
graduated with a BA in anthropology.
Structural Simplicity 0.33 SAMSA 1.00

Original Sentence Jeddah is the principal gateway to Mecca, Islam’s holiest city, which
able-bodied Muslims are required to visit at least once in their lifetime.

System Output Jeddah is the principal gateway to Mecca.

Structural Simplicity 2.00 SAMSA 0.14

We further explore our last argument of potential incompatibilities between what
Structural Simplicity should measure, and what the human judges qualified as such.
The second and third examples in Table 8 suggest that there are indeed problems. The
second example shows that a perfectly reasonable and correct splitting (with a SAMSA
score of 1.0) received a low score from the judges. More worryingly, the third example
presents a sentence where no splitting was performed (and with substantial compres-
sion) that received the highest score for Structural Simplicity. This could indicate that the
human judges did not consider sentence splitting as the only mechanism for improving
the simplicity of the structure of a sentence. In an attempt to quantify this phenomenon,
Figure 7 presents the distribution of Structural Simplicity scores for instances where
sentence splitting was performed and where it was not. Instances with splitting only
amount to 17% (306/1,750) of the total of instances in the data set. Although this is a
low quantity, their human scores span along all possible values for Structural Simplicity.
It is encouraging that most instances where no splitting was performed received a
human score close to 0. However, there are many that were judged with high values
of Structural Simplicity. We hypothesize that this is caused by misunderstanding of
the rating instructions, since many of these instances also contain substantial levels of
compression (as in the third example of Table 8), which could not be considered as a
type of rewriting that improves the structural simplicity of a sentence.

Improvement in Structural Simplicity is a relevant feature to evaluate in auto-
matic simplifications. Isolating its assessment both manually and through metrics can
contribute to a more fine-grained analysis of the performance of automatic systems.
However, it is important to establish adequate quality control mechanisms that ensure
the trustworthiness of the collected data, so that we can develop metrics that accurately
resemble the intended human judgments.

4.3 Metrics across Types of Systems

We now investigate if metrics’ correlations are affected by the type of system that
generated the simplifications. For this study, we do not use the Simplicity Gain data
set because it only provides simplifications produced by PBMT and SBMT systems.
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Figure 7
Distribution of Structural Simplicity scores in the data set of Sulem, Abend, and Rappoport
(2018c) for instances with and without sentence splitting in the system output.

4.3.1 Simplicity-DA. Table 9 presents the correlations of each metric for the different sys-
tem types in this data set, with reference-based metrics computed using simplifications
from ASSET. BERTScorePrecision achieves the highest correlations in all groups, and for
S2S and Sem+PBMT models, in particular, no other metric is statistically equal. Most
metrics show higher correlations in the S2S group than in others. However, because the
number of data points is smaller in the latter, stronger conclusions cannot be formulated.
Overall, because the current trend is to develop S2S models, it is encouraging that
modern metrics are capable of evaluating them, but keeping in mind the nuances we
signalled in the previous section regarding quality levels.

Table 9
Pearson correlations between Simplicity-DA human judgments and automatic metrics scores
computed using references from ASSET, for splits based on system type (N is the number of
instances in the split). Correlations of metrics not significantly outperformed by any other in the
system type split are boldfaced. Metrics are grouped in Reference-based (top) and
Non-Reference-based (bottom).

Metric SBMT PBMT S2S Sem+PBMT
(N = 100) (N = 100) (N = 300) (N = 100)

BERTScorePrecision 0.537 0.459 0.650 0.624
BERTScoreRecall 0.527 0.375 0.484 0.470
BERTScoreF1 0.528 0.400 0.588 0.568
BLEU 0.295 0.347 0.546 0.333
iBLEU 0.315 0.336 0.536 0.335
SARI 0.228 0.173 0.310 0.240
BLEU-SARI (AM) 0.315 0.336 0.536 0.335
BLEU-SARI (GM) 0.298 0.320 0.508 0.308
SARI-SAMSA (AM) 0.243 0.121 0.209 0.291
SARI-SAMSA (GM) 0.250 0.080 0.190 0.333
FKBLEU 0.006 0.058 0.092 0.138

FKGL 0.055 0.063 0.104 0.062
SAMSA 0.184 0.067 0.126 0.248
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4.3.2 Structural Simplicity. Table 10 presents the correlations of each metric in the differ-
ent system type groups in this data set. Reference-based metrics were computed using
manual simplifications from HSplit. All metrics achieve their highest correlations in
the S2S group, except for BERTScorePrecision. As presented in the previous section, this
metric is particularly good at judging instances with low Structural Simplicity, which
seem to be those from the PBMT and SBMT groups, mainly.

Previously, we observed that BLEU had high correlation with high-scoring quality
judgments (in terms of Structural Simplicity). Here, we notice that this behavior is
limited to simplifications produced by S2S and Sem+S2S systems. This appears to con-
tradict the observations of Sulem, Abend, and Rappoport (2018a), who used this same
data set to conclude that BLEU is a bad estimator of Structural Simplicity. The reason
behind this disagreement is that for their sentence-level study “HSplit as Reference
Setting,” the systems they chose were those within the Sem and Sem+PBMT groups,
for which BLEU, indeed, shows poor correlations. A possible reason for choosing this
setup is explained by Figure 8. While S2S and Sem+S2S have more instances that were
scored with good Structural Simplicity, these groups contain very few system outputs
where sentence splitting was performed. Therefore, we believe that Sulem, Abend, and
Rappoport’s (2018a) conclusion should be more nuanced: BLEU is a bad metric to estimate
Structural Simplicity in system outputs where sentence splitting was performed.

Nevertheless, not considering system outputs in the S2S and Sem+S2S groups
reduces the future impact of the previous statement, since the current trend in Sentence
Simplification research is developing that type of model. For their system-level study
“Standard Reference Setting,” Sulem, Abend, and Rappoport (2018a) included systems
from the S2S group, but computed BLEU using references from Simple Wikipedia and
TurkCorpus, which are not focused on sentence splitting. We believe that this experi-
mental setting is unfair to BLEU, and that more cautious analysis should be performed

Table 10
Pearson correlations between Structural Simplicity judgments and automatic metrics scores
computed using references from HSplit, for splits based on system type (N is the number of
instances in the split). Correlations of metrics not significantly outperformed by any other in the
system type split are boldfaced. Metrics are grouped in Reference-based (top) and
Non-Reference-based (bottom).

Metric PBMT SBMT S2S Sem Sem+PBMT Sem+S2S
(N = 70) (N = 70) (N = 280) (N = 140) (N = 630) (N = 560)

BERTScorePrecision 0.501 0.571 0.292 0.330 0.096 0.111
BERTScoreRecall 0.339 0.418 0.635 0.066 0.134 0.480
BERTScoreF1 0.405 0.497 0.553 0.180 0.049 0.362
BLEU 0.284 0.380 0.661 0.130 0.147 0.540
iBLEU 0.252 0.380 0.642 0.130 0.145 0.536
SARI 0.015 0.286 0.330 0.028 0.166 0.355
BLEU-SARI (AM) 0.184 0.364 0.603 0.100 0.175 0.507
BLEU-SARI (GM) 0.157 0.341 0.589 0.097 0.185 0.515
BLEU-SAMSA (AM) 0.240 0.334 0.603 0.095 0.072 0.573
BLEU-SAMSA (GM) 0.216 0.279 0.563 0.109 0.075 0.561
FKBLEU 0.215 0.344 0.617 0.009 0.119 0.539

FKGL 0.205 0.016 0.251 0.083 0.155 0.242
SAMSA 0.141 0.177 0.368 0.052 0.009 0.497
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Figure 8
Distribution of Structural Simplicity scores in the data set of Sulem, Abend, and Rappoport
(2018c) for instances with and without sentence splitting in the system output and for each
system type.

to determine whether a metric should be used to assess Structural Simplicity in S2S
models.

4.4 Effect of Simplification References

The third dimension of analysis for our meta-evaluation is the set of simplification
references used to compute automatic evaluation scores. Because there can be multiple
correct simplifications for the same original sentence, it is possible that a reference-based
metric becomes more reliable if it has access to more manual references for comparison.
It is worth remembering that whereas BLEU and SARI take all references for each
original sentences into account when computing their scores, BERTScore takes one at a
time and returns the maximum score. In this section, we investigate whether the corre-
lations of reference-based metrics vary depending on using all available simplification
references or particular subsets of them. We only experiment with the Simplicity-DA
data set, because its simplicity judgments are not tied to performing a specific type
of simplification operation, as is the case for the other data sets. Thus, having a more
varied set of references could be beneficial for reference-based metrics in this scenario.
In addition, we take advantage of the fact that the original sentences in the Simplicity-
DA data set have corresponding manual simplifications in three multi-reference data
sets: ASSET (10 references), TurkCorpus (8 references), and HSplit (4 references). Recall
that the manual simplifications in each data set were produced via different operations:
lexical paraphrasing in TurkCorpus; sentence splitting in HSplit; and lexical paraphras-
ing, compression, and sentence splitting in ASSET.

4.4.1 ASSET vs. All References. Table 11 presents the correlations of each reference-based
metric computed using the 10 manual references from ASSET or their union with those
from TurkCorpus (8 references) and HSplit (4 references), that is, what we refer to as
“All References” (22). We further divide this data into “Low,” “High,” and “All” quality
splits as in a previous section. As such, the left-hand side of Table 11 is the same as
Table 3. We do not add the system type dimension since the number of instances in each
subgroup would be too small to allow drawing strong conclusions.

When using “All” instances, most metrics have a slight increase in their Pearson’s
r when All References are used, with BERTScorePrecision achieving the highest correla-
tions, and being statistically superior to every other metric. This improvement seems
to be caused by better detection of “Low” quality simplifications. In fact, using All
References slightly affects BERTScorePrecision and most metrics when detecting system
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Table 11
Pearson correlations between Simplicity-DA judgments and reference-based metrics scores
grouped by the set of manual references used. Within each group, we divide the data into
Low/High/All quality splits. Correlations of metrics not significantly outperformed by any
other in their group and quality split are boldfaced. The scores in the left-hand side (under
ASSET) are the same ones as in Table 3.

Metric ASSET All References Selected References
Low High All Low High All Low High All

BERTScorePrecision 0.512 0.287 0.617 0.541 0.280 0.629 0.543 0.276 0.635
BERTScoreRecall 0.471 0.172 0.500 0.476 0.165 0.506 0.479 0.165 0.511
BERTScoreF1 0.518 0.224 0.573 0.530 0.202 0.576 0.534 0.202 0.584
BLEU 0.405 0.235 0.496 0.404 0.230 0.526 0.402 0.223 0.525
iBLEU 0.398 0.253 0.504 0.398 0.250 0.537 0.396 0.244 0.536
SARI 0.336 0.139 0.359 0.366 0.097 0.353 0.352 0.115 0.350
BLEU-SARI (AM) 0.417 0.239 0.503 0.418 0.218 0.519 0.418 0.221 0.523
BLEU-SARI (GM) 0.408 0.215 0.476 0.410 0.195 0.490 0.410 0.205 0.496

outputs of “High” Simplicity-DA. As in a previous section, we hypothesize that this is
caused by the different degrees of simplicity that each manual reference has in each data
set. By having more references available, BERTScorePrecision is more likely to match one
with a system output, and then return a high score. However, high similarity with a
reference does not necessarily mean high improvements in simplicity, since the manual
reference could correspond to a valid simplification but with a relatively low degree of
simplicity.

4.4.2 ASSET vs. Selected References. In the previous analysis, we changed the set of
references for all sentences that are being assessed at the same time. We now analyze the
effect of changing the set of references for each sentence individually. More concretely,
we devise an experiment where, for each automatically simplified sentence, reference-
based metrics compare it to a subset of all available references based on the simplifica-
tion operations that were performed. Therefore, for each sentence:

1. Identify the operations that were performed. We use the annotation
algorithms in EASSE to label deletions, replacements, and splits at the
sentence-level. For deletions and replacements, these algorithms leverage
automatic word alignments between the original sentence and the
automatic simplification, extracted using SimAlign (Jalili Sabet et al. 2020).
If a word in the original sentence is aligned but not to an exact match in
the simplification, then it is considered a replacement. If a word in the
original sentence is not aligned, then it is considered as deleted. For
identifying splits, we compute the number of sentences in the original and
simplified sides using NLTK,14 and register a split if the number in the
simplified side is higher than the one in the original side. In preliminary
experiments with a sample of 250 sentences, these algorithms achieved F1
scores of 0.76 for deletions, 0.78 for replacements, and 0.87 for splits. More
details can be found in Alva-Manchego (2020, chapter 3).

14 https://www.nltk.org/api/nltk.tokenize.html.
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2. Determine the references to use. Based on the operations identified, we
treat three possible cases: (1) the system performed only sentence splitting;
(2) the system performed only lexical paraphrasing and/or deletion;
(3) the system performed another possible combination of operations.15

Depending on the case, a different set of references would be used: HSplit
for (1), TurkCorpus and ASSET for (2), and ASSET for (3). ASSET was
added for case (2) because it also contains manual references where only
lexical paraphrasing was applied.

3. Compute the metrics. Calculate the metrics’ scores using the selected set
of manual references.

Column “Selected References” in Table 11 presents the correlations of reference-
based metrics computed following the previous process. All metrics but SARI improve
their correlations when instances of “All” qualities are used. As before, this is caused by
better detection of “Low” quality simplifications.

5. Recommendations for Automatic Evaluation

Our meta-evaluation has allowed us to better understand the behavior of traditional
and more modern metrics for assessing automatic simplifications. Based on those find-
ings, in this section we set a list of recommendations related to the present and future
of automatic evaluation of Sentence Simplification systems.

5.1 Evaluation of Current Simplification Systems

Automatic Metrics. It is difficult to determine an overall “best” metric across all types
of simplicity judgments. For Simplicity-DA, BERTScorePrecision achieved the highest
correlations in all dimensions of analysis. For Simplicity Gain, SARI is better than all
BERTScore variants, but that difference is not statistically significant when assessing
low and high quality simplifications separately. In addition, there is not enough data
to determine if that behavior translates to modern sequence-to-sequence models. The
comparison is even less clear for Structural Simplicity, since the correlations are heavily
dependent on the system type or, rather, on evaluating simplifications where sentence
splitting was actually performed, instances of which are insufficient in the data set used.
SAMSA was specifically developed for this type of simplicity evaluation, and manual
inspection suggests that it is doing what it was designed for. As such, even though
our analysis does not seem to support its use, we argue that this is caused by the lack
of adequate data with judgments on Structural Simplicity. Overall, we suggest using
multiple metrics, and mainly BERTScorePrecision, for reference-based evaluation. SARI
could be used when the simplification system only executed lexical paraphrasing, and
SAMSA may be useful when it is guaranteed that splitting was performed.

Simplification References. Simplifications in ASSET are well suited for reference-based
evaluation. Incorporating references from TurkCorpus and HSplit seems to only slightly
improve the correlations. In addition, it appears that selecting which references to use

15 There is one more possible case: (4) the system did not perform any operation (i.e., the original sentence
and the system output are the same). However, there are no such instances in the Simplicity-DA data set.
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for each sentence individually benefits the computation of metrics. However, for both
cases, the improvements are limited to evaluation of low-quality simplifications.

Interpretation of Automatic Scores. For Simplicity-DA, low scores of most metrics appear
to be good estimators of low quality, whereas high scores do not necessarilly suggest
high quality. This indicates that metrics could be more useful for development stages
of simplification models. Following the recommendation of using multiple metrics, we
suggest to use BERTScorePrecision to get a first evaluation. If the score is low, then it
signals that the quality of the output is also low. However, when the score is high, it is
important to look at other metrics, such as SARI or SAMSA, to verify the correctness
of the simplification operations. Nevertheless, for final arguments on the superiority of
one system over another, human evaluation should be preferred. For Simplicity Gain,
metrics’ correlations are low to moderate in general, so it is unclear if they are actually
measuring this type of human judgment. In the case of Structural Simplicity, inconsis-
tencies in the human judgments (i.e., high scores for instances where no splitting was
performed) hinders the interpretation of results.

5.2 Development of New Metrics

Considering the advantages and disadvantages of current metrics, as well as the prob-
lems identified in the data used for evaluating them, we provide some suggestions for
the development of new resources for automatic evaluation.

Collection of New Human Judgments. We experimented with crowdsourcing simplicity
judgments following a methodology inspired by Direct Assessment, which has been
successful in Machine Translation research. We believe that submitting continuous
scores on how much simpler a system output is over the original sentence gives raters
more flexibility on their judgments, and facilitates subsequent analyses. However, al-
though the type of score collected (continuous or discrete) influences the ratings, it
is even more important to ensure that raters submit judgments that follow the kind
of simplicity that is intended to be measured. As such, it is paramount to train raters
before they perform the actual task, and establish quality control mechanisms through
all the data collection process. In relation to the kind of simplicity judgment to elicit,
both Simplicity Gain and Structural Simplicity have advantages over requesting ab-
solute simplicity scores. Therefore, we recommend collecting more human judgments
based on them, using modern simplification models and simplification instances with
adequate characteristics for what we are trying to evaluate.

Characteristics of New Metrics. For Simplicity-DA, Simplicity Gain, and Structural Sim-
plicity, raters had to compare the automatic simplification to the original sentence, and
then submit a particular kind of judgment. Therefore, if humans submit evaluations
taking both the original sentence and the simplification into consideration, then we
should expect that automatic metrics do so too. Both SARI and SAMSA follow this logic,
and we would expect that new metrics take that idea even further. For example, by
replacing n-gram matching in SARI and syntax-based word alignments in SAMSA by
similarity of contextual word embeddings, as is done in BERTScore. Furthermore, we
have explained that not every manual simplification in multi-reference data sets (i.e.,
ASSET, TurkCorpus, and HSplit) has the same simplicity level. Therefore, it could be
useful to enrich references with human judgments on their simplicity. In this way, an
automatic score would not be only based on the similarity to a reference, but also on
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the potential level of simplicity that the system output could achieve if it were an exact
match with that particular reference. Perhaps metrics could even combine how similar
the system output is to a reference with the simplicity level that could be achieved.

Analysis Beyond Absolute Correlations. Our meta-evaluation has shown that different
factors influence the correlation of human judgments with automatic scores, namely:
perceived quality level, system type, and set of references used for computation. As
such, new automatic metrics should not only be evaluated on their absolute overall
correlation. It is important to also analyze the reasons behind that value considering
the different factors that could be affecting it. In this way, we can determine in which
situations the new metrics prove more advantageous than others.

6. Conclusions

In this article, we studied the degree in which current evaluation metrics measure the
ability of automatic systems to perform sentence-level simplifications, especially when
multiple operations were applied.

We collected a new data set for evaluation of automatic metrics following the Direct
Assessment methodology to crowdsource human ratings on fluency, meaning preserva-
tion and simplicity. The data set consists of 600 automatic simplifications generated by
six different systems, three of which are based on modern neural sequence-to-sequence
architectures. This makes it bigger and more varied than the Simplicity Gain data set.
In addition, we collected 15 ratings per simplification instance to increase annotation
reliability, contrasting with the Simplicity Gain data set that has five raters, and the
Structural Simplicity data set that only has three. Our data collection process can be fine-
tuned, and more system outputs should be included. However, our data set’s features
are sufficient to offer an alternative view at simplicity judgments over system outputs.

We used our newly collected data set (Simplicity-DA), together with the Simplicity
Gain and Structural Simplicity data sets, to conduct, to the best of our knowledge,
the first meta-evaluation study of automatic metrics in Sentence Simplification. We ana-
lyzed the variations of the correlations of sentence-level metrics with human judgments
along three dimensions: the perceived simplicity level, the system type, and the set of
references used to compute the automatic scores. For the first dimension, we found
that metrics can more reliably score low-quality simplifications in terms of Simplicity-
DA, while this effect is not apparent in Simplicity Gain and no strong conclusions
could be drawn for Structural Simplicity due to inconsistencies in the ratings. For the
second dimension, correlations change based on the system type. In the Simplicity-DA
data set, most metrics are better at scoring system outputs from neural sequence-to-
sequence models. While this difference in correlation is more significant in the Structural
Simplicity data set, it seems to be caused by low representation of sentence splitting
in the data, rather than differences in system type. This highlights the importance of
analyzing outputs of several types of systems (e.g., neural and non-neural) with all
the characteristics under study (e.g., split sentences), to prevent obtaining conclusions
that are limited to a certain subgroup of models. For the third dimension, combining
all multi-reference data sets does not significantly improve metrics’ correlations over
using only ASSET in the Simplicity-DA data set. Further analyses on the diversity of the
manual references across ASSET, TurkCorpus, and HSplit should be performed in order
to explain this result. In addition, preliminary experiments on per-sentence reference
selection based on the performed operations showed promising results.
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Based on the findings of our meta-evaluation, we designed a set of guidelines for
automatic evaluation of current simplification models. In particular for multi-operation
simplifications, we suggest using BERTScore with references from ASSET during the de-
velopment stage of simplification models, and manual evaluation for final comparisons.
The main reason is that BERTScore is very good at identifying references that are similar
to a system output. However, because not all references have the same simplicity level,
a high similarity with a reference does not necessarily indicate high (improvements in)
simplicity. Finally, we proposed a desiderata for the characteristics of new resources
for automatic evaluation. Namely: (1) to further collect Simplicity Gain and Structural
Simplicity ratings with better quality controls and diversity of system outputs; (2) to
develop metrics that take both the original sentence and the automatic simplification
into consideration; (3) to enrich manual references with their simplicity level; and (4) to
evaluate new metrics along several dimensions and not just overall absolute correlation
with human ratings on some form of simplicity.
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