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Abstract

Transformer-based neural language models
have led to breakthroughs for a variety of natu-
ral language processing (NLP) tasks. However,
most models are pretrained on general domain
data. We propose a methodology to produce a
model focused on the clinical domain: contin-
ued pretraining of a model with a broad repre-
sentation of biomedical terminology (PubMed-
BERT) on a clinical corpus along with a novel
entity-centric masking strategy to infuse do-
main knowledge in the learning process. We
show that such a model achieves superior re-
sults on clinical extraction tasks by compar-
ing our entity-centric masking strategy with
classic random masking on three clinical NLP
tasks: cross-domain negation detection (Wu
et al., 2014), document time relation (Doc-
TimeRel) classification (Lin et al., 2020b), and
temporal relation extraction (Wright-Bettner
et al., 2020). We also evaluate our models
on the PubMedQA(Jin et al., 2019) dataset to
measure the models’ performance on a non-
entity-centric task in the biomedical domain.
The language addressed in this work is En-
glish.

1 Introduction

Transformer-based neural language models, such
as BERT (Devlin et al., 2018), have achieved
state-of-the-art performance for a variety of nat-
ural language processing (NLP) tasks. Since most
are pre-trained on large general domain corpora,
many efforts have been made to continue pre-
taining general-domain language models on clini-
cal/biomedical corpora to derive domain-specific
language models (Lee et al., 2020; Alsentzer et al.,
2019; Beltagy et al., 2019).

Yet, as Gu et al. (2020a) pointed out, in special-
ized domains such as biomedicine, continued pre-
training from generic language models is inferior
to domain-specific pretraining from scratch. Con-
tinued pre-training from a generic model would

break down many of the domain specific terms
into sub-words through the Byte-Pair Encoding
(BPE) (Gage, 1994) or variants like WordPiece
tokenization (Wu et al., 2016) because these spe-
cific terms are not in the vocabulary of the generic
pretrained model. A clinical domain-specific pre-
training from scratch would derive an in-domain
vocabulary as many of the biomedical terms, such
as diseases, signs/symptoms, medications, anatom-
ical sites, procedures, would be represented in their
original form. Such an improved word-level rep-
resentation is expected to bring substantial perfor-
mance gains in clinical domain tasks because the
model would learn the characteristics of the term
along with its surrounding context as one unit.

In our preliminary work on a clinical rela-
tion extraction task, we observed a performance
gain with the PubMedBERT model (Gu et al.,
2020a) which outperformed BioBERT (Lee et al.,
2020), ClinicalBERT (Alsentzer et al., 2019), and
even some larger general domain models like
RoBERTa (Liu et al., 2019) and BART-large (Lewis
et al., 2019). The performance gain was primar-
ily attributed to PubMedBERT’s in-domain vo-
cabulary as we observed that PubMedBERT kept
30% more in-domain words in its vocabulary than
BERT. When we swapped PubMedBERT tokeniza-
tion with BERT or RoBERTa tokenization, the per-
formance of PubMedBERT degraded.

Thus, PubMedBERT appears to provide a vocab-
ulary that is helpful to the clinical domain. How-
ever, the language of biomedical literature is dif-
ferent from the language of the clinical documents
found in electronic medical records (EMRs). In
general, a clinical document is written by physi-
cians who have very limited time to express the
numerous details of a patient-physician encounter.
Many nonstandard expressions, abbreviations, as-
sumptions and domain knowledge are used in clini-
cal notes which makes the text hard to understand
outside of the clinical community and presents
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challenges for automated systems. Pretraining a
language model specific to the clinical domain re-
quires large amounts of unlabeled clinical text on
par with what the generic models are trained on.
Unfortunately, such data are not available to the
community. The only available such corpus is
MIMIC III used to train ClinicalBERT (Alsentzer
et al., 2019) and BlueBERT (Peng et al., 2019),
but it is magnitudes smaller and represents one
specialty in medicine – intensive care.

Pretraining is agnostic to downstream tasks: it
learns representations for all words using a self-
supervised data-rich task. Yet, not all words are
important for downstream fine-tuning tasks. Nu-
merous pretrained words are not even used in the
fine-tuning step, while important words crucial for
the downstream task are not well represented due
to insufficient amounts of labeled data. Many clini-
cal NLP tasks are centered around entities: clinical
named entity recognition aims to detect clinical en-
tities (Wu et al., 2017; Pradhan et al., 2014; Elhadad
et al., 2015), clinical negation extraction decides if
a certain clinical entity is negated (Chapman et al.,
2001; Harkema et al., 2009; Mehrabi et al., 2015),
clinical relation discovery extracts relations among
clinical entities (Lv et al., 2016; Leeuwenberg
and Moens, 2017), etc. Though various masking
strategies have been employed during pretraining
– masking contiguous spans of text (SpanBERT,
Joshi et al., 2020; BART, Lewis et al., 2019), vary-
ing masking ratios (Raffel et al., 2019), building
additional neural models to predict which words
to mask (Gu et al., 2020b), incorporating knowl-
edge graphs (Zhang et al., 2019), masking entities
for a named entity recognition task (Ziyadi et al.,
2020) – none of the masking techniques so far have
investigated and focused on clinical entities.

Besides transformer-based models, there are
other efforts (Beam et al., 2019; Chen et al., 2020)
to characterize the biomedical/clinical entities at
the word embedding level. There are also other
statistical methods applied to the downstream tasks.
We do not include these efforts in our discussion
because the focus of our paper is the investiga-
tion of a novel entity-based masking strategy in a
transformer-based setting.

In this paper, we propose a methodology to pro-
duce a model focused on clinical entities: contin-
ued pretraining of a model with a broad representa-
tion of biomedical terminology (the PubMedBERT
model) on a clinical corpus, along with a novel

entity-centric masking strategy to infuse domain
knowledge in the learning process1. We show that
such a model achieves superior results on clinical
extraction tasks by comparing our entity-centric
masking strategy with classic random masking on
three clinical NLP tasks: cross-domain negation de-
tetction (Wu et al., 2014), document time relation
(DocTimeRel) classification (Lin et al., 2020b), and
temporal relation extraction (Wright-Bettner et al.,
2020).

The contributions of this paper are: (1) a contin-
ued pretraining methodology for clinical domain
specific neural language models, (2) a novel entity-
centric masking strategy to infuse domain specific
knowledge, (3) evaluation of the proposed strate-
gies on three clinical tasks: cross-domain negation
detection, DocTimeRel classification, and temporal
relation extraction, and (4) evaluation of our mod-
els on the PubMedQA (Jin et al., 2019) dataset to
measure the models’ performance on a non-entity-
centric task in the biomedical domain.

2 Methods

In this section, we first describe our clinical text
datasets and related NLP tasks, the details of our
entity-centric masking strategy, and finally the set-
tings we used for both pretraining and fine-tuning.

2.1 Transformer models

Transformer models learn a sequential contextual
representation of the input sequence through a
multi-layer, multi-head self-attention mechanism,
which models long-range dependencies in texts
through highly parallel computation. They are usu-
ally pretrained through a self-supervised masked
language model (MLM) task i.e., predicting the
randomly masked subset of the input tokens. Some
transformer models also use next sentence predic-
tion (NSP) as a self-supervision task i.e., predicting
if two given sentences are adjacent in the original
text. A language model can be continuously pre-
trained on new corpora to further expand its repre-
sentative power especially for a target domain. For
a task-specific application, a pretrained language
model’s parameters are usually refined through a
fine-tuning process on the task-specific training
data, and a special [CLS] token is usually used as

1Our pretrained models are submitted to Phys-
ioNet(Goldberger et al., 2000). Once approved, they
will be publicly available through PhysioNet Credentialed
Health Data License 1.5.0.
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Dataset sentence# word# entities#/sentence

MIMIC-SMALL 4.6M 125.1M 1+
MIMIC-BIG 15.6M 728.6M 2+

Table 1: Two versions of curated MIMIC data.

the representation of the input instance for text-
classification tasks.

2.2 Unlabeled Pre-training Data

MIMIC-III We use the freely-available MIMIC-
III (Medical Information Mart for Intensive Care)
Clinical dataset (Johnson et al., 2016) (version
1.4) for continued pretraining of the PubMedBERT
model. This dataset comprises approximately 2M
deidentified notes for over 40,000 patients who
stayed in critical care units of the Beth Israel Dea-
coness Medical Center between 2001 and 2012.

We process the MIMIC-III corpus with the sen-
tence detection, tokenization, and temporal mod-
ules of Apache cTAKES (Savova et al., 2010)2

to identify all entities (events and time expres-
sions) in the corpus. Events are recognized by
cTAKES event annotator. Event types include
diseases/disorders, signs/symptoms, medications,
anatomical sites, and procedures. Time expressions
are recognized by cTAKES timex annotator. Time
classes includes: date, time, duration, quantifier,
prepostesp, and set (Styler IV et al., 2014). Spe-
cial XML tags (Dligach et al., 2017) are inserted
into the text sequence to mark the position of iden-
tified entities. Time expressions are replaced by
their time class (Lin et al., 2017, 2018) for better
generalizability. All special XML-tags and time
class tokens are added into the PubMedBERT vo-
cabulary so that they can be recognized. The top
line of Figure 1 shows a sample sentence from the
MIMIC-III corpus. The entities of this sentence are
identified by Apache cTAKES. The bottom line of
Figure 1 shows the entities marked by XML tags
and the temporal expression replaced by its class.
We process the MIMIC corpus sentence by sen-
tence, and discard sentences that have fewer than
two entities. The resulting set (MIMIC-BIG) has
15.6 million sentences, 728.6 million words (the
bottom row of Table 1). In another setting, from
the pool of sentences with at least one entity, we
sample a smaller set (MIMIC-SMALL), resulting
in 4.6 million sentences and 125.1 million words
(the top row of Table 1).

2http://ctakes.apache.org

The patient had
EVENT

fever ,
EVENT

tachypnea , and elevated
EVENT

lactate on
TIME

March 11, 2010 .
⇓

The patient had <e> fever </e>, <e> tachypnea </e>, and
elevated <e> lactate </e> on <t> date </t>.

Figure 1: MIMIC-III text with XML-tagged entities:
<e> and </e> mark events; <t> and </t> mark time ex-
pressions.

#1: she is feeling reasonably well . she has not <e> noted </e>
any new areas of pain and has had no fevers
#2: a <e> surgery </e> was scheduled on <t> date </t> .
#3: a <e1> surgery </e1> was <e2> scheduled </e2> on
march 11th .
#4: she denies any <e> fevers </e> or chills .
#5: Inpatient versus outpatient management of neutropenic
fever in gynecologic oncology patients: is risk stratification
useful? ANSWER: Based on this pilot data, MASCC score
appears promising in determining suitability for outpatient
management of NF in gynecologic oncology patients. Prospec-
tive study is ongoing to confirm safety and determine impact
on cost.

Figure 2: Sample instances for DocTimeRel(1),
TLINK:event-time(2), TLINK:event-event(3), Nega-
tion (4), and PubMedQA (5).

2.3 Labeled Fine-tuning Data

The following sections describe the labeled datasets
that are used as fine-tuning tasks. Figure 2 shows
examples of how we format inputs for these tasks
(more details below).

THYME The THYME corpus (Styler IV et al.,
2014) is widely used (Bethard et al., 2015, 2016,
2017) for clinical temporal relation discovery.
There are two types of temporal relations defined
in it: (1) The document time relations (DocTime-
Rel), which link a clinical event (EVENT) to
the document creation time (DCT) with possible
values of BEFORE, AFTER, OVERLAP, and BE-
FORE_OVERLAP, and (2) pairwise temporal re-
lations (TLINK) between two events (EVENT)
or an event and a time expression (TIMEX3) us-
ing an extension of TimeML (Pustejovsky et al.,
2003; Pustejovsky and Stubbs, 2011). Recently, the
TLINK annotations of (2) were refined with val-
ues of BEFORE, BEGINS-ON, CONTAINS, CON-
SUB, ENDS-ON, NOTED-ON, OVERLAP, with
the revised corpus known as the THYME+ cor-
pus (Wright-Bettner et al., 2020).

For the DocTimeRel task, we mark all events in
THYME+ corpus with XML tags (“<e>”, “</e>”)
and extract 10 tokens from each side of the event
as the contextual information. The DocTimeRel

http://ctakes.apache.org
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labels are predicted using the special [CLS] embed-
ding and a softmax function.

For the TLINK task, we use the THYME+ anno-
tation and the same window-based processing (Lin
et al., 2019; Wright-Bettner et al., 2020) for gen-
erating relational candidates. The two entities in-
volved in a relation candidate are marked by XML
tags following the style of Dligach et al. (2017).
Time expressions are represented by their time
classes. The TLINK labels are predicted using the
special [CLS] embedding and a softmax function.

Cross-domain Negation We use the same cor-
pora as Miller et al. (2017); Lin et al. (2020a):
(1) 2010 i2b2/VA NLP Challenge Corpus (i2b2:
Uzuner et al., 2011), (2) the Multi-source Inte-
grated Platform for Answering Clinical Questions
Corpus (MiPACQ: Albright et al., 2013), (3) the
Strategic Health IT Advanced Research Projects
(SHARP) Seed (Seed), and (4) SHARP Stratified
(Strat). We use them for fine-tuning the pretrained
models for the cross-domain negation task. The
same XML tags as described above mark the en-
tities for which the negation status is to be deter-
mined. The +1(negated) and -1(not negated) labels
are predicted using the special [CLS] embedding
and a softmax function.

PubMedQA PubMedQA (Jin et al., 2019) is a
biomedical question answering (QA) dataset col-
lected from PubMed abstracts. The task is to an-
swer research questions with yes/no/maybe using
the corresponding abstracts or the conclusion sec-
tions of the abstracts (i.e., the long answers). For
simplicity, we only fine-tune pretrained models on
the PubMedQA labeled (PQA-L) data of 1K ex-
pert annotations, with the original train/dev/test
split with 450, 50, 500 questions, respectively. The
unlabeled (PQA-U) and artificially generated QA
instances (PQA-A) are not used. Pretrained models
are fine-tuned on the PQA-L data in the reasoning-
free setting (without reasoning the full abstracts
as contexts) by concatenating the questions and re-
lated long answers. The question and the answer is
separated by "ANSWER:" (as shown in the bottom
case of fig. 2) instead of the special [SEP] token
in order not to involve the Next Sentence Predic-
tion (NSP). The yes/no/maybe labels are predicted
using the special [CLS] embedding and a softmax
function.

2.4 Entity-centric Masking

Conventional BERT-style Masked Language
Model (MLM) randomly chooses 15% of the in-
put tokens for corruption, among which 80% are
replaced by a special token "[MASK]", 10% are
left unchanged, and 10% are randomly replaced by
a token from the vocabulary. The language model
is trained to reconstruct the masked tokens.

We propose an entity-centric masking strategy
(as shown in Figure 3). All entities in the input
sequence are marked with XML tags, which are
added into the vocabulary and mapped to unique
IDs. Then 40% of entities and 12% of random
words are chosen respectively within each sequence
block for corruption, following the same 80%-10%-
10% ratio for [MASK], unchanged, and random
replacement. We refer to this masking strategy as
entity-centric masking.

We did not use the Next Sentence Prediction
(NSP) task in our pretraining experiments based
on Liu et al. (2019).

The PubMedBERT base uncased version was
pretrained from scratch using abstracts from
PubMed and full-text articles from PubMedCen-
tral. We applied continued pretraining on it with
MIMIC-BIG and MIMIC-SMALL with entity-
centric masking and random masking. We denote
the model pretrained with entity-centric masking
EntityBERT, and model pretrained with random
masking RandMask. For both masking strategies,
we use different random seeds.

The pretrained models are then fine-tuned for the
three clinical tasks (TLINK temporal relation ex-
traction, DocTimeRel classification, and negation
detection) and one biomedical task (PubMedQA).
Since the TLINK task has the most relation types
and is the most complicated task among the three,
we use it as the primary testing task. The best mod-
els derived on the TLINK task are then tested on
the other tasks.

2.5 Settings

We used an NVIDIA Titan RTX GPU cluster of 7
nodes for pre-training and fine-tuning experiments
through HuggingFace’s Transformer API (Wolf
et al., 2019) version 2.10.0.

For pretraining, we set the max steps to 200k
to allow full model convergence, and set the block
size to 100. For fine-tuning, the batch size is se-
lected from (16, 32), the learning rate is selected
from (1e-5, 2e-5, 3e-5, 4e-5, 5e-5).



195

Figure 3: The architecture for continued pretraining of PubMedBERT with the entity-centric masking strategy.

For the TLINK task, the maximal sequence
length is set to 100. The models are fine-tuned
on the THYME colon cancer training set, parame-
ters are optimized through the THYME colon de-
velopment set, and tested on the THYME colon
cancer test set. The performance is evaluated by
the Clinical TempEval evaluation script (Bethard
et al., 2017) modified to accommodate the refined
temporal relations (Wright-Bettner et al., 2020).

For the DocTimeRel task, the maximal sequence
length is set to 30. The models are fine-tuned on
the THYME colon cancer training set, parameters
are optimized on the THYME colon cancer devel-
opment set, and tested on both the THYME colon
cancer test set and the THYME brain cancer test
set for portability evaluation.

For the negation task, the maximal sequence
length is set to 64. We follow the same source-
target setting as (Lin et al., 2020a) to carry out the
cross-domain negation experiments.

For PubMedQA, the maximal sequence length
is set to 100 to accommodate both the question and
the long answer. The average PubMedQA ques-
tion length is 14.4 tokens, while the average long
answer length is 43.2 tokens (Jin et al., 2019).

Following (Reimers and Gurevych, 2017) in
addition to reporting the best scores, we executed
multiple runs with varied settings (e.g. random
seeds, learning rates, etc.). We compared the dis-
tributions with two-sample t-test and report related
p-values.

3 Results

Table 2 shows that on the test set of the TLINK
task, the best rates for randomly masking entities

Entity-rate Word-rate Overall TLINK F1

30% 10% 0.631
30% 12% 0.644
30% 14% 0.642
40% 10% 0.640
40% 12% 0.651
40% 14% 0.642
40% 16% 0.639
50% 12% 0.643
50% 14% 0.641
60% 8% 0.638
60% 10% 0.634
60% 12% 0.631

Table 2: Effect of masking rates for entities (entity-
rate) and random words (word-rate) when pretraining
PubMedBERT on MIMIC-SMALL for temporal rela-
tion extraction. Performance is in terms of overall F1.

and words are 40% and 12%, respectively. The
table shows only the most successful rates; we con-
sidered more entity rates (20%, 40%, 60%, 80%,
100%) and word rates (0%, 8%, 10%, 12%, 14%,
16%). We found that (1) masking non-entity words
in addition to masking entities is important as non-
entity words capture semantic/syntactic informa-
tion, and (2) masking too many tokens may make
the reconstruction task too hard.

Table 3 shows that continuously pretraining Pub-
MedBert (PM) with entity-centric masking (En-
tity) outperforms random masking (Rand) on both
MIMIC-SMALL (p=0.034 with a two-sample t-
test) and MIMIC-BIG (p=0.046). The best scores
are marked in bold. MIMIC-BIG models have
a lower inter-seed variance and slightly better
average performance than MIMIC-SMALL. We
also combined entity-centric masking with Span-
BERT (Joshi et al., 2020) and continuously pre-



196

Random Seed

Mask BERT MIMIC 3 4 12 13 42 avg

Rand PM Small 0.628 0.641 0.632 0.628 0.641 0.634
Entity PM Small 0.643 0.641 0.640 0.634 0.651 0.642

Rand PM Big 0.634 0.637 0.641 0.634 0.635 0.636
Entity PM Big 0.641 0.642 0.640 0.643 0.648 0.643

Rand Span Small 0.632 0.630 0.632 0.641 0.636 0.634
Entity Span Small 0.638 0.635 0.637 0.643 0.643 0.639

Table 3: Effect of masking strategy (random or entity-
centric) on continuously pretraining models (PubMed-
BERT (PM) or SpanBERT) on MIMIC (BIG or
SMALL) for the TLINK task, across different random
seeds. Performance is in terms of overall F1.

trained the model on MIMIC-SMALL with differ-
ent random seeds. The last two rows of Table 3
show that entity-centric masking also helps Span-
BERT on the TLINK task (p=0.004).

For our experiments on the downstream tasks,
we choose the EntityBERT model continuously pre-
trained on MIMIC-SMALL with random seed 42
(0.651 F1) and the RandMask model continuously
pretrained on MIMIC-BIG with random seed 12
(0.641 F1) because of their best performance. For
RandMask models that all get 0.641 F1, we pick
the one continuously pretrained on MIMIC-BIG.
We fine-tuned them for the specific tasks. The de-
tailed model performance on all TLINK categories
is in the bottom two rows in Table 4. The top three
rows of Table 4 show the previous best TLINK
scores on the same THYME+ corpus by BioBERT
and BART-large (Wright-Bettner et al., 2020) and
the original PubMedBERT performance.

Table 5 shows that for cross-domain negation
detection, out of 12 cross-domain pairs, the entity-
centric masking is helpful for 9 pairs. Entity-
BERT’s cross-domain negation average F1 is 0.781
while RandMask’s average F1 is 0.773.

Table 6 shows that for DocTimeRel classifica-
tion, EntityBERT improves over RandMask in the
cross-domain setting. When trained and tested in
the same colon cancer domain, EntityBERT gets
the same overall F1 score as RandMask (0.92 F1).
But when trained on colon cancer and tested on
brain cancer, EntityBERT significantly improves
the overall F1 from 0.69 F1 to 0.72 F1 (p=0.0007).

Table 7 shows PubMedBERT, RandMask and
EntityBERT fine-tuning results on the PQA-L test
set in the reasoning-free final-phase only setting. It
is an extremely low resource setting where there
are only 450 training instances used for fine-tuning

Figure 4: Histogram of token numbers after using dif-
ferent tokenization methods to process all single-token
events in THYME Colon training set.

the models. Results are reported in accuracy using
the provided evaluation script. EntityBERT is on
par with RandMask (p=0.307) even though these
clinical-domain models are both out-of-domain for
this biomedical-domain task.

4 Discussion

The benefit of an in-domain vocabulary. To
study the in-domain vocabulary’s contribution to
a clinical task, we extract all 3,471 gold standard
events in the THYME colon cancer training set
and feed them into the PubMedBERT, RoBERTa,
and BERT tokenizers. These events are all single-
token events. Figure 4 shows the histogram of
tokens per event after tokenization (x-axis shows
the number of tokens each event is represented by).
We see that PubMedBERT keeps the majority of
the events (2,330) as one unit instead of breaking
them into multiple sub-words. The BERT tokenizer
keeps 1,729 events as one unit. The 601 events
that PubMedBERT recognizes but BERT breaks
into word pieces are of importance for the TLINK
task. If we remove these 601 events from the Pub-
MedBERT vocabulary – forcing them to be broken
down into word pieces – the model performance on
the TLINK task drops from 0.638 F1 (Table 4 row
three) to 0.541 F1, which is the same performance
we get if we replace PubMedBERT’s tokenizer en-
tirely with BERT’s.

What makes a difference? By comparing the
TLINK predictions (without applying temporal clo-
sure) produced by the best EntityBERT (0.651 F1)
and by the best RandMask (0.641 F1), we found
that EntityBERT predicted 4,924 correct TLINKs,
while RandMask predicted 4,778 correct TLINKs
(Table 8). By comparing the entities involved
in those correct TLINKs, we found that Entity-
BERT recognized 131 more entities than Rand-
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BEFORE BEGINS-ON CONTAINS ENDS-ON

Model P R F1 P R F1 P R F1 P R F1

BioBERT 0.278 0.458 0.346 0.423 0.175 0.248 0.793 0.708 0.748 0.112 0.210 0.146
BART-large 0.300 0.422 0.351 0.378 0.175 0.239 0.796 0.710 0.750 0.124 0.210 0.156
PubMedBERT 0.302 0.493 0.375 0.368 0.172 0.234 0.786 0.734 0.759 0.131 0.227 0.166
RandMask 0.309 0.460 0.370 0.376 0.165 0.229 0.804 0.726 0.763 0.131 0.160 0.144
EntityBERT 0.308 0.467 0.371 0.398 0.179 0.247 0.802 0.739 0.769 0.149 0.185 0.165

NOTED-ON OVERLAP OVERALL

Model P R F1 P R F1 P R F1

BioBERT 0.786 0.706 0.744 0.353 0.508 0.416 0.696 0.568 0.625
BART-large 0.786 0.707 0.744 0.404 0.470 0.435 0.718 0.558 0.628
PubMedBERT 0.791 0.728 0.758 0.403 0.489 0.442 0.704 0.583 0.638
RandMask 0.767 0.742 0.754 0.404 0.519 0.455 0.717 0.580 0.641
EntityBERT 0.783 0.758 0.770 0.408 0.534 0.462 0.723 0.592 0.651

Table 4: Performance of previous state-of-the-art and the proposed model (EntityBERT) on the TLINK task.

Source Target RandMask EntityBERT

Seed Strat 0.830 0.834
Seed Mipacq 0.759 0.761
Seed i2b2 0.827 0.828
Strat Seed 0.722 0.772
Strat Mipacq 0.758 0.754
Strat i2b2 0.881 0.886
Mipacq Seed 0.780 0.772
Mipacq Strat 0.756 0.785
Mipacq i2b2 0.878 0.871
i2b2 Seed 0.730 0.732
i2b2 Strat 0.662 0.664
i2b2 Mipacq 0.693 0.713

Overall 0.773 0.781

Table 5: Effect of masking strategy (Rand or Entity)
on cross-domain negation detection. Performance is in
terms of F1.

Model Domain after before bfr/ovlp overlap overall

RandMask same 0.88 0.92 0.78 0.94 0.92
EntityBERT same 0.88 0.92 0.79 0.94 0.92

RandMask cross 0.65 0.65 0.34 0.74 0.69
EntityBERT cross 0.64 0.66 0.40 0.77 0.72

Table 6: Effect of masking strategy (Rand or Entity)
for in-domain (same) and cross-domain settings of the
DocTimeRel task. Performance is in terms of F1.

Mask. Some entities only appear in EntityBERT-
identified relations, e.g. staging, hemoglobin, find-
ing, consideration, consider, develops, request,
treatment, neuropathy, carcinoma, metastasis, in-
jection, resected, and staged are involved in multi-
ple relations. Entity-centric masking masks more
entities than random masking so that those clinical
entities can be better represented by the language
model in terms of their semantic and syntactic us-
age. When the model is fine-tuned for an entity-

PubMedBERT RandMask EntityBERT

Accuracy 0.760 0.738 0.750

Table 7: Performance of models on PubMedQA.

Model within-sentence cross-sentence total

RandMask 4,021 757 4,778
EntityBERT 4,156 768 4,924

Table 8: Correctly predicted TLINK counts by Entity-
BERT and RandMask before temporal closure.

centric task like the TLINK extraction task, these
entities can be better utilized for reasoning relations
which they are part of.

In Figure 5 we visualize with BertViz (Vig, 2019)
the attention weights of head zero from the last
layer of the fine-tuned RandMask and EntityBERT
models on the TLINK task for a relation that Enti-
tyBERT correctly predicted but RandMask missed.
The context is he has had steroid <e> injection
</e> <t> date </t>. A plausible explanation is that
because the key entities, injection and date, are not
well represented in RandMask model, the [CLS]
token of RandMask model (Figure 5 (a)) focuses
on entity markers, <e>, </e>, <t>, and </t>. It
may figure out this is an event-time relation but
incorrectly infers its type. The [CLS] token of En-
tityBERT (Figure 5 (b)) bakes in representations of
all tokens with knowledge that injection is related
to steroid and date is related to <e> injection </e>,
which shows the key entities are well represented.

Table 8 also shows that the EntityBERT model
is most helpful for within-sentence relations (135
more correct within-sentence predictions vs. 11
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Figure 5: Attention visualization of the last layer of
RandMask (a) and EntityBERT (b).

more correct cross-sentence predictions). It could
mean the better-learned entity representation is
most helpful within a relatively close distance for
the current model architecture. To help inferring
longer-distanced relations, we may need enhanced
model architectures, e.g., DeBERTa (He et al.,
2020), that can represent the relative distance be-
tween two entities in a disentangled fashion.

Combining Entity-centric Masking with An-
other Masking Strategy. Some other pre-trained
language models like BART (Lewis et al., 2019)
and SpanBERT (Joshi et al., 2020) are not pre-
trained on clinical/biomedical corpora. Yet, they
are suitable for clinical tasks in that they mask
contiguous random spans instead of individual to-
kens/word pieces during pretraining – in the clin-
ical domain there are a lot of events and entities
that span multiple tokens (e.g., ascending colon
cancer, March 11, 2011). Even without any contin-
ued pretraining on a clinical corpus, BART-large
achieves 0.628 F1 on the TLINK task (Table 4,
row 2), and with continued pretraining on MIMIC-
SMALL, SpanBERT-base achieves 0.641 F1 (Ta-
ble 3, row 5, seed 13). Interestingly, entity-centric
masking can further increase SpanBERT perfor-
mance in the continued pretraining setting (Table 3,
last two rows, p=0.004). The reason could be that
even though clinical entities could span multiple
tokens, a contiguous random span may not be a clin-
ical entity. So, specifically masking clinical entities
still has its advantage during continued pretraining
a contiguous-span-based language model. We may
even see further improved performance if BART or
SpanBERT can be pretained from scratch on large
clinical/biomedical corpora (however, such a cor-
pus is not available currently!) and then combined
with entity-centric masking.

The Strength and Limitations of Entity-

BERT: EntityBERT assumes that clinical entities
are important words, thus if a clinical language
model can represent clinical entities better, it will
benefit downstream clinical entity-centric tasks.
Therefore, such a masking strategy increases the
entity concentrations in the masked words during
the model pretraining, but does not increase the
overall computational loads either for pre-training
or for fine-tuning since the overall total number of
masked items is similar to random word masking.
This is unlike building an additional neural network
for selective masking Gu et al. (2020b) or incorpo-
rating knowledge graphs Zhang et al. (2019).

The better representation of clinical entities is
not only beneficial in an in-domain setting, e.g., the
TLINK task, but also effective in a cross-domain
setting, e.g., the negation and DocTimeRel tasks.
For the DocTimeRel task, both EntityBERT and
RandMask achieve very good in-domain perfor-
mance of 0.92 F1 (see Table 6). In its cross-domain
setting, EntityBERT has a clear edge of 0.71 F1
over RandMask 0.69 F1 (see Table 6). Even though
some of the improvements may not seem big, they
are statistically significant.

We acknowledge some limitations of the cur-
rent EntityBERT model. First, it is pretrained with
a relatively small block size (100 tokens) which
is sufficient for a sentence- or a short-paragraph-
level reasoning tasks but may be not sufficient for
document-level tasks. Second, EntityBERT aims to
improve the performance of entity-centric clinical
tasks. For tasks that may not directly leverage enti-
ties, such as question answering or document clas-
sification, entities may still play a supporting role
but may not prove as effective. However, we hy-
pothesize that even in those cases its performance
would be on-par with RandMask because of its
in-domain vocabulary and continued training on a
clinical corpus.

Based on the results of Table 7 on PubMedQA,
we can see that even though RandMask and Entity-
BERT models are continuously pretrained from the
PubMedBERT model, the continued pretraining on
a clinical corpus has made them diverge from its
biomedical domain. For the PubMedQA biomedi-
cal domain task, the original PubMedBERT model
was pretrained from scratch in this target domain,
thus performs the best in this task. Yet, even for
this non-entity-centric task, EntityBERT performs
slightly (but not significantly) better than the Rand-
Mask model (0.750 vs. 0.738 in accuracy).
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MIMIC-BIG vs. MIMIC-SMALL: Rand-
Mask and EntityBERT models pretrained on
MIMIC-SMALL perform almost on par with mod-
els pretrained on the much bigger corpus, MIMIC-
BIG (Table 3) for the TLINK task. The reason
could be that even though clinical language varies,
the crucial clinical entities are not that many. For
example, for the TLINK task, there are only 3,471
unique gold standard events in the training set.
Thus, although the size of the corpus is smaller,
it could be sufficient for the model to learn repre-
sentations of the important unique entities.

MIMIC-BIG was created by filtering sentences
with fewer than two entities with the goal of cap-
turing pair-wise interactions between events in the
language model. One of the limitations of our ar-
chitecture is its block size. Perhaps with a model
that can effectively represent the relative distances,
the interactions among entities can be represented
better. In addition, by eliminating sentences that
only have one or no entity, MIMIC-BIG misses
some language phenomena. MIMIC-SMALL, de-
spite its smaller size, thus may encounter more
diverse language. This could be the explanation of
why an EntityBERT model pretrained on MIMIC-
SMALL gets the best TLINK performance (0.651
F1; Table 3 row 2 and Table 4 bottom row).

In the future, we will investigate combining
entity-centric masking with DeBERTa (He et al.,
2020) with the goal of developing a strategy for
a deep neural model that combines entities and
their relative position in an input sequence. We
will experiment with more flavors of EntityBERT
with different block sizes for a wider range of clini-
cal applications. Further testing EntityBERT on a
wider range of clinical and biomedical tasks would
be helpful for understanding its capabilities.
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