@inproceedings{liu-etal-2021-bits,
title = "{BIT}{'}s system for {A}uto{S}imul{T}rans2021",
author = "Liu, Mengge and
Chen, Shuoying and
Li, Minqin and
Wang, Zhipeng and
Guo, Yuhang",
booktitle = "Proceedings of the Second Workshop on Automatic Simultaneous Translation",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.autosimtrans-1.2",
doi = "10.18653/v1/2021.autosimtrans-1.2",
pages = "12--18",
abstract = "In this paper we introduce our Chinese-English simultaneous translation system participating in AutoSimulTrans2021. In simultaneous translation, translation quality and delay are both important. In order to reduce the translation delay, we cut the streaming-input source sentence into segments and translate the segments before the full sentence is received. In order to obtain high-quality translations, we pre-train a translation model with adequate corpus and fine-tune the model with domain adaptation and sentence length adaptation. The experimental results on the evaluation data show that our system performs better than the baseline system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2021-bits">
<titleInfo>
<title>BIT’s system for AutoSimulTrans2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengge</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuoying</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minqin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhipeng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-jun</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Automatic Simultaneous Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we introduce our Chinese-English simultaneous translation system participating in AutoSimulTrans2021. In simultaneous translation, translation quality and delay are both important. In order to reduce the translation delay, we cut the streaming-input source sentence into segments and translate the segments before the full sentence is received. In order to obtain high-quality translations, we pre-train a translation model with adequate corpus and fine-tune the model with domain adaptation and sentence length adaptation. The experimental results on the evaluation data show that our system performs better than the baseline system.</abstract>
<identifier type="citekey">liu-etal-2021-bits</identifier>
<identifier type="doi">10.18653/v1/2021.autosimtrans-1.2</identifier>
<location>
<url>https://aclanthology.org/2021.autosimtrans-1.2</url>
</location>
<part>
<date>2021-jun</date>
<extent unit="page">
<start>12</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BIT’s system for AutoSimulTrans2021
%A Liu, Mengge
%A Chen, Shuoying
%A Li, Minqin
%A Wang, Zhipeng
%A Guo, Yuhang
%S Proceedings of the Second Workshop on Automatic Simultaneous Translation
%D 2021
%8 jun
%I Association for Computational Linguistics
%C Online
%F liu-etal-2021-bits
%X In this paper we introduce our Chinese-English simultaneous translation system participating in AutoSimulTrans2021. In simultaneous translation, translation quality and delay are both important. In order to reduce the translation delay, we cut the streaming-input source sentence into segments and translate the segments before the full sentence is received. In order to obtain high-quality translations, we pre-train a translation model with adequate corpus and fine-tune the model with domain adaptation and sentence length adaptation. The experimental results on the evaluation data show that our system performs better than the baseline system.
%R 10.18653/v1/2021.autosimtrans-1.2
%U https://aclanthology.org/2021.autosimtrans-1.2
%U https://doi.org/10.18653/v1/2021.autosimtrans-1.2
%P 12-18
Markdown (Informal)
[BIT’s system for AutoSimulTrans2021](https://aclanthology.org/2021.autosimtrans-1.2) (Liu et al., AutoSimTrans 2021)
ACL
- Mengge Liu, Shuoying Chen, Minqin Li, Zhipeng Wang, and Yuhang Guo. 2021. BIT’s system for AutoSimulTrans2021. In Proceedings of the Second Workshop on Automatic Simultaneous Translation, pages 12–18, Online. Association for Computational Linguistics.