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Abstract

We evaluated a range of neural machine trans-
lation techniques developed specifically for
low-resource scenarios. Unsuccessfully. In the
end, we submitted two runs: (i) a standard
phrase-based model, and (ii) a random bab-
bling baseline using character trigrams. We
found that it was surprisingly hard to beat (i),
in spite of this model being, in theory, a bad
fit for polysynthetic languages; and more inter-
estingly, that (ii) was better than several of the
submitted systems, highlighting how difficult
low-resource machine translation for polysyn-
thetic languages is.

1 Introduction

Shared tasks on machine translation are often con-
ducted on large parallel training corpora: for exam-
ple, the majority of datasets used in the WMT20
shared tasks have sentence pairs in the hundred
thousands, often even millions (Barrault et al.,
2020). In contrast, the AmericasNLP 2021 shared
task (Mager et al., 2021) provided us with as lit-
tle as 3,883 sentence pairs (for Ashaninka), and
with the exception of Quechua (125k pairs), all
languages had fewer than 30k sentence pairs. Addi-
tionally, many of these languages are polysynthetic,
which is known to provide additional challenges for
machine translation (Klavans et al., 2018; Mager
et al., 2018b).

We initially focused our efforts on two areas:
(i) obtaining more data, both parallel and monolin-
gual (Sec. 2); and (ii) exploring a range of different
neural machine translation techniques, particular
those specifically developed for low-resource sce-
narios, to find a promising system to build on and
tweak further. Unfortunately, we were wholly un-
successful in the latter (Sec. 5). All neural models
that we tried performed extremely poorly when
compared to a standard statistical phrase-based
model (Sec. 3.1). The overall low performance
of all our models further prompted us to implement

Language Source(s)

AYM Aymara Prokopidis et al. (2016)
BZD Bribri Feldman and Coto-Solano (2020)
CNI Asháninka Ortega et al. (2020), Cushimar-

iano Romano and Sebastián Q.
(2008), Mihas (2011)

GN Guaraní Chiruzzo et al. (2020)
HCH Wixarika Mager et al. (2018a)
NAH Nahuatl Gutierrez-Vasques et al. (2016)
OTO Hñähñu Comunidad Elotl (2021)
QUY Quechua Agić and Vulić (2019)
SHP Shipibo-Konibo Galarreta et al. (2017)
TAR Rarámuri Brambila (1976)

Table 1: Languages in the shared task with sources of
their training datasets

a “random babbling” baseline (Sec. 3.2): a model
that outputs plausible-looking n-grams in the target
language without any actual relation to the source
sentences. This baseline, together with the phrase-
based model, were the only two systems we ended
up submitting. Our main findings are:

• It was surprisingly hard to beat a standard
phrase-based model, as evidenced not only
by our own failed attempts, but also by this
system taking third place on three languages
in the official evaluation (track 1).

• It is apparently challenging for many MT sys-
tems to even produce well-formed outputs in
the target languages, as our random babbling
baseline outperformed at least one other sys-
tem on nine of the languages, and even took
fifth place out of 12 on Ashaninka (track 2).

2 Data

We train models for all languages provided by the
shared task, using their official training datasets
(cf. Table 1). As the shared task allowed for using
external datasets, we also tried to find more data
sources to use for model training.
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Parallel data We gathered parallel Spanish-to-
target datasets for the following languages which
should not overlap with the data provided by the
shared task organizers: Aymara from JW300 (Agić
and Vulić, 2019); Guarani from Tatoeba; and
Nahuatl and Quechua from the Bible corpus by
Christodouloupoulos and Steedman (2015). We
note that for the Bible corpus, the Nahuatl portion
is from a narrower dialectal region (NHG “Tetel-
cingo Nahuatl”) than the data in the shared task,
and it also covers a different variant of Quechua
(QUW “Kichwa” vs. QUY “Ayacucho Quechua”),
but we hoped that in this extremely low-resource
scenario, this would still prove useful. All datasets
were obtained from OPUS1 (Tiedemann, 2012).

Monolingual data Wikipedias exist for Aymara,
Guaraní, Nahuatl, and Quechua. We use WikiEx-
tractor (Attardi, 2015) to obtain text data from their
respective dumps,2 then use a small set of regular
expressions to clean them from XML tags and enti-
ties. This gives us between 28k and 100k lines of
text per language.

We obtain further monolingual data from sev-
eral online sources in PDF format. For Nahuatl
and Hñähñu, we use a book provided by the Mexi-
can government;3 for Quechua, we use two books:
The Little Prince (Saint-Exupéry, 2018) and Anto-
nio Raimondi’s Once upon a time.. in Peru (Villa-
corta, 2007). The Mexican government also pub-
lishes the series Languages from Mexico which con-
tains books based on short stories in Nahuatl (Gus-
tavo et al., 2007), Raramuri (Arvizu Castillo,
2002), Hñähñu (Mondragón et al., 2002b), and
Wixárika (Mondragón et al., 2002a). Finally, we
also use the Bible translated to Quechua, Guarani,
and Aymara. We extract the text for all of these
resources with the Google OCR API.4

3 Models

We first describe the two models we submitted:
a standard phrase-based model (CoAStaL-1) and
a random babbling baseline (CoAStaL-2). Other
models that we experimented with but did not sub-
mit for evaluation are discussed later in Sec. 5.

1https://opus.nlpl.eu/
2https://dumps.wikimedia.org/
3https://www.gob.mx/inpi/documentos/

libros-en-lenguas-indigenas
4https://cloud.google.com/vision/docs/

pdf

3.1 Phrase-Based MT

We train a statistical phrase-based model with
Moses (Koehn et al., 2007) using default settings,
following the guidelines for training a baseline.5

We do minimal preprocessing: we use the provided
cleaning script and rely on plain whitespace to-
kenization, with the only exception that we also
insert spaces around square brackets. The language
model is trained with 5-grams instead of 3-grams,
as this improved the results very slightly on the
development sets. We train a separate model for
each language and use the respective development
set for tuning before translating the test set.

The models we submitted did, mistakenly, not
make use of the additional parallel data we gath-
ered (cf. Sec. 2). We evaluated the same system
trained with this additional data after the deadline,
but unfortunately did not observe an improvement;
we present results for both variants in Sec. 4.

3.2 Random Babbling Baseline

Since we observed very low scores for all the mod-
els we tried, we wanted to compare with a baseline
that generates text based only on (i) n-gram distri-
butions in the target language, and (ii) lengths of
the source sentences. We call this baseline random
babbling because it is in no way conditioned on the
actual words in the source sentences.

Concretely, we “train” our baseline by extracting
and counting all character trigrams in the training
file of the target language. Characters were cho-
sen over words as the official evaluation metric of
the shared task, chrF, is character-based. We also
calculate the average length ratio of the sentence
pairs in order to determine the desired length of our
“translation” at test time. To generate output, we
simply choose the top n most frequent character
trigrams, with n chosen so that the desired sentence
length is reached.6

Lastly, we perform a few tweaks to disguise this
babbling as an actual translation: (i) we random-
ize the order of the chosen trigrams, (ii) reduce
multiple consecutive whitespace characters to a
single space, (iii) lowercase all characters that are
not word-initial and uppercase the sentence-initial

5http://www.statmt.org/moses/?n=Moses.
Baseline

6We also tried random baseline models with other n-gram
lengths, sampling from the distribution (instead of always
picking the most frequent items), and training a simple lan-
guage model, but found nothing that significantly improved
on this approach on the development set.

https://opus.nlpl.eu/
https://dumps.wikimedia.org/
https://www.gob.mx/inpi/documentos/libros-en-lenguas-indigenas
https://www.gob.mx/inpi/documentos/libros-en-lenguas-indigenas
https://cloud.google.com/vision/docs/pdf
https://cloud.google.com/vision/docs/pdf
http://www.statmt.org/moses/?n=Moses.Baseline
http://www.statmt.org/moses/?n=Moses.Baseline
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Set System Track Languages

AYM BZD CNI GN HCH NAH OTO QUY SHP TAR

DEV
CoAStaL-1: Phrase-based 1 .225 .213 .253 .235 .261 .204 .160 .276 .276 .174
CoAStaL-2: Random 2 .178 .113 .214 .132 .195 .189 .094 .234 .182 .116

TEST

Helsinki-2 (best) 1 .310 .213 .332 .376 .360 .301 .228 .394 .399 .258
CoAStaL-1: Phrase-based 1 .191 .196 .265 .241 .257 .214 .184 .269 .297 .159

+ extra data 1 .188 – – .242 – .216 – .250 – –
CoAStaL-2: Random 2 .168 .107 .212 .128 .191 .184 .101 .232 .173 .113
Baseline 2 .157 .068 .102 .193 .126 .157 .054 .304 .121 .039

(a) chrF

AYM BZD CNI GN HCH NAH OTO QUY SHP TAR

DEV
CoAStaL-1: Phrase-based 1 2.57 3.83 2.79 2.59 6.81 2.33 1.44 1.73 3.70 1.26
CoAStaL-2: Random 2 0.02 0.03 0.04 0.02 1.14 0.02 0.02 0.02 0.06 0.02

TEST

Helsinki-2 (best) 1 2.80 5.18 6.09 8.92 15.67 3.25 5.59 5.38 10.49 3.56
CoAStaL-1: Phrase-based 1 1.11 3.60 3.02 2.20 8.80 2.06 2.72 1.63 3.90 1.05

+ extra data 1 1.07 – – 2.24 – 2.06 – 1.24 – –
CoAStaL-2: Random 2 0.05 0.06 0.03 0.03 2.07 0.03 0.03 0.02 0.04 0.06
Baseline 2 0.01 0.01 0.01 0.12 2.20 0.01 0.00 0.05 0.01 0.00

(b) BLEU

Table 2: Results for our submitted models on DEV and TEST sets. All TEST results are from the official evaluation
except for the “Phrase-based + extra data” setting, which we evaluated after the deadline.

character, and (iv) if the sequence does not end in a
punctuation mark but the Spanish source sentence
did, we copy and add this punctuation character
from the source side.

4 Results

Results of our models are shown in Table 2, both
for our own evaluation on the development sets and
for the official evaluation on the test sets (Ebrahimi
et al., 2021).

Phrase-Based MT Our phrase-based model
(Sec. 3.1) was ranked in track 1 of the shared task
evaluation as it makes use of the development sets
for tuning. Compared to the other systems evalu-
ated in this track, we observe a solid average perfor-
mance of our model—it usually ranks in the middle
of the field, with the best placement being 3rd on
Bribri, Hñähñu, and Shipibo-Konibo, and the worst
ranking being 8th out of 11 on Guarani. In terms
of chrF score, the model ranges between 0.159
(on Raramuri) and 0.297 (on Shipibo-Konibo), but
we note that there is a noticeable gap to the best-
performing system, Helsinki-2, which outperforms
ours by about +0.09 chrF on average.

Random Babbling Our random babbling base-
line (Sec. 3.2) did not make use of the develop-
ment sets and was therefore ranked in track 2 of
the official evaluation. Amazingly, it almost never

ranks last and even takes 5th place out of 12 on
Ashaninka. It also outperforms the official baseline
on eight of the languages. In terms of BLEU score,
on the other hand, this model usually scores close
to zero. This is because we based it on character
trigrams; if we wanted to optimize for BLEU, we
could have chosen word-based babbling instead.
Comparing across the tracks with our first, phrase-
based system, we observe that the latter scores
consistently better, which is reassuring.

4.1 Discussion

We intended our phrase-based Moses system more
as a baseline for our experiments with different
neural models than as an actual system submission.
It was surprising to us how clearly this system out-
performed our attempts at building a neural MT
system, and that it already did so with its default
configuration. In theory, whitespace tokenization
should be a bad fit for polysynthetic languages,
as a high degree of morphological complexity ex-
acerbates the problem of data sparsity and rarely
seen word forms. We experimented with different
subword tokenization techniques in combination
with Moses, but this always resulted in degraded
performance on the development sets.

The random babbling baseline was motivated by
two observations: (i) performance was extremely
low for all models we tried, and (ii) outputs of the
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neural models frequently looked very unnatural, to
the point that the models had not yet learned how
to form plausible-looking sentences in the target
languages. This is quite typical behavior for un-
derfitted neural models. As an example, this is an
output we observed when running the official base-
line system on the development set for Raramuri:

(1) IN: Realmente no me importa si tengo un
lugar para vivir.

GOLD: Ke chibi iré mapure ke nirúlisaka
kúmi ne betélima.

PRED: ( 2 ) ( a ) ké ne ga’rá ne ga’rá ne ga’rá
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá ne
ga’rá ne ga’rá ne ga’rá ne ga’rá [. . . ]

This prompted us to implement a baseline which,
while having no relation to the actual input sen-
tence, at least better resembles the typical distri-
bution of character n-grams in the given language.
Here is an example from the test set for Ashaninka
with outputs from both our phrase-based (SYS-1)
and random (SYS-2) model:

(2) IN: Todavía estoy trabajando para este
día.

GOLD: Irosatitatsi nantabeeti oka kitaiteriki.
SYS-1: Tekirata nosaikaki trabajando in-

chamenta itovantarori.” día.
SYS-2: Iritsiri irotakntakanarishiantakiro

aka.

We can see that both system outputs bear very lit-
tle resemblance to the gold translation or to each
other. While Moses (SYS-1) copies a few Spanish
words and includes implausibly placed punctuation
marks, random babbling (SYS-2) produces output
of similar length to the correct translation and over-
laps with it in several observable character trigrams
(e.g. iro, tsi, ant).

Obviously, the random babbling baseline is not
meant as an actual suggestion for a translation
system—it literally does not “translate” anything.
However, as the official shared task evaluation and
the examples above show, it can serve as a useful
“sanity check” for situations where the performance
of actual MT systems is so low that it is unclear
whether they even acquired superficial knowledge
of character distributions in the target language.

5 Things that did not work

Here we briefly describe other ideas that we pur-
sued, but were unfortunately not successful with,
so we did not submit any systems based on these
techniques for evaluation.

Pre-trained Transformers Following Rothe
et al. (2020), we use an auto-encoding transformer
as the encoder and an auto-regressive transformer
as the decoder of a sequence-to-sequence model.
Out of the several configurations we experimented
with, the best performance was observed when the
encoder is pre-trained on the Spanish OSCAR cor-
pus (Ortiz Suárez et al., 2020) and the decoders are
pre-trained on language-specific monolingual cor-
pora collected from the web (cf. Sec. 2) along with
the target files of the training data. However, the
results were not on-par with the simpler models;
averaging over all languages, we observed a chrF
score of 0.12 on the dev sets, compared to 0.23
with the phrase-based model (cf. Sec. 3.1). We pos-
tulate that the training data was just not enough to
train the cross-attention weights between the en-
coder and decoders. Note that these weights need
to be trained from scratch, as opposed to the other
weights which are initialized from language mod-
elling checkpoints.

Back-translation In an attempt to improve the
transformer-based models, we used the shared task
data to train similar transformer-based models in
the reverse direction, i.e. to Spanish, in order to
back-translate the monolingual corpora (cf. Sec. 2).
This would give us automatically translated Span-
ish outputs to use as the source side for additional
training data (Sennrich et al., 2016; Hoang et al.,
2018). Since monolingual data in Spanish—which
was used to pre-train the decoder’s language model
for this experiment—is abundant, we expected the
machine-translated Spanish text to be of reasonably
good quality. However, the models turned out to
perform quite badly, with the resulting Spanish text
being of very low quality and often very repetitive.
We therefore decided to abandon this direction after
preliminary experiments.

Character-Level NMT Since many of the lan-
guages in the shared task are polysynthetic, a
character-level model might be better suited here,
as it can better learn morphology (Belinkov et al.,
2017). We train fully character-level models fol-
lowing Lee et al. (2017), which are based on com-
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bining convolutional and recurrent layers.7 Finding
a good hyperparameter configuration for this model
proved very time-consuming; the best configura-
tion we found modifies the original model by using
half the number of units in the embedding layer
and decoder layers (256 and 512, respectively). For
Quechua, which we initially experimented on, this
yielded a chrF score of 0.33 on the dev set vs. 0.27
with phrase-based MT, but we ran out of time to
train models for the other languages. A post-hoc
evaluation on the other languages failed to replicate
this success, though. Potentially, the hyperparame-
ter configuration is very sensitive to the language
in question, or the amount of training data was not
enough for the other languages (Quechua had by
far the largest training set of all languages in the
shared task).

Language Model Prior We train NMT models
using a language model prior, following Bazio-
tis et al. (2020). This method allows us to make
use of the additional monolingual data we gath-
ered (cf. Sec. 2) within a neural MT framework,
and we hoped that this would help the model to
produce valid words in the target languages, i.e.,
reduce the “babbling” effect we saw in outputs like
Example (1) above. We focused our efforts on
the LSTM-based models provided by the authors8

rather than the transformer ones, since we believe
that those should be easier to train in this extremely
low-resource setting. Despite experimenting with
different hyperparameters (including number and
size of LSTM layers), we could not exceed an av-
erage 0.16 chrF on the dev sets (compared to 0.23
with the phrase-based model).

Graph Convolutional Encoders We experi-
ment with graph convolutional encoders using the
framework by Bastings et al. (2017). Thus, we train
NMT systems that operate directly over graphs; in
our case, syntactic annotations of the source sen-
tences following the Universal Dependencies (UD)
scheme (Nivre et al., 2020). We parsed the all the
source sentences from training set provided by the
task organizer with Stanza (Qi et al., 2020). We
were initially motivated to follow this approach be-
cause UD annotation can provide extra information
to the encoder to generate better translations, ide-
ally with less data. Even though we tested several
configurations, not even our best architecture—two

7We use our own reimplementation of the authors’ code.
8https://github.com/cbaziotis/

lm-prior-for-nmt

layers of GCN encoder with 250 units, and LSTM
decoder with 250 units, trained for 5 epochs, with
a vocabulary of 5000 words in source and target—
was able to outperform the random babbling sys-
tem. We hypothesize that with this amount of ex-
amples, UD’s external information is not sufficient
to produce an efficient encoder.

6 Conclusion

The (relative) success of our random babbling base-
line shows that many MT systems fail to reproduce
even superficial characteristics of word formation
and character distribution in the target languages;
a result that was confirmed by our own failed at-
tempts at training a competitive neural MT model.

Out of the neural models we tried, purely
character-level MT was among the more promising
ones. We speculate that in the Spanish-to-target
setting, a model that combines a strong pre-trained
Spanish encoder with a purely character-level de-
coder might be a promising direction for further
experiments.

We also note that there are several language-
specific resources, such as morphological segmen-
tation tools,9 that might be worth using. We fo-
cused our efforts here on finding a broadly appli-
cable architecture without any language-specific
components, but would be curious to see if includ-
ing such components can yield significant improve-
ments on individual languages.

Acknowledgements

Marcel Bollmann was funded from the European
Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant
agreement No. 845995. Rahul Aralikatte and An-
ders Søgaard were funded by a Google Focused Re-
search Award. Miryam de Lhoneux was funded by
the Swedish Research Council (grant 2020-00437).

References
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