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Abstract

Hierarchical document categorisation is a spe-
cial case of multi-label document categorisa-
tion, where there is a taxonomic hierarchy
among the labels. While various approaches
have been proposed for hierarchical document
categorisation, there is no standard benchmark
dataset, resulting in different methods being
evaluated independently and there being no
empirical consensus on what methods perform
best. In this work, we examine different combi-
nations of neural text encoders and hierarchical
methods in an end-to-end framework, and eval-
uate over three datasets. We find that the perfor-
mance of hierarchical document categorisation
is determined not only by how the hierarchical
information is modelled, but also the structure
of the label hierarchy and class distribution.

1 Introduction

Document categorisation is a core task in infor-
mation retrieval and natural language processing,
whereby documents are categorised relative to a
pre-defined set of labels. While the majority of
research on document categorisation assumes a flat
label structure, in practice in large-scale document
categorisation tasks, there is often hierarchical la-
bel structure, in the form of either a tree or directed
acyclic graph (Zhou et al., 2020; Azarbonyad et al.,
2021), where “child” labels inherit the properties
of their parents. The goal of hierarchical document
categorisation is to classify documents into a set
of labels, where there is a hierarchical relationship
among the labels.

Hierarchical document categorisation methods
explicitly capture the label structure during train-
ing. There has been a resurgence of interest in doc-
ument categorisation in recent years, in part driven
by breakthroughs in representation learning and
pre-trained language models (Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; Kim,

2014; Wang et al., 2017; Devlin et al., 2019), which
generate more expressive, general-purpose repre-
sentations, thereby leading to performance gains
across a range of NLP tasks. Despite this, there
has been relatively little recent work specifically on
hierarchical document categorisation. What recent
work does has varied wildly in the choice of text
encoder and dataset, with no systematic, controlled
cross-dataset evaluation to be able to make solid
conclusions as to whether the reported performance
gains are attributable to the proposed hierarchical
document categorisation method or just the text
encoders used. Our work focuses on examining
the capacity of existing methods dealing with la-
bels with a hierarchical structure, which is different
from the work of Yang et al. (2016), which focuses
on modelling documents in a hierarchical way to
perform classic document classification task.

In this work, we carry out systematic evaluation
of a range of contemporary hierarchical document
categorisation approaches, using a range of neural
text encoders, based on three document collections
with hierarchical label sets.

2 Related Work

Hierarchical document categorisation methods can
be grouped into: flat approaches, local approaches,
global approaches, and hybrid methods, based on
how they utilise the label hierarchy.

2.1 Flat Approaches

Flat approaches (Eisner et al., 2005; Freitas and
Carvalho, 2007) simply ignore the label hierarchy,
and assume all classes are independent. As such,
they are unable to capture the label structure and
are poor at handling mutual exclusivity, especially
among sibling nodes in multi-label categorisation
tasks.



2.2 Local Approaches

Local approaches generally make predictions top-
down recursively, along paths in the label hierarchy.
They can be divided into three groups (Silla and
Freitas, 2011): a local classifier per node (LCN),
a local classifier per parent node (LCPN), or a lo-
cal classifier per level (LCL). In LCN, there is a
binary classifier for each node, which determines
whether a document belongs to that node or not
(Eisner et al., 2005; Freitas and Carvalho, 2007).
In contrast, LCPN (Davies et al., 2007; Secker et al.,
2010; Shimura et al., 2018; Banerjee et al., 2019)
employs a multi-class classifier at each parent node,
predicting which child node the document should
be assigned to. Compared with LCN, LCPN sig-
nificantly reduces the number of local classifiers,
and can be applied in either single-label or multi-
label settings. In contrast, LCL (Kowsari et al.,
2017) employs a multi-class classifier at each layer
in the hierarchy. This method usually fails to cap-
ture parent–child information between layers. For
all three approaches, a top-down approach is of-
ten used to avoid label inconsistency, making them
prone to error propagation.

2.3 Global Approaches

Global approaches (Mao et al., 2019; Zhou et al.,
2020) optimise across all labels simultaneously,
taking the label hierarchy into account. The sim-
plest global approach converts the hierarchical cat-
egorisation task into a multi-label categorisation
task, where each original label is replaced with its
ancestors and itself. Similar to local approaches,
this potentially results in label inconsistency during
inference. A more popular global approach is to
include a loss term which captures the hierarchy
in some way (Gopal and Yang, 2013; Peng et al.,
2018), such as an entropy term (Clare and King,
2003) or distance metric (Vens et al., 2008). For
example, Zhou et al. (2020) proposed a hierarchy-
aware structure encoder to model the label hierar-
chy as a directed graph. It can capture global hi-
erarchical information as it models both top-down
and bottom-up label dependencies. Moreover, all
nodes are linked with each other, meaning that pair-
wise co-occurrence can be modelled in addition to
parent–child relationships.

2.4 Hybrid Methods

There are also hybrid methods which combine
the methods mentioned above (Wehrmann et al.,

2018; Huang et al., 2019). For example, Gopal and
Yang (2013) used simple recursive regularisation to
encourage parameter smoothness between linked
nodes, with positive results independently reported
by Peng et al. (2018) and Zhou et al. (2020).

3 Experiments

3.1 Models

In our work, each model consists of a text encoder
and a hierarchical method, where the text encoder
is used to obtain text representations, and the hier-
archical method makes predictions with the assis-
tance of hierarchical label information.

3.1.1 Text Encoders
TextCNN (Kim, 2014): A CNN made up of con-
volutional and max-pooling layers. In this work,
we apply convolution kernels with width 2, 3, and
4 (3 for each width size) to word embeddings, and
use a max-pooling layer.

TextRNN: A single-layer Bi-LSTM (Wang et al.,
2017) with a cell size of 64 where the concatenated
hidden state at the last timestep makes up the docu-
ment representation.

TextRCNN: A combination of TextCNN and
TextRNN, where we first employ a single-layer
Bi-LSTM with a cell size of 64 and obtain out-
puts across all timesteps by concatenating outputs
from both directions, then apply convolution ker-
nels with width 2, 3, and 4 (3 for each width size),
followed by a max-pooling layer. This method has
achieved state-of-the-art on RCV1 for both flat and
hierarchical categorisation (Zhou et al., 2020).

BERT (Devlin et al., 2019): The hidden state
of “CLS” from BERT is used as the document
representation, using the base-uncased version.

3.1.2 Hierarchical Methods
Flat: Baseline method where all nodes are treated
as candidate classes, ignoring hierarchical informa-
tion.

Recursive Regularization (RR: Gopal and Yang
(2013)): A hybrid method, utilising simple recur-
sive regularisation to encourage parameter smooth-
ness between linked nodes.

Hierarchical Multi-Label Classification Net-
works (HMCN: Wehrmann et al. (2018)): A
hybrid local/global approach, where each level in



Dataset |L| Avg(|L|) Depth Training Test

RCV1 103 3.24 4 23,149 592,688
SHINRA 237 3.16 4 390,433 43,382
WoS 141 2.00 2 42,286 4,699

Table 1: Statistics of datasets: “|L|” is the total number of labels; “Avg(|L|)” is the average number of labels per
document; and “Depth” indicates the maximum hierarchy depth.

the model corresponds to a level in the label hierar-
chy. The global model consists of multiple linear
layers with ReLU as the activation function. The in-
put to each layer includes the original sequence and
the output from its immediate last layer, where the
hidden size for each layer is 384 as in Wehrmann
et al. (2018). Passing information from the first
layer to the last layer, we obtain the global out-
put. In addition, the output from each layer is also
fed into a local layer, where the hidden size is the
number of nodes/classes in the corresponding hier-
archical level. Then the sum of the global output
and concatenated local outputs is fed into a sigmoid
function to predict the classes.1

Hi-GCN (Zhou et al., 2020): An end-to-end
hierarchy-aware global model that extracts the la-
bel hierarchy information to achieve label-wise text
features. A graph convolutional network is used as
the structure/hierarchy encoder, where each edge
represents the correlation between a pair of nodes.
There are three types of edges in the graph: top-
down, bottom-up, and self-loop edges, where the
weights for bottom-up and self-loop edges are 1,
and the weights for top-down edges are determined
by the predefined hierarchy and dataset distribu-
tions. To obtain label-wise text features, hierarchi-
cal text feature propagation is used. Specifically,
the text representation from a text encoder is re-
shaped to act as the node input, which is updated
through the hierarchy-aware structure encoder. The
output of a node is based on its neighbourhood: it-
self, its child nodes, and its parent nodes. The
output hidden state is then fed into the final classi-
fier.

1In the original work of Wehrmann et al. (2018), the au-
thors first apply the sigmoid function to the global output and
local outputs, respectively, resulting into extremely bad per-
formance in some settings, indicating that applying sigmoid
separately to the global and local outputs is not as effective as
applying it to the combined global and local information.

3.2 Datasets

We evaluate each text encoder+hierarchical method
combination in an end-to-end framework over three
datasets: RCV1 (Lewis et al., 2004), SHINRA
(Sekine et al., 2020), and WoS (Kowsari et al.,
2017). Here, RCV1 is a collection of news arti-
cles published by the Reuters News between 1996
and 1997. SHINRA contains English Wikipedia
articles from the SHINRA2020-ML shared-task
(Sekine et al., 2020), where each Wikipedia article
is labelled according to a fine-grained named entity
label set known as Extended Named Entity (ENE).2

WoS is a collection of abstracts from academic pa-
pers across different research domains and areas.
The statistics of each dataset is given in Table 1.
Looking at the document distributions in terms of
label hierarchy levels, we find that the relationship
between the number of documents and label classes
conforms to a power-law function for RCV1 and
SHINRA, especially at lower (2+) levels. For WoS,
the number of documents per class at level 1 and 2
is relatively balanced.

3.3 Evaluation Metrics

We evaluate model performance in terms of Micro-
F1 and Macro-F1, two standard evaluation metrics
for document categorisation. Micro-F1 is instance-
level F-score, and thereby gives more weight to
frequent labels. Macro-F1 is class-level F-score,
and gives equal weight to all labels.

3.4 Experimental Settings

Each document is truncated/padded to a fixed
length of 256 tokens, where stopwords are removed
for all models except BERT. For all models except
BERT, we use 100-dimensional pre-trained word
embeddings from GloVe (Pennington et al., 2014)
to initialise the word embeddings. The vocabu-
lary contains at most 100,000 words ranked by
frequency. For OOV words, the word embeddings
are randomly initialised. We train all models with

2http://ene-project.info/ene8/?lang=en



Dataset RCV1 SHINRA WoS

Method Micro Macro Micro Macro Micro Macro

TextCNN

Flat 75.63 45.24 86.94 56.46 83.41 77.00
RR 75.56 50.81 85.31 56.62 83.51 77.32
HMCN 78.22 43.49 87.03 56.28 80.24 74.38
Hi-GCN 77.80 51.34 86.91 58.61 84.09 77.37

TextRNN

Flat 78.46 49.18 88.43 60.11 83.72 77.55
RR 78.52 55.48 87.22 60.07 83.57 78.08
HMCN 80.52 48.97 88.71 59.76 82.09 75.90
Hi-GCN 81.57 56.29 88.74 61.20 84.11 77.95

TextRCNN

Flat 79.92 51.54 88.12 60.34 84.05 77.95
RR 79.81 56.37 88.06 60.32 84.14 78.03
HMCN 81.13 50.44 88.56 59.71 82.86 76.11
Hi-GCN 82.96 58.05 88.69 61.05 84.54 78.28

BERT

Flat 82.64 55.61 90.86 66.35 75.73 69.22
RR 82.13 59.41 90.70 66.59 75.77 69.43
HMCN 82.68 53.65 91.32 64.13 72.28 64.62
Hi-GCN 83.20 60.32 91.90 67.79 75.94 70.81

Table 2: Experimental results for different combinations of encoders and hierarchical document categorisation
methods. The best result for each text encoder on each dataset is indicated in bold. Micro and Macro indicate micro
and macro F1 score, resp..

a batch size of 32 using Adam (Kingma and Ba,
2014), and an initial learning rate of 1e-3 (1e-5 for
BERT) for at most 20 epochs.

For hierarchical categorisation methods, the
penalty coefficient of recursive regularisation is
set to 1e-6, while the output dimension of internal
linear layers in HMCN is set to 384. For the hyper-
parameters of Hi-GCN, we follow the recommen-
dations of the authors in the original paper (Zhou
et al., 2020). Note that in some cases, both HMCN
and Hi-GCN suffer from the vanishing/exploding
gradient problem, to counter which we apply batch
normalisation to the outputs of the linear layers in
HMCN and Hi-GCN where necessary.

3.5 Results

Table 2 presents the experimental results of differ-
ent combinations of text encoders and hierarchical
categorisation methods across the three datasets.
Model performance is heavily influenced by the
choice of text encoder, with BERT outperforming

other encoders by a large margin on RCV1 and
SHINRA in terms of both Micro-F1 and Macro-
F1, but underperforming on WoS, irrespective of
which hierarchical method it is combined with. We
hypothesis that the performance drop for BERT
on WoS is mainly due to domain shift, in that it
has been pre-trained on Wikipedia articles and the
Google Books corpus, which differ substantially
from academic writing.3 Among TextCNN, Text-
RNN, and TextRCNN, TextCNN underperforms
TextRNN and TextRCNN on all three datasets, es-
pecially on RCV1 and SHINRA. The reason is that
TextCNN can only capture local features, but the
fine-grained hierarchical distinctions captured in
the different label sets often require longer-distance
semantic dependencies.

With regards to the hierarchical categorisa-
tion methods, compared with Flat on RCV1 and

3It would be interesting to experiment with SciBERT (Belt-
agy et al., 2019), which has been pre-trained on papers from
the scientific domain, which we leave to future work.



SHINRA, RR improves Macro-F1 in most cases at
the cost of Micro-F1, indicating that RR can im-
prove the performance of classes with fewer train-
ing samples. In contrast, HMCN improves Micro-
F1 at the cost of Macro-F1, indicating that HMCN
is biased towards classes that are better represented
in the dataset. However, on WoS, RR achieves
better performance in terms of both Micro-F1 and
Macro-F1— with the one exception of Micro-F1

with TextRNN— while HMCN achieves worse per-
formance in terms of both Micro-F1 and Macro-F1.
All these results can be attributed to the fact that
RR and HMCN leverage hierarchical information
differently: RR utilises parent–child relationships,
while HMCN adopts layer-wise hierarchical infor-
mation. As a result of error propagation due to
the greedy top-down approach, HMCN performs
relatively worse the deeper the label hierarchy. For
example, Flat with TextCNN achieves a Micro-F1

of 88.53 at level-1 (7 classes) and a Micro-F1 of
83.41 at level-2 (134 classes) on WoS, where both
Micro-F1 scores at these two levels are higher than
80.24 achieved by HMCN, indicating that the cate-
gorisation errors of HMCN at level-1 propagate to
level-2 and lead to worse results on WoS.

Looking to Hi-GCN, we find that Hi-GCN with
any text encoder consistently outperforms other
methods on all three datasets in terms of both
Micro-F1 and Macro-F1, by aggregating hierarchi-
cal information in a more flexible way. In addi-
tion to passing information from parent to child
nodes, it also passes information from child to par-
ent nodes, thereby improving categorisation perfor-
mance at level-1 and categorisation at subsequent
levels. Both RCV1 and SHINRA datasets have ex-
tremely imbalanced data distributions while WoS
is relatively more balanced, which is also revealed
by the greater differences between Micro-F1 and
Macro-F1 on RCV1 and SHINRA, than on WoS.

These experiments indicate that the performance
of hierarchical document categorisation not only
depends on the text encoder and particular hier-
archical methods, but also the intrinsic hierarchy
label structure and the label distribution.

4 Conclusions

We examine various combinations of text encoders
and hierarchical categorisation methods in an end-
to-end fashion over three datasets. We find that
the choice of text encoder is a strong determi-
nant of performance than the choice of hierarchical

method, and indeed that local hierarchical methods
don’t consistently outperform baseline flat classifi-
cation methods. With regards to hierarchical meth-
ods, RR improves Macro-F1 at the cost of Micro-F1

on RCV1 and SHINRA, while HMCN improves
Micro-F1 at the cost of Macro-F1 on RCV1 and
SHINRA. An opposite trend is observed on WoS,
namely an improvement for RR and deterioration
for HMCN. These different behaviours are deter-
mined by how the hierarchical label information
is modelled during training. The global model Hi-
GCN achieves superior performance in terms of
both Micro-F1 and Macro-F1 on all three datasets,
indicating the necessity of capturing the hierarchy
label structure holistically.
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