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Abstract

Human annotation for establishing the training
data is often a very costly process in natural
language processing (NLP) tasks, which has
led to frugal NLP approaches becoming an im-
portant research topic. Many research teams
struggle to complete projects with limited
funding, labor, and computational resources.
Driven by the Move-Step analytic framework
theorized in the applied linguistics field, our
study offers a rigorous approach to the frugal
use of two human annotators to scale up auto-
coding for text classification tasks. We applied
the Linear Support Vector Machine algorithm
to text classification of a job ad corpus. Our
Cohen’s Kappa for inter-rater agreement and
Area Under the Curve (AUC) values reached
averages of 0.76 and 0.80, respectively. The
calculated time consumption for our human
training process was 36 days. The results in-
dicated that even the strategic and frugal use
of only two human annotators could enable
the efficient training of classifiers with reason-
ably good performance. This study does not
aim to provide generalizability of the results.
Rather, it is proposed that the annotation strate-
gies arising from this study be considered by
our readers only if they are fit for one’s spe-
cific research purposes.

1 Introduction

In natural language processing (NLP), human an-
notation is an indispensable and decisive step. The
human annotation process directly influences the
quality of the training data in NLP tasks, and con-
sequently, it influences the quality of machine-
generated results. In this regard, Song et al. (2020)
have revealed how significant the risk of reaching
an incorrect conclusion could be if the quality of
human annotation used for validation cannot be
guaranteed. Unfortunately, the science of annota-
tion is progressing very slowly (Hovy and Lavid,
2010; Song et al., 2020). In many NLP studies,

methodological details concerning the human anno-
tation process have not been fully disclosed (Song
et al., 2020). Such a lack of disclosure may hinder
readers’ judgment of the soundness of human an-
notation procedures (Hovy and Lavid, 2010; Song
et al., 2020). It is time for NLP researchers to at-
tach greater importance to the methodological rigor
of human annotation in NLP tasks.

Where the funding and labor are limited, institu-
tions or researchers might have to turn to the ‘fru-
gal’ use of human annotators for text labelling tasks.
For instance, Andreotta et al. (2019) acknowledged
the limitation of not being able to afford high com-
putational and labor costs in their machine learn-
ing (ML)-assisted analysis of Tweeter commentary.
Johnson et al. (2018) also point out cost control
that many engineering teams may need to deal with
and emphasize the importance of minimizing labor
cost and required training data to meet target results
in NLP projects. Therefore, well-planned invest-
ment of labor and training resources for NLP and
ML tasks is a topic worth considerable scholarly
attention. We need to investigate how to make the
best use of limited labor and monetary resource to
achieve the optimal machine-generated outcomes,
while preserving methodological rigor.

Crowdsourcing is often put forward as a solu-
tion to the human coder resource problem. Aside
from the fact that crowds are often not experts, this
kind of human annotation is allowed only in some
national contexts, such as in the US (e.g., Munro
et al., 2010; Pavlick et al., 2014). This solution is
not broadly applicable and has ethical implications
with respect to researchers exploiting free or cheap
labor. For instance, such option does not conform
to the requirement for minimum hourly salaries un-
der employment laws in national contexts such as
Australia (Australian Government, 2020). Under
circumstances of regulatory limitations and within
ethical constraints, it becomes necessary to resort
to the frugal use of human annotators to scale up



data analyses.
Unlike human annotation tasks for ordinary im-

age annotation (e.g., dog vs. cat recognition), many
text annotations require expert knowledge because
they are simply more demanding. For instance,
the labelling of research skills in job ads involved
human annotators who worked as researchers and
educators at universities in Mewburn et al. (2020).
These researchers point out that it can be extremely
time and money-consuming to hire multiple expert
human annotators. In many cases, if annotation pro-
cedures were well-devised, the frugal option gen-
erated results that were as good as the more costly
option (Chang et al., 2017; Cocos et al., 2015).
From the perspective of cost control, a better op-
tion would be to also involve non-expert annotators
with well-designed annotation schemes to reach the
optimal annotation outcomes (Chang et al., 2017).
Therefore, it is in the interest of textual-data sci-
entists to investigate if there is a way to guarantee
the quality of manual annotation with the frugal
use of human coders for automatic textual data
analyses at scale. As many social science disci-
plines (e.g., applied linguistics or sociology) have a
record of excellent human annotation frameworks,
it is worth considering if annotation frameworks
in any of these fields could help us enhance the
methodological soundness for human annotation
process in NLP tasks.

The research questions of this study are
posed as follows:

1. For automatic text classification tasks, how
could we design human annotators’ workshop fru-
gally and at the same time maintain good perfor-
mance of the machine?

2. How could we design the human annotators’
workshop to enable easy identification and fixation
of problems in the human annotation schema?

3. If multiple human annotators were involved,
which annotator’s labelled data should be adopted
for training?

The primary outcomes of this study were as
follows:

1. The frugal use of an expert annotator and a
non-expert annotator generated an averaged Co-
hen’s Kappa of 0.76.

2. The total time investment of our frugal ap-
proach to human annotation was 376 hours (the
time consumed by two human annotators).

3. The frugal use of only two human annota-
tors plus a limited amount of labelled data resulted

in an averaged area under the receiver operating
characteristic (ROC) curve (AUC) score of 0.80.

4. Differentiation of coarse-grained and fine-
grained labels allowed for enhanced interpretability
of the ML performance. It also allowed for strate-
gically hybrid use of multiple human annotators’
labels to optimize the ML performance.

2 Methods

2.1 Data
Our human coders annotated job ad data from a cor-
pus of high research skill intensive job ads of com-
puting and healthcare positions1. In total, 1,800
job ads were chosen randomly from a large corpus
consisted of health-domain and computing-domain
job postings. The word counts of the 1,800 job
ads reached 680,367. The randomly chosen job
ads contained 900 health-domain job ads and 900
computing-domain job ads. As we aimed to mini-
mize the labor and time cost, as well as the amount
of data used for training and validation, the selec-
tion of only 1,800 job ads was based on a balanced
consideration of the machine’s performance and
the time investment on manual annotation.

The job ad corpus was purchased from Burning
Glass Technology Inc. Due to legal constraints, the
data used for this study cannot be shared. However,
it is assumed that our audience would be those who
do not necessarily need to conduct analyses of job
ads, but potentially other text classification tasks.
Alternatively, readers interested in obtaining the
same data for a verification of the results could
contact Burning Glass Technology Inc. directly.

2.2 Ethics
We went through necessary ethics procedures to
avoid potential conflict of interests. We obtained
the approval for the data to be used for our research
purpose. The manuscript of the paper was read by
a legal consultant in our team and a representative
from Burning Glass Technology Inc. to ensure our
publication met contractual agreements. We also
signed an agreement with our human annotators
for clarification of responsibilities and task specifi-
cations. The agreement with the human annotators
was approved by our ethics delegate. Thus, we be-
lieve that ethical issues were mitigated to the best
of our abilities.

1We only analyzed computing-domain and health-domain
job postings because the current paper is part of a large project
to contextualize high-RSI job requirements for pedagogical
purposes.



2.3 Human Annotators’ Workshop

Our study involved two human annotators for the la-
belling of requirements in job ads. The first human
annotator N1was one of the authors of the paper.
N1 was an expert annotator and a PhD candidate
who held a master’s degree in applied linguistics
with extensive experience in identifying job require-
ments from textual data. The second annotator N2
was hired as a volunteer for our task. N2 held a
master’s degree in finance with experience in clas-
sifying news information, her experience was less
relevant compared to N1. Hence, N2 played the
role of a novice human annotator in the annotators’
team.

Before assigning the job ads to N1 and N2, the
job ad texts were segmented into sentences to be
labelled by the annotators. The purpose of segment-
ing the job ad data into sentences was to reduce
cognitive burdens for both annotators.

It was decided that there should be both coarse-
grained labels and fine-grained labels. The deci-
sion was theoretically driven and inspired by an
inductive analytic framework called ‘Move-Step
analysis’ pioneered by the renowned applied lin-
guist John Swales (1990). Move-Step analysis is
a widely adopted linguistic approach to the sys-
tematic examination of different genres (or text
types). Genre theorists (Miller, 1984; Bhatia, 2014;
Moreno and Swales, 2018) advocate that writing
is a social action, and so a specific genre serves
as a tool to achieve a social purpose that is shared
among a community of practice. In our case, the
purpose of the job ad genre is the communication
of various skills, qualifications and capabilities re-
quired of a particular job vacancy, by the employer
to potential hirees. To achieve an overarching pur-
pose of a genre, writers need to involve conven-
tionally acknowledged components in their writing
(Swales, 1990). Swalesian genre theorists differ-
entiated the conventional textual components of a
genre into coarse-grained moves and fine-grained
steps. The intention of differentiating granular-
ity levels derives from the pedagogical orienta-
tion shared among the Swalesian genre theorists
(Bhatia, 2014; Maswana et al., 2015; Moreno and
Swales, 2018) for clarifying concepts more clearly
in class. Move-step analysis has previously been
applied by NLP researchers such as Chen et al.
(2020) for projects with a strong pedagogical ori-
entation. As argued by Chen et al. (2020), the
provision of coarse-grained and fine-grained con-

ventions embedded in the writing of a genre would
allow students to learn more efficiently. The ped-
agogical orientation of move-step analysis aligns
well with our intention to identify job requirements
to enrich employability training2.

To give the readers a clearer sense of what we
meant by a coarse-grained/move-level job require-
ment label and its associated fine-grained/step-level
labels, we give the example of the job requirement
‘Continuous education’ below:

Coarse-grained/Move-step label:
• Continuous education.
Its associated fine-grained labels:
• Passion & Self-motivation,
• Participation in training,
• Sharing of knowledge,
• Seeking advice, and
• Self-reflection.
Moreover, we assumed that the differentiation

between coarse-grained and fine-grained labels
might have other potential benefits. Having coarse-
and fine-grained labels may speed up the annota-
tion process. In this regard, Tange et al. (1998)
showed that the combination of coarse and fine-
grained labels helped the readers of informatics
process information faster and more accurately.

After introducing move-step analysis and assign-
ing the task to the two annotators, N1 conducted the
first round of annotation of 200 job ads, as she had
the expert skills and knowledge relevant to the task.
It was then decided that the unit to be annotated
could contain multiple labels, as N1 found that the
employers sometimes put multiple requirements in
one sentence. Hence, our task was multi-label text
classification. After N1 finished the first round of
annotation, she came up with a coding schema that
listed all the coarse-grained and fine-grained job
requirement categories, and she gave the schema
to N2. From the second to the last round of annota-
tion, both N1 and N2 were involved in the task. N1
and N2 conducted their annotation tasks individu-
ally. The two annotators used the annotation tool
Dataturks to label the texts.

Overall, there were nine rounds of annotation.
In between every two rounds of annotation, the

2How to use the identified job requirements to enrich em-
ployability training is not covered in the current paper. Our
main focus in this study is still the demonstration of the frugal
use of human annotators. The point of mentioning the align-
ment between our pedagogical aim and the use of move-step
analysis is to advocate a well-justified selection of analytic
framework to be used in human annotators’ workshop to fit
one’s specific research aim.



two annotators met once to discuss their compared
results. If a high level of inconsistency measured
by Cohen’s Kappa was found regarding a particu-
lar fine-grained label (e.g., Continuous education -
Passion & Self-motivation), N1 and N2 would ran-
domly scan through several inconsistent instances
and give their justifications about why they labeled
in their ways. If the agreement was reached con-
cerning how to label similar instances in the fu-
ture, both of them would write the agreed approach
in their notepads. However, if an agreement was
not reached after their justifications were given,
they would note down the dubious items and leave
them for the next meeting when they labeled more
data and had further justifications to convince each
other.

The inter-rater reliability between the two human
annotators was measured by Cohen’s Kappa. For
assessing coders’ agreement on the annotation of
categorical variables, Hallgren (2013) recommends
Cohen’s Kappa as the measurement. The Cohen’s
Kappa equation was given in (1) as follows:

K =
P (a)− P (e)

1− P (e)
(1)

where P(a) denotes the observed percentage of
the human annotators’ agreement and P(e) refers to
the probability that the agreement is met by chance.

After the Kappa was calculated for each coarse-
grained and fine-grained category, we also calcu-
lated the standard error for the calculation of the
95% confidence intervals for the Kappa. The stan-
dard error equation is given in (2) as follows:

αK =

√
P (a)(1− P (e))

N(1− P (e))2
(2)

where N refers to the overall numbers of classi-
fied tokens.

2.4 Machine Learning Methods

The algorithm chosen for running the auto-coding
task was the Support Vector Machine (SVM)
(Cortes and Vapnik, 1995) with the linear kernel.
Linear SVM is a good choice in a low-resource
context (Zhang et al., 2012), such as in ours. Lin-
ear SVM had also a low computational cost and
at the same time good prediction results (Vijayan
et al., 2017). For multi-label text classification
tasks, Linear SVM could have good ability to gen-
erate prediction results close to those generated by

manual efforts (Qin and Wang, 2009; Yang et al.,
2009; Wang and Chiang, 2011).

We involved several steps in preprocessing the
data. As mentioned in the description of the hu-
man coders’ workshop, we segmented the job ad
texts into sentences as labeling units. The classifi-
cation task hence was also at sentence level. There
were 63,504 sentence units overall. The average
number of labels per sentence was 1.8. The seg-
mentation into sentences supported calculation of
the job requirements more accurately. Addition-
ally, we removed stop words (e.g., conjunctions,
articles) from the texts via the stop-word list given
in the Natural Language Toolkit (NLTK) corpus
v.3.5. The data were then put in a machine-readable
format with the word representation tool TfidfVec-
torizer (term frequency times inverse document
frequency) from the Scikit-learn v0.24.1.

We separated the processed data into 70%,
15%, and 15% chunks for the training, testing,
and validation purposes. The ratio of the train-
ing/test/validation sets was based on the conven-
tional practice suggested in Muller and Guido
(2016) and Ng (2020). We were aware of other val-
idation approaches such as K-fold cross-validation
(CV). Considering that the tuning of the hyper-
parameters (e.g., K value and ratio) in other CV
approaches could be time-consuming and compu-
tationally expensive whilst their gain limited (as
in Anguita et al., 2012 and Racz et al., 2021), we
chose to proceed with the frugal option of 70%,
15% ,15% split of the data for train/test/validation.

For the parameter-tuning function of the Lin-
ear SVM classifier, we adopted the GridSearchCV
tool from the Scikit-Learn v0.24.1. More specifi-
cally, the parameters tuned were 1) Loss, 2) Max-
iteration, 3) Tolerance, 4) Fit intercept, and 5) In-
tercept scaling.

The performance of the Linear SVM classifier
was measured by the AUC. The reason that we
chose the AUC is that it, compared to the accuracy,
F1 or other such measurements, was less prone
to biased results from class imbalance (Suominen
et al., 2008; Narkhede, 2018).

After the AUC values were calculated, we also
computed the 95% confidence intervals for our au-
tomatic classifier.

3 Results

The inter-rater agreement measured by Cohen’s
K reached an average of 0.76 (see Section 3.1),



meaning that most of our manually labeled cate-
gories can be used for making at least tentative
conclusions. The results related to the total time
investment in the human annotation process (see
Section 3.2) suggested that two human annotators,
each working 5 hours a day, would need approxi-
mately 36 days to complete the task. Section 3.3
is concerned with the performance of the two au-
tomatic classifiers trained with data labeled by our
two annotators. Although the two classifiers both
reached an averaged AUC of 0.80, a closer exami-
nation of fine-grained categories revealed potential
room for further improvement to the human annota-
tion schema. These findings posed the question of
whether high-inter rater agreement is more impor-
tant than the ML results’ interpretability. Moreover,
strategic hybrid use of the two classifiers for opti-
mization was introduced in Section 3.3.

3.1 Inter-rater Agreement
The averaged inter-rater reliability measured by
Kappa for all the identified categories reached 0.76
(see Table 1). For the fine-grained categories, the
Kappa ranged from the minimum 0.60 to the max-
imum of 0.94. At the coarse-grained level, the
Kappa range from 0.68 to 0.83. Based on the
Kappa interpretation guidelines suggested by Krip-
pendorff (2018), Kappa values under 0.67 indicate
that any conclusion should not be counted. Values
ranging from 0.67 to 0.80 point to tentative conclu-
sions to be made. Values above 0.80 indicate that
definite conclusions can be made. Based on Krip-
pendorff’s guidelines, it is safe to claim that only 9
out of 72, or 12.5% of the fine-gained categories,
did not reach the standards for making a tentative
conclusion. The rest 87.5% of fine-grained cate-
gories reached the ‘Pass’ Kappa threshold defined
by Krippendorff, which has been deemed among
the strictest (Hallgren, 2013). If we use guidelines
defined by Landis and Koch (1977), who viewed
Kappa under 0.61 as enough for the indication of a
moderate agreement between two annotators, most
of our fine-grained categories can be used for mak-
ing at least tentative conclusions.

3.2 Time Investment in Human Annotation
The annotators reported that averagely they spent
ten seconds annotating each sentence token in the
task when they were fully concentrating on the task.
The two annotators both labelled 63,504 sentence
tokens. Therefore, the total time investment in the
completion of a single-person annotation task was

Table 1: Cohen’s K and the respective 95% confidence
interval (CI) for the inter-rater agreement.



approximately 177 hours. Suppose a research team
hires two annotators to do the coding task concur-
rently, and both the annotators work five hours a
day. A project of a size comparable to ours might
need about 36 days for the manual labeling to be
completed. We considered such a time span as
reasonably moderate. In addition, if the hired anno-
tators could work for over five hours each day, the
completion of the manual labeling process could be
even faster. The exact hours allocated to a human
annotator per day might vary based on different
research teams’ consideration.

The total labeling hours of the two annotators
were 354 hours. Our corpus contained 826,891
words. Therefore, the approximate time investment
per word for our labelling task was 1.6s. There
were nine rounds of meetings (one hour for every
meeting) plus the two-hour orientation time. Hence,
two-person efforts for orientation and meetings cost
22 hours. In total, our two-annotator labeling task
incurred a 376-hour time investment. Any team
who also wants to use a similar frugal approach to
their human-labeling task would find our results of
interest.

3.3 Performance of the Automatic Classifier

The two automatic classifiers trained and tested
with the data labeled by our two human annotators
both reached an averaged gold-standard AUC value
of 0.80. Table 2 suggest that 58% of the coarse-
grained categories reached AUC values above 0.80
with Machine N1 on data labeled by N1. Around
57% of step-level categories reached AUC values
above 0.8 with Machine N2 on data labeled by
N2. The scores of AUC given by the machine
trained and tested from data labeled by annota-
tor N1 ranged from 0.52 to 1.00. The scores of
AUC given by the machine trained and tested from
data labeled by annotator N2 ranged from 0.58 to
0.99. Interestingly, when we calculated the average
of the AUC results given by Machine N1 trained
and tested on Data N1 for all the fine-grained cat-
egories, the value reached 0.80. Similarly, the av-
eraged AUC results given by Machine N2 trained
and tested on Data N2 reached 0.80, too. This
reminded us of the likelihood that even when a ma-
chine’s performance seems outstanding at a coarse-
grained level, potential problems at a fine-grained
level might be invisible.

Certain coarse-grained categories such as ‘De-
cision makers’ and ‘Public welfare’ were low in

AUC scores. We would pay particular attention to
these categories in our future attempt for contin-
uous improvement. Our approach of identifying
both the fine- and coarse-grained categories proved
to be one that could increase the interpretability of
the results. More specifically, if we had not differ-
entiated between the fine- and coarse-grained cate-
gories, we would not have been able to know where
the problem lay in the human annotation schema.
With the information about which fine-grained cat-
egories did well and which did not, we could allow
more efficient future attempts to drive continuous
improvement on the human coding schema.

When classifier Ni was tested with data labeled
by Nj, most of our fine-grained categories did not
show a large decrease in the AUC. When the drop
was small, we assumed that the two ML classifiers
trained by the two annotators performed almost
equally well. We only found 15 fine-grained cat-
egories to have a relatively large decrease in the
AUC. We used an averaged decrease of 0.05 as the
threshold (a threshold used in Hiissa et al., 2006)
to denote a large decrease in classifier Ni’s perfor-
mance when tested with data labeled by Nj.

These 15 fine-grained categories, which showed
a large decrease in performance were ‘Peer prac-
titioners’, ‘Interpersonal skills’, ‘Safety aware-
ness’, ‘Agility’, ‘Passion Motivation’, ‘Problem
understanding & solving’, ‘Unspecific payment’,
‘Residency’, ‘Refined design’, ‘Change manage-
ment’, ‘Risk management’, ‘Conflict management’,
‘Working in harsh environment’, ‘Resource allo-
cation’, and ‘Medical science subject knowledge’
(Table 2).

These 15 fine-grained categories had good per-
formance with Machine Ni tested on data labeled
by Ni, but Machine Ni on data labeled by Nj gave
a worse performance. This could indicate that the
two human annotators’ inner-rater reliability was
high, but their inter-rater reliability was not as high.
When human annotators face categories like these
15 ones in our study, we recommend a check re-
garding which features the human annotator Ni
deemed as relevant to a category, but the human
annotator Nj deemed as not. For the rest categories
that did not show a large decrease, we recommend
that researchers put Machine Ni into the formal use
if Machine Ni on Data Nj results in less decrease
in the AUC whilst Machine Ni’s performance on
Data Ni is also good. Instead of relying on the
use of a single classifier for classifying all the fine-



grained categories, the hybrid usage of Machine
N1 and Machine N2 could optimize the classifier’s
performance even if the annotators’ workshop was
frugally designed.

4 Discussion

Our study showed that even the frugal use of only
two human annotators plus a limited amount of
labeled data resulted in an averaged AUC score of
0.80. Nonetheless, the differentiation between the
fine-grained and coarse-grained categories in our
coding schema revealed even the averaged AUC
of 0.80 did not necessarily mean the quality of hu-
man annotation was as good 3. The differentiation
of fine and coarse granularities could enhance the
interpretability of the results. In particular, such
a differentiation provided a straightforward indi-
cation as to where the machine performed well or
not and also where the problems lay in the human
annotators’ coding schema.

Our study had limitations. Although we pro-
vided justifications for all the choices we made in
our methods, there is room to refine our project’s
design (e.g., involving classification of other gen-
res) when we have more resources. Compared to
most previous coding schemas where no differenti-
ation of granularity levels was made, our approach
could allow more to-the-point and efficient fixation
of the human annotation for continuous improve-
ment. Our findings regarding the benefits of having
two granularity levels echo the results in Chen et al.
(2020). Our choice of making the differentiation
between granularity levels counters the suggestion
given by Hovy and Lavid (2010). They argue that
coarser granularity would improve the accuracy of
human annotation results. Nonetheless, Hovy and
Lavid (2010) have mostly used examples of seman-
tic recognition tasks such as verb-sense annotation
to support their argument. Our task of text clas-
sification is different from semantic recognition.
Therefore, it is worth further investigating whether

3The point of constantly mentioning the coarse-grained
categories in this paper is to emphasize how coarse granularity
alone was unable to ensure the optimal performance for our
specific annotation task. Single granularity level has been per-
vasively used in many text classication tasks (Chen et al., 2018;
Da San Martino et al., 2019; Heinisch and Cimiano, 2021).
Nonetheless, recent studies (Chen et al., 2018; Da San Mar-
tino et al., 2019; Heinisch and Cimiano, 2021) suggest that
single granularity cannot guarantee the optimal performance
for certain tasks, which echo our findings here. In addition,
we feel it necessary to keep the coarse granularity because
the high-level categories are always useful when presenting
complex results to the public

it is reasonable to always opt for ‘neutering’ for
all NLP tasks only for the sake of reaching a high
inter-rater agreement regardless of the research pur-
pose.

Our frugal use of one expert annotator and one
non-expert annotators proved to cost moderate an-
notation time whilst generating reasonably good
results. Compared to the recruitment of multi-
ple expert-annotators, our approach certainly was
much less costly. The strategically hybrid use of
automatic classifiers trained by our two annotators
is perhaps comparable to a classifier trained by only
expert annotators. However, such an assumption is
subject to future investigations where appropriate
measures are involved.

Future scholarly attempts could explore this
topic of frugal hybrids of machines and human
experts further to verify our assumption. In this
regard, Fort (2016) and Chen et al. (2020) echo
our thoughts by arguing that a well-devised non-
expert annotator workshop could allow the labeling
quality to be as good as when only expert anno-
tators generate the labeling. Chang et al. (2017)
expressed the concern that writing guidelines for
even simple concepts for non-expert coders can be
very prohibitive, but our approach of mixing both
expert and non-expert coders is less likely to incur
uncertainties and unexpected costs. To drive the
progress of the science of annotation, scholars in
the future might find it interesting to compare la-
beling results generated by pure experts, a mixture
of experts non-experts, and crowdsourced workers
for the same NLP project.

5 Conclusion

In this study, we advocate a methodologically
sound approach to the frugal use of two annota-
tors to conduct human annotation tasks for NLP
projects. Our approach has multiple benefits.
Specifically, the time and resource consumption
of our frugal approach were moderate compared to
the more expensive choice of hiring multiple expert
annotators. Having multiple rounds of annotation
activities and ongoing meetings makes it possible
to make timely justification and adjustments for the
annotation schema. Moderate cost, timely commu-
nication of dubious labels, joint development of
the annotation schema, and reasonably good ML
outcomes are the features of our frugal but theoret-
ically sound approach to human annotation. These
features make the frugal use of minimally two hu-



Table 2: AUC values and respective 95% confidence intervals (IC) & Drop from Machine Ni tested on Nj.



man annotators a good alternative to crowdsourc-
ing and expert annotation. Regarding whether or
not to differentiate granularity levels and whether
or not to resort to human annotation frameworks
from non-NLP disciplines in the human annotation
process, our suggestion is that researchers should
make the decision based on specific research pur-
poses. We hope this study could serve as a point
to drive reflection upon the science of annotation
within our NLP community.
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