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Abstract

GPT-2 has been frequently adapted in story
generation models as it provides powerful gen-
erative capability. However, it still fails to
generate consistent stories and lacks diversity.
Current story generation models leverage ad-
ditional information such as plots or common-
sense into GPT-2 to guide the generation pro-
cess. These approaches focus on improving
generation quality of stories while our work
look at both quality and diversity. We ex-
plore combining BERT and GPT-2 to build a
variational autoencoder (VAE), and extend it
by adding additional objectives to learn global
features such as story topic and discourse re-
lations. Our evaluations show our enhanced
VAE can provide better quality and diversity
trade off, generate less repetitive story content
and learn a more informative latent variable.

1 Introduction

Autoregressive pretrained models such as GPT-2
(Radford et al., 2019) have been frequently applied
to story generation. While GPT-2 can generate co-
herent single sentences, it suffers from inconsisten-
cies in the storylines and lacks generation diver-
sity, i.e. the storylines tend to use “bland” language
and multiple generation produces similar plot lines
(Guan et al., 2021). Current story generation mod-
els add more controllability into language models
for story generation, such as story plan (Yao et al.,
2019) or commonsense (Guan et al., 2020). These
approaches focus on improving generation quality
but does not address the diversity issue.

Variational autoencoder (VAE) is an extension
of autoencoder (AE) (Rumelhart et al., 1986). It
defines a prior distribution and the encoder learns
an approximate posterior distribution that is opti-
mised close to the prior distribution. In doing so,
the VAE is able to learn a more tractable latent
space than AE and it is easier to sample meaning-

ful latent variables to guide the generation process
to generate diverse meaningful sequences.

In order to leverage pretrained models for VAE,
Li et al. (2020) propose OPTIMUS, a large-scale
VAE that combines BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) and further pre-
train it on large corpus to create an off-the-shelf
pretrained VAE. We follow a similar approach to
build our VAE in this paper, but our aim is to de-
velop a VAE for domain-specific story generation
(rather than creating a domain-general large-scale
pretrained VAE) and as such our evaluation focuses
on assessing generation capability.

Our core innovation in this paper is the introduc-
tion of multi-task learning objectives to the VAE to
enhance the latent variables, as Bosc and Vincent
(2020) found that they tend to learn local features
such as the first few words or the length of input
sequences. Our first auxiliary objective uses the
latent variable to learn story topics, and our sec-
ond objective seeks to distinguish between origi-
nal stories and “negative samples”, created by alter-
ing the stories to simulate common machine gen-
eration errors. We conduct experiments on sev-
eral datasets to show our proposed VAE has bet-
ter quality-diversity trade off than GPT-2 and learn
better latent representations than vanilla VAE.

To summarise: (1) we combine BERT and GPT-
2 to build domain-specific VAE for story gener-
ation; (2) we propose an alternative approach to
incorporate the latent variable into the VAE’s de-
coder; (3) we introduce two auxiliary objectives to
encourage the latent variable to capture topic in-
formation and discourse relations; and (4) we ex-
periment with several story datasets and show that
our enhanced VAE produces higher quality latent
variables and generates stories with better quality-
diversity trade off compared to GPT-2.



2 Related Work

Conventional approaches of automatic story gener-
ation typically contain two parts: (1) learn a lan-
guage model from the training dataset with the ob-
jective of minimising KL divergence between prob-
ability distribution of training dataset and language
model; and (2) find the most suitable way to decode
the story from a given starting point (usually a title
or the leading context) with the trained language
model. Autoregressive transformers such as GPT-
2 (Radford et al., 2019) and its scaled-up GPT-3
(Brown et al., 2020) mask the attention heads af-
ter the current word during training so that they
can serve as language models to predict the next to-
ken. However, even large pretrained language mod-
els suffer from issues such as self-repetition, con-
flicting logic and incoherence (Guan and Huang,
2020).

Therefore, recent approaches resort to two main
strategies to alleviate above issues, by adding more
controllability into the story generation model and
incorporating commonsense knowledge. One of
the most influential strategies of controllability is
“plan and write" (Yao et al., 2019) where they first
use a RAKE algorithm to extract the most impor-
tant word from each sentence and train a story-
line planner based on such dataset. The language
model is trained conditional on both the previous
context and the keywords. During generation, the
keywords are generated from the given title and
can be used to guide generation of each sentence.
Commonsense contains shared knowledge about
the world (Alabdulkarim et al., 2021). Guan et al.
(2020) fine-tune a pretrained GPT-2 with knowl-
edge triples from commonsense datasets. They
first use pre-defined rules to turn triples into
sentences (e.g. (eiffel tower, AtLocation,
paris) → “eiffel tower is at paris”) and train on
the knowledge sentences with conventional max-
imum likelihood estimation objective. Xu et al.
(2020) combine these two approaches by first train-
ing a keyword planner with GPT-2 and use the key-
words to search a knowledgebase to retrieve the top
ranked sentences to guide the generation process.

The aforementioned approaches add comple-
mentary information in training the language
model, but does not address the diversity issue in
language generation. VAE can generate content
with more diversity (Kingma and Welling, 2019;
Yu et al., 2020), and has been variously explored
in story generation. For example, Jhamtani and

Berg-Kirkpatrick (2020) treat the latent variables
as story plots to guide story generation and Yu et al.
(2020) build a hiererchical conditional VAE draft
and edit stories.

To incorporate pretrained models for building
VAEs, Li et al. (2020) propose OPTIMUS, a VAE
that uses BERT (Devlin et al., 2019) as the en-
coder and GPT-2 (Radford et al., 2019) as the de-
coder. They further pretrain OPTIMUS on English
Wikipedia using standard VAE objectives to create
an off-the-shelf pretrained VAE, and demonstrate
its benefits as a pretrained model for downstream
tasks. We follow their approach of using BERT
and GPT-2 for building a VAE, although with a dif-
ferent goal: here we are interested in developing
domain-specific story generators, and as such our
evaluation metrics focus on assessing story gener-
ation capabilities.

Story evaluation is a challenging problem,
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) are commonly used to assess the quality of
generated stories. Diversity of generated stories
is another important evaluation aspect and Caccia
et al. (2020) propose temperature sweep to evalu-
ate the trade off between quality and diversity for
story generation models.

3 Framework

Denoting the text sequence as x and the latent vari-
able as z, a VAE uses the inference model (i.e.
the stochastic encoder) qϕ(z|x) to approximate the
posterior distribution, pθ(z|x), since the true pos-
terior density pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) is in-
tractable (Kingma and Welling, 2014). The prior
over z is set as a multivariate Gaussian pθ(z) =
N(z; 0, I). VAE is trained with the evidence lower
bound (ELBO) loss:

Eqϕ(z|x)[logpθ(x|z)]−DKL(qϕ(z|x)||p(z)) (1)

The left part of equation can be interpreted as the
reconstruction loss (LR) and the right part as the
KL loss (LKL) that pushes the latent space close
to the pre-defined prior so as to obtain a regular
latent space.

We use BERT as the encoder and GPT-2 as the
decoder to build a VAE language model. BERT
naturally handles multiple sentences (delimited by
[SEP]) and we use the [CLS] token to represent
the whole story and add two linear layers on top
to compute the mean (µ) and standard deviation
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Figure 1: Illustration of three approaches of interacting
the latent variable with decoder input. Both [BOS] and
[EOS] are <|endoftext|> token in GPT-2. “A” denotes
the first sentence of the story, x1 and x2 represent to-
kens of the first sentence. For the “memory” approach,
different colors indicate different layers in GPT-2.

(σ) of the latent variable z. To incorporate the la-
tent variable z into the GPT-2 decoder, we explore
two approaches: (1) “prepend”, where we append
the latent variable as prefix token at the beginning
of input sequence. (2) “memory”, where we apply
an MLP to the latent variable to generate key and
values in each layer (proposed by Li et al. (2020));
and Figure 1 presents an illustration of these two
approaches.

3.1 Global Feature Learning
To encourage the VAE to learn global features, we
propose a multi-task learning framework. Figure 2
presents an overall architecture of our model. The
first objective is the reconstruction objective (LR,
the left part of Equation 1). The two additional
objectives train latent variable to: (1) predict the
story topic; and (2) distinguish between negative
samples vs. original stories. These auxiliary objec-
tives are designed to encourage the latent variable
to capture topic and discourse information.

Story Topic Learning We add additional MLP
layers to learn the topic distribution of the story
and calculate the topic loss with the ground truth
topic distribution of the document based on KL di-
vergence. While this is straightforward for topic-
annotated dataset which contains ground truth
topic labels, most story datasets do not have such
label. To this end, we train a latent Dirichlet allo-
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Figure 2: Our proposed multi-task VAE model with pre-
trained BERT and GPT-2. In additional to the original
objective of reconstructing the original story, the latent
variable is also used to predict the story topic and distin-
guish between original and negative samples. Here we
show a simple one sentence story and the negative sam-
ple is constructed using repetition and substitution. Our
training dataset contains stories of multiple sentences,
separated by [SEP].

cation topic model (Blei et al., 2003) to extract the
topics. We use the topic model-inferred topic dis-
tribution Q(T ) of each document as ground truth
and compute KL divergence as the loss. Note that
we use the full topic distribution instead of select-
ing one topic with the highest probability as the
representative topic as the full distribution is more
informative and that most documents have multiple
topics.

Given z, we predict the topic distribution P (T )
as follows:

P (T ) = softmax(Wtz + bt) (2)

We calculate the topic loss LT with KL diver-
gence over the predicted and topic model-inferred
topic distribution as follows:

LT =
∑
t∈T

P (t)log
(
P (t)

Q(t)

)
(3)

Story Discourse Learning For discourse rela-
tion learning, we first construct negative samples



from the original stories. Following Guan and
Huang (2020), we use a random combination of
four heuristic rules to construct the common ma-
chine generation issues in story: (1) repeat of n-
grams or sentences, (2) substitution of random key-
words or the entire sentence, (3) reordering of sen-
tences and (4) negation alteration of the original
sentences. Table 1 presents some examples of orig-
inal stories and altered stories (negative samples).

Given a story and its discourse label (1.0 for orig-
inal stories or 0.0 for negative samples) and z, we
apply a linear layer on z to compute the discourse
score ŷn:

ŷn = sigmoid(Wdz + bd) (4)

We then compute the discourse loss LD using
standard binary cross entropy:

LD = −ynlogŷn − (1− yn)log(1− ŷn) (5)

For each original story, we create one negative
sample.

Given the topic and discourse losses, we add
them with weights to the original reconstruction
loss and KL loss function to train the VAE and per-
form grid search to find the suitable weights. Dur-
ing training, to alleviate posterior collapse — the
issue where both the variational posterior distribu-
tion obtained from the encoder and the true pos-
terior for the real dataset collapse to the prior, re-
sulting in zero KL loss (He et al., 2019) — we use
β-VAE (Burgess et al., 2018) that sets an additional
target C to the KL loss (by computing an absolute
difference between KL loss and C) to optimise it
close to C. The full objective our model is thus
given as follows:

L = LR + β
∣∣LKL − C

∣∣+ α LT + γ LD (6)

where β, α and γ are hyper-parameters to control
the weights of different objetives.

4 Dataset

We use four datasets in our experiments: ROCSto-
ries, APNEWS, Reuters and WritingPrompts. AP-
NEWS is a collection of Associated Press news
(Bhatia et al., 2017) from 2009 to 2016. Reuters1

is the Reuters-21578 “ApteMod" corpus for text
categorization from the Reuters financial newswire
service. ROCStories (ROC) contains common-
sense stories of five sentences (Mostafazadeh

1https://www.kaggle.com/nltkdata/reuters

et al., 2016). To obtain more generalization as
all sentences are rather short in the dataset, we
follow the delexicalization approach from prior
studies (Guan et al., 2020; Xu et al., 2020)
where male/female/unknown names are replaced
by tokens [MALE]/[FEMALE]/[NEUTRAL]. The
WritingPrompts (WP) dataset consists of 303,358
human generated long stories from Reddit’s Writ-
ing Prompts forum2. Fan et al. (2018) collect them
by scraping three years of prompts and their asso-
ciated stories. We use 10% of the stories in our ex-
periments. Table 2 presents some statistics of the
four datasets.

In terms of preprocessing, we add [SEP] token
at the end of each sentence and use WordPiece to-
kenizer for BERT and Byte-Pair-Encoding (BPE)
for GPT-2. We set the maximum length of a story
as 100 subwords for short story datasets (ROC and
Reuters) and 200 for long story datasets (APNEWS
and WritingPrompts).

5 Experiments

We use implementations of BERT and GPT-2 from
HuggingFace (Wolf et al., 2019). We set learning
rate at 10−4 and use Adam (Kingma and Ba, 2014)
as optimiser. The dimension of latent variable is
set as 256. All models are trained using 20 epochs
on single NVIDIA V100 GPU node per model.

5.1 Topic Extraction
We use MALLET LDA3 to extract the topics. We
filter out tokens that appear more than half of the
dataset and keep the most frequent 50K tokens as
the vocabulary for the LDA models. We select the
best topic number based on topic coherence (Röder
et al., 2015).

5.2 Evaluation Metrics
We evaluate our system using intrinsic metrics
where we compute perplexity, number of active
units of language model training and the extent
to which the latent variable captures topic and
discourse information. To evaluate story genera-
tion capability, we look at self-repetition metrics
and measure the quality-diversity trade off using
Corpus-BLEU.

Perplexity (PPL) Perplexity of test data is
widely used to evaluate language models. How-
ever, exact PPL is unavailable so ELBO is often

2https://www.reddit.com/r/WritingPrompts/
3http://mallet.cs.umass.edu



Rule Original Story Negative Sample

repeat, sub-
stitution and
negation
alteration

[NEUTRAL] knew the solution to a
problem . he told people the solution
. the people thought [NEUTRAL] was
smart . [NEUTRAL] agreed with them
. [NEUTRAL] went on to achieve .

[NEUTRAL] knew the solution to a
problem . he told animals the solution
. [NEUTRAL] did not go on to achieve
. he told animals the solution . he told
animals the solution .

reordering
and substitu-
tion

[FEMALE] really loved the sun . she
would play in it all day . one day the
dark clouds came and shooed the sun
away . [FEMALE] was very sad to see
it go . she was happy though when she
saw it back the next morning !

[FEMALE] really loved the sun . she
was happy though when she saw it back
the next morning ! she would play in it
all day . [FEMALE] was very sad to see
it go . one day the dark clouds came and
shooed the moon away .

Table 1: Examples of negative story samples generated from a combination of heuristic rules of repeat, substitution,
reordering and negation alteration.

Collection Average
Length

Training Development Test
#Docs #Tokens #Docs #Tokens #Docs #Tokens

APNEWS 138 46.4K 4.68M 1.9K 187K 1.8K 187K
Reuters 88 7.8K 695K 2K 180K 1K 93.6K
ROC 60 88K 5.28M 5K 0.3M 2K 0.12M

WritingPrompts 110 26.8K 2.95M 2K 0.22M 2K 0.22M

Table 2: Statistics of APNEWS, Reuters, ROC and WritingPrompts Dataset.

used to approximate the probability. But as Li et al.
(2019) found, such approximation is not appropri-
ate since the gap between ELBO and log marginal
likelihood might be large when the true posterior
did not converge with the approximate posterior.
Burda et al. (2016) propose using k-sample impor-
tance weighting estimate, which provides a tighter
lower bound for the log marginal likelihood with
Jensen’s inequality. Our results therefore use this
approach for computing PPL.

Number of Active Units (AU) Burda et al.
(2016) propose a way to evaluate if each dimension
of the latent variable is active over the posterior dis-
tribution as follows:

Au = Covx(Eu∼q(u|x)[u]) (7)

and set the bar that the dimension u of the latent
variable is active if Au > 0.01. Intuitively, more
active units means a more informative latent vari-
able is learned from the input.

Sequence Repetition As neural generation mod-
els are prone to generate repetitive content with
high probabilities (Yao et al., 2018), we evaluate

sequence-level repetition evaluation by computing
the portion of duplicate n-grams for a continuation
xk+1:k+N :

1.0− |unique n-grams(xk+1:k+N )|
|n-grams|

(8)

Corpus-BLEU and Self-BLEU Corpus-BLEU
uses the test dataset as reference and compute
BLEU score for each generated story and use aver-
age result as a measurement of quality. Zhu et al.
(2018) propose Self-BLEU, that regards one gen-
erated story as the hypothesis and all other gen-
erated stories as the references and calculates the
BLEU score for each story and use the average
score to measure diversity. A lower Self-BLEU
score means the story is less similar to the other
generated stories, and thus, higher diversity.

5.3 Evaluation Results
5.3.1 Intrinsic Results
We first show evaluation results where we explore
two methods (“memory” and “prepend”) of inject-
ing z to the decoder on ROC in Table 3. Here the
models are vanilla VAE models without the auxil-
iary losses (as our objective here is to evaluate the



Method C Recon. loss KL loss AU PPL

prepend 6.0 123.89 5.96 209 9.53
prepend 8.0 122.61 7.99 206 9.58
prepend 10.0 121.64 9.96 197 9.61
memory 6.0 127.67 5.94 0 9.69
memory 8.0 127.49 7.93 0 9.80
memory 10.0 127.46 9.84 0 9.96

Table 3: Intrinsic results of training with different C in
beta-VAE (Equation 6) and with “prepend” and “mem-
ory” (Section 3) for incorporating the latent variable to
the decoder on the ROC dataset. PPL is computed by
500 samples of importance weighting estimate.

best way to incorporate the latent variable to the
VAE’s decoder). Note that perplexity is estimated
using 500 samples with importance weighting and
it captures both reconstruction and KL loss. We
found that “prepend” generally outperforms “mem-
ory”, as it can keep more dimensions of the latent
variable active while “memory” has no active di-
mensions. It also has a KL divergence marginally
closer to the target (C in Equation 6), and has
better reconstruction and overall better perplexity.
“prepend” is in a way similar to memory where all
tokens in the GPT-2 input have the extra vector to
attend to, but instead of transforming it using ex-
tra MLP layers, “prepend” relies on the inherent
self-attention mechanism to produce a more natu-
ral key/value representations in each layer, which
might explain the improved performance.

By increasing C for the KL target, more infor-
mation is encoded into the latent variable, and so
the model achieves a better performance in terms
of reconstruction loss. But this also means it be-
comes harder to sample a latent variable from the
prior, as the posterior no longer matches the prior,
and as such we see an increase of perplexity. Our
results highlight the importance of controllingC to
find a reasonable trade off between reconstruction
and KL loss.

Given these results, we next train the VAE with
the topic and discourse objectives (Section 3.1), us-
ing C = 6.0 and the “prepend” method. We now
assess the extent to which the encoder can identify
the topics or distinguish between the original sto-
ries and stories with flaws (negative samples).

Topic Learning Evaluation We evaluate the ex-
tent to which the BERT encoder can learn story
topics in the latent space and how much the GPT-
2 decoder can make use of it. We use the Reuters

Model µ z

AE 0.702 0.699
VAE 0.446 0.436

VAE+t 0.691 0.583

Table 4: Topic classification accuracy using mean of
the posterior distribution µ and the latent variable z on
Reuters.

dataset here since the documents/stories are anno-
tated with ground truth topics.

We follow Bosc and Vincent (2020) and freeze
the parameters of BERT and add one MLP layer
on top of the mean of the posterior distribution µ
and the latent variable z and train a classifier to
predict the ground truth topics and report test accu-
racy results in Table 4. The baseline “AE” is a VAE
model without using the KL loss (LKL in Equation
1), and so functions like an autoencoder (since the
posterior is no longer constrained to be close to the
prior).

Looking at the results, we see that using µ as in-
put for the classifier yields much better results com-
pared to using the latent variable z. But as pointed
out in Bosc and Vincent (2020), z is ultimately the
latent variable that goes into the decoder, and so the
performance using z is the more important num-
ber. There is no surprise that AE achieves better
test accuracy scores with both µ and z than vanilla
VAE since the VAE’s encoder is forced to discard
some information in the posterior distribution so as
to match the prior distribution. Encouragingly, we
see that our topic-enhanced VAE is indeed able to
capture much of the topic information, producing
a better topic classification accuracy compared to
vanilla VAE.

Discourse Learning Evaluation One advantage
of our discourse-enhanced VAE is that after train-
ing we can obtain a discourse score using the out-
put of the additional layer (Equation 4), which tells
us the quality of a story. Table 5 presents the pre-
dicted discourse scores on a set of generated stories.
Note that all stories are generated from randomly
sampled latent variables. Looking at the generated
stories, we found that stories with high discourse
scores are generally coherent, while stories with
low scores often have logical or repetition prob-
lems. To quantify this, we compute the average
discourse score on test stories and their negative
samples, and the average scores are 0.75 and 0.25



Score Story Issue

0.83 [MALE] went fishing . he was excited about the trip . he saw a big fish . he was excited to get
it . he caught a huge fish .

0.81 [FEMALE] was nervous for her first day of school . she was nervous because she was so new
to school . [FEMALE] was scared to be in the classroom . the teacher introduced her to other
students . [FEMALE] was very excited to learn about her new class .

0.56 [FEMALE] was hungry for some cookies . she decided to make some chocolate chip cookies .
she mixed the ingredients together . then she mixed them together . [FEMALE] was happy to
have some cookies .

repeat

0.48 [FEMALE] was a lesbian . she was in love with [MALE] . [MALE] was jealous of her .
[FEMALE] ’s boyfriend cheated on her . [FEMALE] was dumped .

conflict logic

0.40 [MALE] received a call from his boss . he had a promotion . he took it . he took it anyway .
he got it .

repeat and inco-
herent

0.32 [MALE] grew up on a farm . [MALE] wanted to grow vegetables . he was tired of them .
[MALE] bought carrots . he then grew vegetables .

incoherent

Table 5: Predicted discourse scores using the discourse-enhanced VAE.

respectively, showing that our discourse-enhanced
VAE is able to distinguish between original stories
and negative samples.

5.3.2 Extrinsic Results

Quality and Diversity Trade-off Quality and di-
versity of generated stories from a model can be af-
fected by decoding strategies. Therefore, it is dif-
ficult to determine which model is superior based
on a single performance since models that achieve
high quality score tend to lack diversity (Caccia
et al., 2020). Temperature sweep uses a set of qual-
ity and diversity results generated by altering val-
ues of temperature in temperature sampling, and
the best model is one that produces the best trade
off between these two aspects (Caccia et al., 2020;
Hashimoto et al., 2019; Alihosseini et al., 2019).
We follow this evaluation approach and use top-p
sampling with varying p values as Holtzman et al.
(2019) demonstrate that top-p sampling has a better
control over sampling and produce sequences that
have a more similar nature with human text than
temperature sampling.

We use a range of different p values from 0.4 to
1.0 with an increment of 0.02, creating stories for
31 different p values to assess the quality and di-
versity trade off. For each p value, we sample 500
latent variables from the prior distribution to gener-
ate 500 stories. The results are shown in Figure 3.
Note that we use negative Corpus-BLEU here (by
flipping the sign), so that a lower score indicates
better performance for both scores. The best model
is one that produces a trade off curve closest to the
axes. The figure shows that the VAEs generally

achieve a better trade off than fine-tuned GPT-2 in
all domains. Encouragingly, our enhanced VAEs
(“VAE+t”, “VAE+d” and “VAE+td”) also per-
form generally better than the vanilla VAE (with
the exception of the WP dataset). Curiously, AE is
not able to generate high quality stories under our
tested p values and it produces a short curve near
the bottom right corner.

Sequence Repetition Self-BLEU measures the
diversity of a set of generated stories, revealing
whether they tend to use similar plots or share sim-
ilar words. Here we assess the extent of self repeti-
tion within a story. We compute 4-grams repetition
(“seq-rep-4”; Equation 8) and present the results
in Table 6 for the ROC dataset.4 Note that a lower
score means less repetition (better performance).

We can see that higher p values produce
less repetitive texts (lower scores) since at each
timestep more word types are included in the sam-
pling process. For comparison, we also compute
the “human” repetition score using the test data and
its result is 0.021. At lower p values, the VAE
models tend to have much lower repetition than
the fine-tuned GPT-2. However, if we do not con-
strain much on the token probabilities and use a
higher p values, most models produce similar repe-
tition scores. At the extreme when we set p = 1.0,
all models are able to generate stories with little
self-repetition like the human-written stories. AE
seems to be able to repeat less, however the gener-
ated stories tend to be incoherent (recall in Figure

4Other domains produce similar trends and for brevity we
present only the ROC results.
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Figure 3: Quality and diversity trade-offs of generated sentences on three dataset. For both quality and diversity
metrics, lower score means better performance and the curve that is closest to the axes have the best overall perfor-
mance.

Model p value
0.4 0.5 0.6 0.7 0.8 0.9 1.0

GPT-2 0.0594 0.0300 0.0196 0.0125 0.0081 0.0043 0.0021
AE 0.0009 0.0006 0.0009 0.0004 0.0004 0.0005 0.0002

VAE 0.0297 0.0191 0.0153 0.0109 0.0070 0.0042 0.0021
VAE+t 0.0272 0.0235 0.0185 0.0124 0.0077 0.0045 0.0028
VAE+d 0.0257 0.0173 0.0143 0.0114 0.0086 0.0049 0.0031
VAE+td 0.0237 0.0218 0.0168 0.014 0.0078 0.0054 0.0031

Table 6: Sequence repetition of 4-grams of generated stories under different p values with top-p sampling on ROC.

3 we saw it has poor Corpus-BLEU scores gener-
ally).

6 Conclusion

We explore using pretrained models such as BERT
and GPT-2 to build a VAE for story generation. We
additionally propose enhancing the VAE by intro-
ducing two auxiliary objectives to encourage it to
learn topical and discourse information in the sto-
ries. Our experiments show that the latent variable
of our enhanced VAE is more informative, in that
it captures the story topics and good vs. poor qual-
ity stories. In terms of story generation, we also
demonstrate that our enhanced VAE produce gen-
erally a better quality-diversity trade off compared

to vanilla VAE and GPT-2.
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