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Abstract

Transfer learning with large pretrained
transformer-based language models like
BERT has become a dominating approach for
most NLP tasks. Simply fine-tuning those
large language models on downstream tasks
or combining it with task-specific pretraining
is often not robust. In particular, the perfor-
mance considerably varies as the random seed
changes or the number of pretraining and/or
fine-tuning iterations varies, and the fine-tuned
model is vulnerable to adversarial attack. We
propose a simple yet effective adapter-based
approach to mitigate these issues. Specifically,
we insert small bottleneck layers (i.e., adapter)
within each layer of a pretrained model, then
fix the pretrained layers and train the adapter
layers on the downstream task data, with (1)
task-specific unsupervised pretraining and
then (2) task-specific supervised training
(e.g., classification, sequence labeling). Our
experiments demonstrate that such a training
scheme leads to improved stability and
adversarial robustness in transfer learning to
various downstream tasks. 1

1 Introduction

Pretrained transformer-based language models like
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) have demonstrated impressive performance
on various NLP tasks such as sentiment analysis,
question answering, text generation, just to name a
few. Their successes are achieved through sequen-
tial transfer learning (Ruder, 2019): pretrain a lan-
guage model on large-scale unlabeled data and then
fine-tune it on downstream tasks with labeled data.
The most commonly used fine-tuning approach is
to optimize all parameters of the pretrained model

*Equal contributions.
†Corresponding author.
1https://github.com/WinnieHAN/

Adapter-Robustness.git

Figure 1: Learning curves of fine-tuning with the task-
specific pretraining iterations varied. The curve with triangles
represents the model that has converged in the 8000-th pre-
training iteration.

with regard to the downstream-task-specific loss.
This training scheme is widely adopted due to its
simplicity and flexibility (Phang et al., 2018; Peters
et al., 2019; Lan et al., 2019; Raffel et al., 2020;
Clark et al., 2020; Nijkamp et al., 2021; Lewis et al.,
2020).

Despite the success of the standard sequential
transfer learning approach, recent works (Guru-
rangan et al., 2020; Lee et al., 2020; Nguyen
et al., 2020) have explored domain-specific or task-
specific unsupervised pretraining, that is, masked
language model training on the downstream task
data before the final supervised fine-tuning on it.
And they demonstrated benefits of task-specific
pretraining on transfer learning performance. How-
ever, both standard sequential transfer learning and
that with task-specific pretraining are unstable in
the sense that downstream task performance is sub-
ject to considerable fluctuation while the random
seed is changed or the number of pretraining and/or
fine-tuning iterations is varied even after the train-
ing has converged (see Section 2 and Section 3

https://github.com/WinnieHAN/Adapter-Robustness.git
https://github.com/WinnieHAN/Adapter-Robustness.git
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WNLI RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI
Metrics Acc. Acc. F1/Acc. P/S corr. M corr. Acc. Acc. Acc./F1 M acc.

WO. 56.34 65.7 88.85/84.07 88.64/88.48 56.53 92.32 90.66 90.71/87.49 84.10

W. F. 45.07 61.73 89.47/85.29 83.95/83.70 49.23 91.97 87.46 88.40/84.31 81.08
TSP.+F. 56.34 68.59 89.76/86.37 89.24/88.87 64.87 92.78 91.12 90.92/87.88 84.14

Table 1: Performance on the development dataset of GLUE. Results of W.(F.) are reported in Adapter-Hub. We
report results of WO. using the implementation from Wolf et al. (2020). Acc.: Accuracy. M acc.: Mismatched
Acc. P/S acc.: Person/Spearman corr. M corr.: Matthew’s corr. TSP.: Task-Specific Pretrain. F.: Finetune. WO.:
Without adapter. W.: With adapter.

for details). For instance, as observed in Fig. 1,
as the number of task-specific pretraining iteration
varies, CoLA’s performance is severely unstable in
fine-tuning. Besides instability, we also observe
that task-specific pretraining is vulnerable to ad-
versarial attack. Last but not least, task-specific
pretraining and/or fine-tuning on the entire model
is highly parameter-inefficient given the large size
of these models (e.g., the smallest BERT has 110
million parameters).

In this work, we propose a simple yet effective
adapter-based approach to mitigate these issues.
Adapters are some small bottleneck layers inserted
within each layer of a pretrained model (Houlsby
et al., 2019; Pfeiffer et al., 2020a,b). The adapter
layers are much smaller than the pretrained model
in terms of the number of parameters. For instance,
the adapter used in (Houlsby et al., 2019) only adds
3.6% parameters per task. In our approach, we
adapt the pretrained model to a downstream task
through 1) task-specific pretraining and 2) task-
specific supervised training (namely, fine-tuning)
on the downstream task (e.g., classification, se-
quence labeling) by only optimizing the adapters
and keeping all other layers fixed. Our approach is
parameter-efficient given that only a small number
of parameters are learned in the adaptation.

The adapted model learned through our approach
can be viewed as a residual form of the original
pretrained model. Suppose x is an input sequence
and horiginal is the features of x computed by the
original model. Then the feature computed by the
adapted model is,

hadapted = horiginal + fadapter(x), (1)

where fadapter(x) is the residual feature in addi-
tion to horiginal and fadapter is the adapter learned
in the adaptation process. horiginal extracts general
features that are shared across tasks, while fadapter
is learned to extract task-specific features. In prior
work (Houlsby et al., 2019; Pfeiffer et al., 2020b),

fadapter is learned with task-specific supervised
learning objective, distinctive from the unsuper-
vised pretraining objective, and might not be com-
patible with horiginal, as evidenced in our experi-
ments. In our approach, fadapter is first trained with
the same pretraining objective2 on the task-specific
data before being adapted with the supervised train-
ing objective, encouraging the compatibility be-
tween horiginal and fadapter, which is shown to im-
prove the downstream task performance in our ex-
periments (see Table 1).

Some prior works have examined the potential
causes of the instability of pretrained language
models in transfer learning. Lee et al. (2019)
proposed that catastrophic forgetting in sequential
transfer learning underlined the instability, while
Mosbach et al. (2020) proposed that gradient van-
ishing in fine-tuning caused it. Pinpointing the
cause of transfer learning instability is not the fo-
cus of the current work, but our proposed method
seems to able to enhance transfer learning on both
aspects.

The standard sequential transfer learning or that
with task-specific pretraining updates all model pa-
rameters in fine-tuning. In contrast, our approach
keeps the pretrained parameters unchanged and
only updates the parameters in the adapter layers,
which are a small amount compared to the pre-
trained parameters. Therefore, our approach natu-
rally alleviates catastrophic forgetting considering
the close distance between the original pretrained
model and the adapted model. On the other hand,
we do not observe gradient vanishing with our trans-
fer learning scheme (see Section 2 for more details).
This might be because optimizing over a much
smaller parameter space in our approach, compared
to the standard sequential transfer learning scheme
where all parameters are trained, renders the op-

2In this work, we conduct experiments with the most
widely used pretraining objective, masked language modeling.
The same training scheme can be extended to other pretraining
objectives.

https://github.com/Adapter-Hub/adapter-transformers/tree/master/examples/text-classification


856

Figure 2: Distribution of dev scores on RTE from 10 random
seed restarts when finetuning (1) BERT (Devlin et al., 2019)
and (2) BERT with the adapter architecture.
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Figure 3: Gradient norms (on log scale) of intermediate layer
and classification layer on RTE for with/without-adapter fine-
tuning run. WO.: Without adapter. W.: With adapter.

timization easier. We leave it to future work for
further theoretical analysis.

In addition to its improved stability, the proposed
transfer learning scheme is also likely to be more
robust to adversarial attack. Given that it updates
the entire model, the standard transfer learning ap-
proach might suffer from overfitting to the down-
stream task, and thus a small perturbation in the
input might result in consequential change in the
model prediction. In turn, it might be susceptible
to adversarial attack. Our approach only updates
a much smaller portion of parameters, and hence
might be more robust to these attacks, which is con-
firmed in our empirical analysis (see Section 4).

Contributions. In summary our work has the
following contributions. (1) We propose a sim-
ple and parameter-efficient approach for trans-
fer learning. (2) We demonstrate that our ap-
proach improves the stability of the adaptation
training and adversarial robustness in downstream
tasks. (3) We show the improved performance of
our approach over strong baselines. Our source
code is publicly available at https://github.

com/WinnieHAN/Adapter-Robustness.git.

Figure 4: Box plots showing the TSP. stability of BERT
with/without adapter on CoLA.

Figure 5: Attack success rate of BERT with/without adapter
during task-specific pretraining. WO.: Without adapter. W.:
With adapter.

2 Instability to Different Random Seeds

We first evaluate the training instability with re-
spect to multiple random seeds: fine-tuning the
model multiple times in the same setting, vary-
ing only the random seed. We conduct the experi-
ments on RTE (Wang et al., 2018) when fine-tuning
1) BERT-base-uncased (Devlin et al., 2019) and
2) BERT-base-uncased with the adapter (Houlsby
et al., 2019) 3. As shown in Figure 2, the model
without adapter leads to a large standard deviation
on the fine-tuning accuracy, while the one with
adapter results in a much smaller variance on the
task performance.

Gradient Vanishing Mosbach et al. (2020) ar-
gues that the fine-tuning instability can be ex-
plained by optimization difficulty and gradient van-
ishing. In order to inspect if the adapter-based
approach suffers from this optimization problem,
we plot the L2 gradient norm with respect to differ-
ent layers of BERT, pooler layer and classification
layer, for fine-tuning with or without adapter in

3For all the experiments, we use the implementa-
tion of Pfeiffer et al. (2020b): https://github.com/
Adapter-Hub/adapter-transformers.git.

https://github.com/WinnieHAN/Adapter-Robustness.git
https://github.com/WinnieHAN/Adapter-Robustness.git
https://github.com/Adapter-Hub/adapter-transformers.git
https://github.com/Adapter-Hub/adapter-transformers.git
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(a) Pretraining Iteration 0 (b) Pretraining Iteration 10000 (c) Pretraining Iteration 20000

Figure 9: Box plots showing the fine-tuning stability of BERT with/without adapter for different TSP. iterations on CoLA. WO.:
Without adapter. W.: With adapter.

Figure 3.
In traditional fine-tuning (without adapter), we

see vanishing gradients for not only the top layers
but also the pooler layer and classification layer.
This is in large contrast to the with-adapter fine-
tuning. The gradient norm in the with-adapter fine-
tuning does not decrease significantly in the train-
ing process. These results imply that the adaptation
with adapter does not exhibit gradient vanishing
and presents a less difficult optimization problem,
which in turn might explain the improved stability
of our approach.

3 Instability to Pretraining and
Fine-tuning Iterations

Fine-tuning with all parameters also exhibits an-
other instability issue. In particular, fine-tuning a
model multiple times on the pretrained language
model, varying the task-specific pretraining itera-
tions and fine-tuning iterations, leads to a large stan-
dard deviation in downstream task performance. As
observed in Figure 1, CoLA’s performance when
varying the task-specific pretraining iterations is
severely unstable during pretraining iterations and
fine-tuning iterations. The model has converged at
the pretraining iteration of 8000. However, fine-
tuning based on this model does not obtain the best
performance.

Pretraining Iterations. Figure 4 displays the
performance on CoLA of 10 fine-tuning runs with
and without the adapter. For each run, we vary only
the number of pretraining iterations from 2000 to
20000 with an interval of 2000 and fix the fine-
tuning epochs to 10. We clearly observe that most
runs for BERT with adapter outperforms the one
without adapter. Moreover, the adapter makes pre-
training BERT significantly more stable than the

standard approach (without adapter).

Fine-tuning Iterations. We then study the sta-
bility with regard to the number of fine-tuning
iterations. We show box plots for BERT using
various pretraining iterations and fine-tuning iter-
ations, with and without adapter in Figure 9. The
three sub-figures represent the early, mid, and late
stages of pretraining, corresponding to the 0-th,
10000-th, and 20000-th iteration respectively. The
0-th iteration represents the original model without
task-specific pretraining. The model suffers from
underfitting in the 0-th iteration and overfitting in
the 20000-th iteration.

In Figure 9 (a), we plot the distributions of the de-
velopment scores from 100 runs when fine-tuning
BERT with various fine-tuning epochs ranging
from 1 to 100. In the early stage, the average de-
velopment score of the model with the adapter is a
little lower than the baseline model while the sta-
bility is better. After several epochs of pretraining,
the adapter gradually shows improved performance
in terms of the mean, minimum and maximum as
demonstrated in Figure 9 (b). In the end of the pre-
trainig, there exists an over-fitting problem for the
traditional BERT models. Pretraining transfers the
model to a specific domain and fails to maintain the
original knowledge. In contrast, the performance
with the adapter still grows as training continues
and consistently benefit from pretraining. Besides,
we observe that the adapter leads to a small vari-
ance in the fine-tuning performance, especially in
the late stage. Additional plots and learning curves
can be found in the Appendix.

4 Adversarial Robustness

While successfully applied to many domains, the
predictions of Transformers (Vaswani et al., 2017)
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become unreliable in the presence of small adver-
sarial perturbations to the input (Sun et al., 2020;
Li et al., 2020). Therefore, the adversarial attacker
has become an important tool (Moosavi-Dezfooli
et al., 2016) to verify the robustness of models.
The robustness is usually evaluated from attack
effectiveness (i.e., attack success rate). We use a
SOTA adversarial attack approach to assess the ro-
bustness: PWWS attacker (Ren et al., 2019). 4.
Figure 5 shows the attack success rate of BERT
with/without adapter during task-specific pretrain-
ing on SST-2. The x-axis is the number of epochs
for task-specific pretraining. It can be observed that
the model with the adapter has better adversarial
robustness.

5 Conclusion

We propose a simple yet effective transfer learning
scheme for large-scale pretrained language model.
We insert small bottleneck layers (i.e., adapter)
within each block of the pretrained model and then
optimize the adapter layers in task-specific unsu-
pervised pretraining and supervised training (i.e.,
fine-tuning) while fixing the pretrained layers. Ex-
tensive experiments demonstrate that our approach
leads to improved stability with respect to different
random seeds and different number of iterations in
task-specific pretraining and fine-tuning, enhanced
adversarial robustness, and better transfer learning
task performance. We therefore consider the pro-
posed training scheme as a robust and parameter-
efficient transfer learning approach.
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A Hyper-Parameters Setting

We conduct the experiments on the task of
GLUE tasks (Wang et al., 2018) when fine-
tuning 1) BERT-base-uncased (Devlin et al.,
2019) and 2) BERT-base-uncased with the
adapter architecture (Houlsby et al., 2019). For
all the experiments, we use the implementa-
tion from https://github.com/Adapter-Hub/

adapter-transformers.git. For the model with
adapter, we follows the setup from Mosbach et al.
(2020). For all experiments, we use the default
hyper-parameters except for the number of epochs.
Please refer to the provided link.

The main hyper-parameters are listed in Table 2
and Table 3.

Max Sequence Length 256
Batch Size 32
Learning rate 1e-4
Number of Epochs 20

Table 2: Hyper-parameters for BERT with Adapter.

Max Sequence Length 128
Batch Size 32
Learning rate 2e-5
Number of Epochs 10

Table 3: Hyper-parameters for BERT without Adapter.

B Instability to Pretraining and
Fine-tuning Iterations

We provide box plots for BERT using various pre-
training iterations and fine-tuning iterations, with
and without adapter on CoLA in Figure 10. The
corresponding learning curves are in Figure 13.

C Instability for Large Dataset

In contrast to relatively large datasets, smaller data
is more suitable and convincing as an example
to analyze stability. Small dataset is easier to en-
counter over-fitting problems and often not stable
(Devlin et al., 2019). We use MNLI to evaluate the
training instability in terms of 5 random seeds with
the same setup in Figure 2. The interquartile range
of BERT with adapter on the distribution of dev
scores is smaller than BERT without adapter. It
shows that the model without adapter consistently
leads to the instability issue on the fine-tuning ac-
curacy, while the adapter architecture brings less
benefit with larger dataset.

https://github.com/Adapter-Hub/adapter-transformers.git
https://github.com/Adapter-Hub/adapter-transformers.git
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Figure 10: Box plots showing the fine-tuning stability of BERT with/without adapter for different pretraining
iteration from 0 to 20000.
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Figure 13: Learning curves of fine-tuning when varying the pretraining iterations.


