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Abstract

The advent of large pre-trained language mod-
els has given rise to rapid progress in the field
of Natural Language Processing (NLP). While
the performance of these models on standard
benchmarks has scaled with size, compres-
sion techniques such as knowledge distilla-
tion have been key in making them practi-
cal. We present MATE-KD, a novel text-
based adversarial training algorithm which im-
proves the performance of knowledge distilla-
tion. MATE-KD first trains a masked language
model-based generator to perturb text by max-
imizing the divergence between teacher and
student logits. Then using knowledge distilla-
tion a student is trained on both the original
and the perturbed training samples. We evalu-
ate our algorithm, using BERT-based models,
on the GLUE benchmark and demonstrate that
MATE-KD outperforms competitive adversar-
ial learning and data augmentation baselines.
On the GLUE test set our 6 layer RoBERTa
based model outperforms BERTLARGE.

1 Introduction

Transformers (Vaswani et al., 2017) and
transformer-based Pre-trained Language Models
(PLMs) (Devlin et al., 2019) are ubiquitous in
applications of NLP. They are highly parallelizable
and their performance scales well with an increase
in model parameters and data. Increasing model
parameters depends on the availability of computa-
tional resources and PLMs are typically trained on
unlabeled data which is cheaper to obtain.

Recently, the trillion parameter mark has been
breached for PLMs (Fedus et al., 2021) amid seri-
ous environmental concerns (Strubell et al., 2019).
However, without a change in our current training
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paradigm , training larger models may be unavoid-
able (Li et al., 2020). In order to deploy these
models for practical applications such as for vir-
tual personal assistants, recommendation systems,
e-commerce platforms etc. model compression is
necessary.

Knowledge Distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015) is a simple, yet pow-
erful knowledge transfer algorithm which is used
for neural model compression (Jiao et al., 2019;
Sanh et al., 2019), ensembling (Hinton et al., 2015)
and multi-task learning (Clark et al., 2019). In
NLP, KD for compression has received renewed
interest in the last few years. It is one of the most
widely researched algorithms for the compression
of transformer-based PLMs (Rogers et al., 2020).

One key feature which makes KD attractive is
that it only requires access to the teacher’s output or
logits and not the weights themselves. Therefore, if
a trillion parameter model resides on the cloud, an
API level access to the teacher’s output is sufficient
for KD. Consequently, the algorithm is architecture
agnostic, i.e., it can work for any deep learning
model and the student can be a different model
from the teacher.

Recent works on KD for transfer learning with
PLMs extend the algorithm in two main direc-
tions. The first is towards “model” distillation (Sun
et al., 2019; Wang et al., 2020; Jiao et al., 2019)
i.e. distilling the intermediate weights such as the
attention weights or the intermediate layer output
of transformers. The second direction is towards
curriculum-based or progressive KD (Sun et al.,
2020; Mirzadeh et al., 2019; Jafari et al., 2021)
where the student learns one layer at a time or from
an intermediary teacher, known as a teacher as-
sistant. While these works have shown accuracy
gains over standard KD, they have come at the cost
of architectural assumptions, least of them a com-
mon architecture between student and teacher, and
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greater access to teacher parameters and interme-
diate outputs. Another issue is that the decision
to distill one teacher layer and to skip another is
arbitrary. Still the teacher typically demonstrates
better generalization

We are interested in KD for model compression
and study the use of adversarial training (Good-
fellow et al., 2014) to improve student accuracy
using just the logits of the teacher as in standard
KD. Specifically, our work makes the following
contributions:

• We present a text-based adversarial algorithm,
MATE-KD, which increases the accuracy of
the student model using KD.

• Our algorithm only requires access to the
teacher’s logits and thus keeps the teacher and
student architecture independent.

• We evaluate our algorithm on the GLUE
(Wang et al., 2018) benchmark and demon-
strate improvement over competitive base-
lines.

• On the GLUE test set, we achieve a score of
80.9, which is higher than BERTLARGE

• We also demonstrate improvement on out-of-
domain (OOD) evaluation.

2 Related Work

2.1 Knowledge Distillation
We can summarize the knowledge distillation loss,
L, as following:

LCE = HCE
(
y, S(X))

)
LKD = T 2DKL

(
σ(
zt(X)

T
), σ(

zs(X)

T
)
)

L = (1− λ)LCE + λLKD

(1)

whereHCE represents the cross entropy between
the true label y and the student network prediction
S(X) for a given input X , DKL is the KL diver-
gence between the teacher and student predictions
softened using the temperature parameter T , z(X)
is the network output before the softmax layer (log-
its), and σ(.) indicates the softmax function. The
term λ in the above equation is a hyper-parameter
which controls the amount of contribution from the
cross entropy and KD loss.

Patient KD (Sun et al., 2019) introduces an ad-
ditional loss to KD which distills the intermediate

layer information onto the student network. Due to
a difference in the number of student and teacher
layers they propose either skipping alternate lay-
ers or distilling only the last few layers. Tiny-
BERT (Jiao et al., 2019) applies embedding distil-
lation and intermediate layer distillation which in-
cludes hidden state distillation and attention weight
distillation. Although it achieves strong results on
the GLUE benchmark, this approach is infeasible
for very large teachers. MiniLM (Wang et al., 2020)
proposed an interesting alternative whereby they
distill the key, query and value matrices of the final
layer of the teacher.

2.2 Adversarial Training

Adversarial examples are small perturbations to
training samples indistinguishable to humans but
enough to produce misclassifications by a trained
neural network. Goodfellow et al. (2014) showed
that adding these examples to the training set can
make a neural network model robust to perturba-
tions. Miyato et al. (2016) adapt adversarial train-
ing to text classification and improve performance
on a few supervised and semi-supervised text clas-
sification tasks.

In NLP, adversarial training has surpris-
ingly been shown to improve generalization as
well (Cheng et al., 2019; Zhu et al., 2019). Cheng
et al. (2019) study machine translation and propose
making the model robust to both source and target
perturbations, generated by swapping the embed-
ding of a word with that of its synonym. They
model small perturbations by considering word
swaps which cause the smallest increase in the loss
gradient. They achieve a higher BLEU score on
Chinese-English and English-German translation
compared to the baseline.

Zhu et al. (2019) propose a novel adversarial
training algorithm, FreeLB, to make gradient-based
adversarial training efficient by updating both em-
bedding perturbations and model parameters simul-
taneously during the backward pass of training.
They show improvements on multiple language
models on the GLUE benchmark. Embedding
perturbations are attractive because they produce
stronger adversaries (Zhu et al., 2019) and keep the
system end-to-end differentiable as the embeddings
are continuous. The salient features of adversar-
ial training for NLP are a) a minimax formulation
where adversarial examples are generated to max-
imize a loss function and the model is trained to
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minimize the loss function and b) a way of keeping
the perturbations small such as a norm-bound on
the gradient (Zhu et al., 2019) or replacing words
by their synonyms (Cheng et al., 2019).

If these algorithms are adapted to KD one key
challenge is the embedding mismatch between the
teacher and student. Even if the embedding size is
the same, the student embedding needs to be frozen
to match the teacher embedding and freezing em-
beddings typically leads to lower performance. If
we adapt adversarial training to KD, one key advan-
tage is that access to the teacher distribution relaxes
the requirement of generating label preserving per-
turbations. These considerations have prompted
us to design an adversarial algorithm where we
perturb the actual text instead of the embedding.
Rashid et al. (2020) also propose a text-based adver-
sarial algorithm for the problem of zero-shot KD
(where the teacher’s training data is unavailable),
but their generator instead of perturbing text gen-
erates new samples and requires additional losses
and pre-training to work well.

2.3 Data Augmentation

One of the first works on BERT compression (Tang
et al., 2019) used KD and proposed data augmenta-
tion using heuristics such as part-of-speech guided
word replacement. They demonstrated improve-
ment on three GLUE tasks. One limitation of this
approach is that the heuristics are task specific. Jiao
et al. (2019) present an ablation study in their work
whereby they demonstrate a strong contribution of
data augmentation to their KD algorithm perfor-
mance. They augment the data by randomly select-
ing a few words of a training sentence and replac-
ing them with words with the closest embedding
under cosine distance. Our adversarial learning al-
gorithm can be interpreted as a data augmentation
algorithm, but instead of a heuristic approach we
propose a principled end-to-end differentiable aug-
mentation method based on adversarial learning.

Khashabi et al. (2020) presented a data augmen-
tation technique for question answering whereby
they took seed questions and asked humans to per-
turb only a few tokens to generate new ones. The
human annotators could modify the label if needed.
They demonstrated improved generalization and ro-
bustness with the augmented data. We will demon-
strate that our algorithm is built on similar prin-
ciples but does not require humans in the loop.
Instead of human annotators to modify the labels

we use the teacher.

3 Methodology

We propose an algorithm that involves co-training
and deploy an adversarial text generator while train-
ing a student network using KD. Figure 1 gives an
illustration of our architecture.

Figure 1: Illustration of the maximization and mini-
mization steps of MATE-KD

3.1 Generator

The text generator is simply a pre-trained masked
language model which is trained to perturb training
samples adversarially. We can frame our technique
in a minimax regime such that in the maximization
step of each iteration, we feed the generator with a
training sample with few of the tokens replaced by
masks. We fix the rest of the sentence and replace
the masked tokens with the generator output to
construct a pseudo training sampleX ′. This pseudo
sample is fed to both the teacher and the student
models and the generator is trained to maximize
the divergence between the teacher and the student.
We present an example of the masked generation
process in Figure 2. The student is trained during
the minimization step.
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Figure 2: This figure illustrates how a training sample
will be randomly masked and then fed to the text gen-
erator Gφ to get the pseudo training sample.

3.2 Maximization Step

The generator is trained to generate pseudo samples
by maximizing the following loss function:

max
φ
LG(φ) =

DKL

(
T
(
Gφ(Xm)

)
, Sθ
(
Gφ(Xm)

))
,

(2)

where DKL is the KL divergence, Gφ(.) is the
text generator network with parameters φ, T (·) and
Sθ(·) are the teacher and student networks respec-
tively, and Xm is a randomly masked version of
the input X = [x1, x2, ..., xn] with n tokens.

∀xi ∈ X = [x1, ..., xi, ..., xn] ∼ D,
xmi = Mask(xi ∈ X, pi)

p∼unif(0,1)

=

{
xi, pi ≥ ρ
< mask >, o.w.

(3)

where unif(0, 1) represents the uniform distribu-
tion, and the Mask( · ) function masks the tokens of
inputs sampled from the data distribution D with
the probability of ρ. The term ρ can be treated as
a hyper-parameter in our technique. In summary,
for each training sample, we randomly mask some
tokens according to the samples derived from the
uniform distribution and the threshold value of ρ.

Then in the forward pass, the masked sample,
Xm, is fed to the generator to obtain the output
pseudo text based on the generator predictions of
the mask tokens. The generator needs to output a
one-hot representation but using an argmax inside
the generator would lead to non-differentiability.
Instead we apply the Gumbel-Softmax (Jang et al.,
2016), which, is an approximation to sampling
from the argmax. Using the straight through es-
timator (Bengio et al., 2013) we can still apply
argmax in the forward pass and can obtain text, X ′

from the network outputs:

X ′ = Gφ(Xm)
FORWARD

= argmax
(
σGumbel(zφ(Xm)

)
(4)

where

σGumbel(zi) =
exp

((
log(zi) + gi

)
/τ
)

ΣK
j=1 exp

((
log(zj) + gj

)
/τ
)
(5)

gi ∼ Gumbel(0, 1) and zφ(.) returns the logits pro-
duced by the generator for a given input. τ is the
temperature in equation 5.

In the backward pass, the generator simply ap-
plies the gradients from the Gumbel-Softmax with-
out the argmax :

Gφ(Xm)
BACKWARD

= σGumbel(zφ(Xm)) (6)

3.3 Minimization Step

In the minimization step, the student network is
trained to minimize the gap between the teacher
and student predictions and match the hard labels
from the training data by minimizing the following
loss equation:

min
θ
LMATE-KD(θ) =

1

3
LCE(θ) +

1

3
LKD(θ) +

1

3
LADV (θ)

(7)

where

LADV (θ) = DKL

(
T (X ′), Sθ(X

′)
)

(8)

In Equation 7, the terms LKD and LCE are the
same as Equation 1, LKD(θ) and LADV (θ) are
used to match the student with the teacher, and
LCE(θ) is used for the student to follow the ground-
truth labels y.

Bear in mind that our LMATE-KD(θ) loss is dif-
ferent from the regular KD loss in two aspects:
first, it has the additional adversarial loss, LADV
to minimize the gap between the predictions of the
student and the teacher with respect to the gener-
ated masked adversarial text samples, X ′, in the
maximization step; second, we do not have the
weight term λ form KD in our technique any more
(i.e. we consider equal weights for the three loss
terms in LMATE-KD).
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3.4 Rationale Behind the Masked
Adversarial Text Generation for KD

The rationale behind generating partially masked
adversarial texts instead of generating adversarial
texts from scratch (that is equivalent to masking the
input of the text generator entirely) is three-fold:

1. Partial masking is able to generate more real-
istic sentences compared to generating them
from scratch when trained only to increase
teacher and student divergence. We present a
few generated sentences in section 4.6

2. Generating text from scratch increases the
chance of generating OOD data. Feeding
OOD data to the KD algorithm leads to match-
ing the teacher and student functions across
input domains that the teacher is not trained
on.

3. By masking and changing only a few tokens
of the original text, we constrain the amount
of perturbation as is required for adversarial
training.

In our MATE-KD technique, we can tweak the ρ
to control our divergence from the data distribution
and find the sweet spot which gives rise to max-
imum improvement for KD. We also present an
ablation on the effect of this parameter on down-
stream performance in section 4.5.

4 Experiments

We evaluated MATE-KD on all nine datasets of
the General Language Understanding Evaluation
(GLUE) (Wang et al., 2018) benchmark which in-
clude classification and regression. These datasets
can be broadly divided into 3 families of prob-
lems. Single set tasks which include linguistic
acceptability (CoLA) and sentiment analysis (SST-
2). Similarity and paraphrasing tasks which include
paraphrasing (MRPC and QQP) and a regression
task (STS-B). Inference tasks which include Natu-
ral Language Inference (MNLI, WNLI, RTE) and
Question Answering (QNLI).

4.1 Experimental Setup
We evaluate our algorithm on two different setups.
On the first the teacher model is RoBERTaLARGE
(Liu et al., 2019) and the student is initialized with
the weights of DistillRoBERTa (Sanh et al., 2019).
RoBERTaLARGE consists of 24 layers with a hid-
den dimension of 1024 and 16 attention heads and

a total of 355 million parameters. We use the pre-
trained model from Huggingface (Wolf et al., 2019).
The student consists of 6 layers, 768 hidden dimen-
sion, 8 attention heads and 82 million parameters.
Both models have a vocabulary size of 50,265 ex-
tracted using the Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) tokenization method.

On our second setup, the teacher model is
BERTBASE (Devlin et al., 2019) and the student
model is initialized with the weights of DistilBERT
which consists of 6 layers with a hidden dimen-
sion of 768 and 8 attention heads. The pre-trained
models are taken from the authors’ release. The
teacher and the student are 110M and 66M param-
eters respectively with a vocabulary size of 30,522
extracted using BPE.

Hyper-parameters We fine-tuned the RoBERTa
student model and picked the best checkpoint that
gave the highest score on the dev set of GLUE.
These hyper-parameters were fixed for the GLUE
test submissions as well as the BERT experiments.

We used the AdamW (Loshchilov and Hutter,
2017) optimizer with the default values. In addition,
we used a linear decay learning rate scheduler with
no warmup steps. We set the masking probability
p to be 0.3. Additionally, we set the value nG to
10 and nS to 100. The learning rate, number of
epochs, and other hyper-parameters are presented
on table 8 of Appendix A.

Hardware Details We trained all models using
a single NVIDIA V100 GPU. We used mixed-
precision training (Micikevicius et al., 2018) to
expedite the training procedure. All experiments
were run using the PyTorch1 framework.

4.2 Results

Table 1 presents the results of MATE-KD on the
GLUE dev set. Even though the datasets have dif-
ferent evaluation metrics, we present the average of
all scores as well, which is used to rank the submis-
sions to GLUE. Our first baseline is the fine-tuned
DistilRoBERTa and then we compare with KD,
FreeLB, FreeLB plus KD, and TinyBERT (Jiao
et al., 2019) data augmentation plus KD.

We observe that FreeLB (Zhu et al., 2019) signif-
icantly improves the fine-tuned student by around
1.2 points on average. However, when we apply
both FreeLB + KD, we do not see any further im-
provement whereas applying KD alone improves

1https://pytorch.org/

https://pytorch.org/
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Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Score

RoBERTaLarge (teacher) 68.1 96.4 91.9 92.3 91.5 90.2 94.6 86.3 85.28

DistilRoBERTa (student) 56.6 92.7 89.5 87.2 90.8 84.1 91.3 65.7 78.78
Student + FreeLB 58.1 93.1 90.1 88.8 90.9 84.0 91.0 67.8 80.01
Student + FreeLB + KD 58.1 93.2 90.5 88.6 91.2 83.7 90.8 68.2 80.06
Student + KD 60.9 92.5 90.2 89.0 91.6 84.1 91.3 71.1 80.77
Student + TinyBERT Aug + KD 61.3 93.3 90.4 88.6 91.7 84.4 91.6 72.5 81.12

Student + MATE-KD (Ours) 65.9 94.1 91.9 90.4 91.9 85.8 92.5 75.0 82.64

Table 1: Dev Set results using DistilRoBERTa as the student on the GLUE benchmark. The score for the WNLI
task is 56.3 for all models.

the score by about 2 points. This is so because
FreeLB relies on the model (student) output rather
than the teacher output to generate adversarial per-
turbation and therefore cannot benefit from KD. As
previously discussed, FreeLB relies on embedding
perturbation and in order to generate the teacher
output on the perturbed student, both the embed-
dings need to be tied together, which is infeasible
due to the size and training requirements.

We also compared against the data augmentation
algorithm of TinyBERT. We ran their code to gen-
erate the augmented data offline. Although they
augment the data about 20 times depending on the
GLUE task, we observed poor results if we use all
this data to fine-tune with KD. We only generated
1x augmented data and saw an average improve-
ment of 0.35 score over KD. MATE-KD achieves
the best result among the student models on all
GLUE tasks and achieves an average improvement
of 1.87 over just KD. We also generated the same
number of adversarial samples as the training data.

We present the results on the test set of GLUE on
Table 2. We list the number of parameters for each
model. The results of BERTBASE, BERTLARGE
(Devlin et al., 2019), TinyBERT and MobileBERT
(Sun et al., 2020) are taken from the GLUE leader-
board2. The KD models have RoBERTaLarge, fine-
tuned without ensembling as the teacher.

TinyBERT and MobileBERT are the current
state-of-the-art 6 layer transformer models on the
GLUE leaderboard. We include them in this com-
parison although their teacher is BERTBASE as op-
posed to RoBERTaLarge. We make the case that one
reason we can train with a larger and more power-
ful teacher is that we only require the logits of the
teacher while training. Most of the works in the
literature proposing intermediate layer distillation
(Jiao et al., 2019; Sun et al., 2020, 2019) are trained

2https://gluebenchmark.com/leaderboard

on 12 layer BERT teachers. As PLMs get bigger
in size, feasible approaches to KD will involve al-
gorithms which rely on only minimal access to
teachers.

We apply a standard trick to boost the perfor-
mance of STS-B and RTE, i.e., we initialize these
models with the trained checkpoint of MNLI (Liu
et al., 2019). This was not done for the dev results.
The WNLI score is the same for all the models
and although, not displayed on the table, is part
of the average score. We make a few observations
from this table. Firstly, using KD a student with
a powerful teacher can overcome a significant dif-
ference in parameters between competitive models.
Secondly, our algorithm significantly improves KD
with an average 2 point increase on the unseen
GLUE testset. Our model is able to achieve state-
of-the-art results for a 6 layer transformer model
on the GLUE leaderboard.

We also evaluate our algorithm using BERTBASE
as teacher and DistilBERT as student on GLUE
benchmark. WNLI results are the same for all and
they are used to calculate the average. We com-
pare against the teacher, student, and KD plus Tiny-
BERT augmentation. Here, remarkably MATE-KD
can beat the teacher performance on average. On
the two largest datasets in GLUE, QQP and MNLI,
we beat and match the teacher performance respec-
tively.

We observe that MATE-KD outperforms its com-
petitors when both the teacher is twice the size and
four times the size of the student. This may be
because the algorithm generates adversarial exam-
ples based on the teacher’s distribution. A well
designed adversarial algorithm can help us probe
parts of the teacher’s distribution not spanned by
the training data leading to better generalization.

https://gluebenchmark.com/leaderboard
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Model (Param.) CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE Score

TinyBERT (66M) 51.1 93.1 87.3/82.6 85.0/83.7 71.6/89.1 84.6/83.2 90.4 70.0 78.1
BERTBASE (110M) 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3
MobileBERT (66M) 51.1 92.6 88.8/84.5 86.2/84.8 70.5/88.3 84.3/83.4 91.6 70.4 78.5
DistilRoB. + KD (82M) 54.3 93.1 86.0/80.8 85.7/84.9 71.9/89.5 83.6/82.9 90.8 74.1 78.9
BERTLARGE (340M) 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 80.5

MATE-KD (82M) 56.0 94.9 91.7/88.7 88.3/87.7 72.6/89.7 85.5/84.8 92.1 75.0 80.9

Table 2: Leaderboard test results of experiments on GLUE tasks. The score for the WNLI task is 65.1 for all
models.

Method CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Score

BERTBASE (teacher) 59.5 93.1 86.7 88.4 91.0 84.6 91.5 68.2 79.9

DistilBERT (student) 51.3 91.3 87.5 86.9 88.5 82.1 89.2 59.9 77.0
Student + TinyBERT Aug. + KD 55.2 91.9 87.0 87.8 89.5 82.1 89.7 68.6 78.7

Student + MATE-KD (Ours) 60.4 92.2 88.0 88.5 91.4 84.5 91.2 70.0 80.3

Table 3: Dev results on the GLUE benchmark using DistilBERT as the student model. WNLI results are 56.3 for
all models.

4.3 OOD Evaluation
It has been shown that strong NLU models tend
to learn spurious surface level patterns from the
dataset (Poliak et al., 2018; Gururangan et al.,
2018) and may perform poorly on carefully con-
structed OOD datasets. In Table 4 we present the
evaluation of MATE-KD (RoBERTa-based) trained
on MNLI and QQP on the HANS (McCoy et al.,
2019) and the PAWS (Zhang et al., 2019) evalua-
tion sets respectively.

Model HANS PAWS

DistilRoBERTa 58.9 36.5
Mate-KD 66.6 38.3

Table 4: Model Performance on OOD evaluation sets
HANS and PAWS for MNLI and QQP respectively

We use the same model checkpoint as the one
presented in Table 1 and compare against Dis-
tilRoBERTa. We observe that MATE-KD im-
proves the baseline performance on both evaluation
datasets. The performance increase on HANS is
larger. We can conclude that the algorithm improve-
ments are not due to learning spurious correlations
and biases in the dataset.

4.4 Ablation Study
Table 5 presents the contribution of the generator
and adversarial learning to MATE-KD. We first
present the result of MATE-KD on all the GLUE
datasets (except WNLI) and compare against the

effect of removing the adversarial training and then
the generator altogether. When we remove the ad-
versarial training, we essentially remove the maxi-
mization step and do not train the generator. The
generator in this setting is a pre-trained masked
language model. In the minimization step, we still
generate pseudo samples and apply all losses. The
setting where we remove the generator is akin to a
simple KD.

We observe that the generator improves KD by
an average of 1.3 and the adversarial training in-
creases the score further by 0.6.

4.5 Sensitivity Analysis

Our algorithm does not require the loss interpo-
lation weight of KD but instead relies on one ad-
ditional parameter, ρ, which is the probability of
masking a given token. We present the effect of
changing ρ in Table 7 on MNLI and RTE dev set re-
sults fixing all other hyper-parameters. We selected
MNLI and RTE because they are part of Natural
Language Inference, which is one of the hardest
tasks on GLUE. Moreover, in the RoBERTa exper-
iments we see the largest drop in student scores
for these two datasets. We can observe that for
MNLI the best result is for 30% followed by 20%
and for RTE the best choice is 40% followed by
30%. This corresponds to the heuristic based data
augmentation works where they typically modify
tokens with a 30% to 40% probability. We set this
parameter to 30% for all the experiments and did
not tune this for each dataset or each architecture.
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Score

MATE-KD 65.9 94.1 91.9 90.4 91.9 85.8 92.5 75.0 82.64
- Adv train 64.7 93.1 90.0 90.3 91.8 85.3 92.8 74.0 82.03
- Generator 60.9 92.5 90.2 89.0 91.6 84.1 91.3 71.1 80.77

Table 5: The ablation of MATE-KD on four datasets from the GLUE benchmark. We present the result of MATE-
KD, a version of the algorithm without training the generator and a version of the algorithm without the generator.
Results are on the dev set.

Original Generated
the new insomnia is a surprisingly faithful sinister new insomnia shows a surprisingly terrible

remake of its chilly predecessor, and remake of its hilarious predecessor, and
beautifully shot, delicately scored and beautifully sublime, delicately scored,

powered by a set of heartfelt performances powered by great dozens of heartfelt performances
a perfectly pleasant if slightly pokey comedy a 10 pleasant if slightly pokey comedy

that appeals to me Federal appeals punished me
good news to anyone who’s fallen under good news for anyone who’s fallen under

the sweet, melancholy spell of this the sweet, melancholy spell of this
unique director’s previous films unique director’s previous mistakes

Table 6: Examples of original and adversarially generated samples during training for the SST-2 dataset

Task
p Hyperparameter

10% 20% 30% 40% 50 %

MNLI 85.4 85.5 85.8 84.7 84.6
RTE 74.0 74.8 75.0 75.4 74.6

Table 7: ρ value sensitivity analysis on two GLUE
tasks.

4.6 Generated Samples
We present a few selected samples that our genera-
tor produced during training for the SST-2 dataset
on table 6. SST-2 is a binary sentiment analysis
dataset. The data consist of movie reviews and is
both at the phrase and sentence level.

We observe that we only modify a few tokens in
the generated text. However, one of three things
happens if the text is semantically plausible. Either
the generated sentence keeps the same sentiment
as in Examples 2 and 3, or it changes the sentiment
as in Examples 1 and 4 or the text has ambiguous
sentiment as in Example 5. We can use all of these
for training since we do not rely on the original
label but obtain the teacher’s output.

5 Discussion and Future Work

We have presented MATE-KD, a novel text-based
adversarial training algorithm which improves the
student model in KD by generating adversarial ex-
amples while accessing the logits of the teacher

only. This approach is architecture agnostic and
can be easily adapted to other applications of KD
such as model ensembling and multi-task learning.

We demonstrate the need for an adversarial train-
ing algorithm for KD based on text rather than em-
bedding perturbation. Moreover, we demonstrate
the importance of masking for our algorithm.

One key theme that we have presented in this
work is that as PLMs inevitably increase in size
and number of parameters, techniques that rely
on access to the various layers and intermediate
parameters of the teacher will be more difficult
to train. In contrast, algorithms which are well-
motivated and require minimal access to the teacher
may learn from more powerful teachers and would
be more useful. An example of such an algorithm
is the KD algorithm itself.

Future work will consider a) using label informa-
tion and a measure of semantic quality to filter the
generated sentences b) exploring the application of
our algorithm to continuous data such as speech
and images and c) exploring other applications of
KD.
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A Training Details

We present the details of the learning rate, num-
ber of epochs, and the batch size we use for each
training set of GLUE for both the BERT and the
RoBERTa settings.

Batch size LR Epochs
CoLA 8 2e-5 50
SST-2 32 2e-5 50
MRPC 8 3e-5 100
STS-B 32 2e-5 100
QQP 32 2e-5 30

MNLI 32 2e-5 30
QNLI 32 2e-5 50
RTE 16 7e-6 50

WNLI 8 7e-5 50

Table 8: Hyper-parameter values for the GLUE
datasets. LR is the learning rate.


