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Abstract

Everyday conversations require understanding
everyday events, which in turn, requires un-
derstanding temporal commonsense concepts
interwoven with those events. Despite re-
cent progress with massive pre-trained lan-
guage models (LMs) such as T5 and GPT-3,
their capability of temporal reasoning in di-
alogs remains largely under-explored. In this
paper, we present the first study to investi-
gate pre-trained LMs for their temporal rea-
soning capabilities in dialogs by introducing
a new task and a crowd-sourced English chal-
lenge set, TIMEDIAL. We formulate TIME-
DIAL as a multiple choice cloze task with over
1.1K carefully curated dialogs. Empirical re-
sults demonstrate that even the best perform-
ing models struggle on this task compared to
humans, with 23 absolute points of gap in ac-
curacy. Furthermore, our analysis reveals that
the models fail to reason about dialog context
correctly; instead, they rely on shallow cues
based on existing temporal patterns in context,
motivating future research for modeling tem-
poral concepts in text and robust contextual
reasoning about them. The dataset is pub-
licly available at: https://github.com/

google-research-datasets/timedial.

1 Introduction

Humans can effortlessly reason about temporal con-
cepts of everyday events such as their duration, fre-
quency, or relative ordering (Allen, 1984; Radvan-
sky and Zacks, 2014) based on rich commonsense
knowledge about how the world works, especially
in relation to time. However, reasoning about such
concepts has been challenging for machines (Kahn
and Gorry, 1977; Kozareva and Hovy, 2011) since
it requires both understanding the local temporal
expressions and reasoning about their global con-
texts such as their relative ordering and relations

∗Work done during an internship at Google.

A: May we see the wine list please.
B: Sure. Our special wine today is a 1989 Chardonnay.
A: I’d like a bottle please.
B: I’ll need to see your ID please.
A: Here you go.
B: Sorry about the inconvenience, you look so young. I
had to make sure you are over .

a) 21 years old 3 b) 30 years old 7
c) 4 years old 7 d) 18 years old 3

A: Good morning! May I help you?
B: Yes. My wife and I are interested in renting a house
for the summer.
A: Very well. How long do you want the house? All
summer?
B: No, not all summer. Just for six weeks .
A: I am afraid I can only rent it for two months .
B: My holiday is only , but I think my brother
and his family would take it for the other two weeks .

a) six decades 7 b) 45 days 3
c) six weeks 3 d) two months 7

Table 1: Examples from our TIMEDIAL challenge set,
demonstrating the need for commonsense knowledge
and arithmetic reasoning over the context to infer the
correct answers. Key contextual information for rea-
soning success is highlighted.

(UzZaman et al., 2013; Ning et al., 2018b; Puste-
jovsky, 2017). The problem becomes even more
challenging in dialogs, where explicit and implicit
inter-dependencies among temporal concepts can
appear across conversation turns.

For instance, for the first dialog in Table 1, one
must understand the context, i.e., selling wine, and
use world knowledge of minimum legal drinking
age in order to reason about correct answers to fill
in the blank. Similarly, in the second conversation,
commonsense about the durations summer, month,
week, day and their relations, plus numerical rea-
soning, are necessary to make the inference.

Although previous works have studied tempo-
ral reasoning in natural language, they have ei-
ther focused on specific time-related concepts in

https://github.com/google-research-datasets/timedial
https://github.com/google-research-datasets/timedial
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isolation, such as temporal ordering and relation
extraction (Leeuwenberg and Moens, 2018; Ning
et al., 2018a), and/or dealt with limited context,
such as single-sentence-based question answering
(Zhou et al., 2019) and natural language infer-
ence (Vashishtha et al., 2020; Mostafazadeh et al.,
2016).

In this work, we make the first systematic study
of temporal commonsense reasoning in a multi-turn
dialog setting. The task involves complex reason-
ing that requires operations like comparison and
arithmetic reasoning over temporal expressions and
the need for commonsense and world knowledge.

We design a new task for dialog-based tempo-
ral reasoning and present a new challenge set in
English, called TIMEDIAL, to evaluate language
understanding models on the task. We formulate
the problem as a crowd-sourced cloze task with
multiple choices based on dialogs in the DailyDi-
alog dataset (Li et al., 2017). Given a dialog with
one temporal span masked out, the model is asked
to find all correct answers from a list of four op-
tions to fill in the blank (Table 1).

The challenge set requires the models to demon-
strate understanding of the context and use tempo-
ral commonsense to make right choices. Our final
challenge set consists of 1.1K carefully curated
dialog instances.

We then study the performance of several state-
of-the-art pre-trained language models on TIME-
DIAL along several dimensions including modeling
paradigms (classification, mask filling, and gener-
ation), the scope of dialog contexts, in-domain vs.
out-of-domain training, dependence on shallow text
matching for reasoning, and the types of reasoning
required. Our experiments demonstrate that off-
the-shelf, pre-trained language models cannot ef-
fectively reason about temporal aspects in a dialog,
even with domain-specific finetuning. Our findings
indicate that large-scale pre-trained models even
after fine-tuning may not be sufficient for robust
temporal reasoning in dialogs, and motivate future
research toward modeling temporal concepts over
diverse everyday events, and contextual reasoning
about them.

2 Task: Temporal Reasoning in Dialog

We formulate the dialog-based temporal common-
sense reasoning problem as a cloze task (Taylor,
1953). Formally, given a multi-turn dialog context
of n conversational turns between two speakers A

and B, where a temporal words span within the con-
text is masked out, the task is to predict the suitable
temporal expression(s) for the masked-out span
from a list of options. That is, we want the conver-
sation model to select all the correct answers from
the options based on the dialog context. Following
similar cloze-style challenge datasets, we use accu-
racy as the evaluation metric (Mostafazadeh et al.,
2016; Onishi et al., 2016; Mihaylov and Frank,
2018).

Having a non-trivial set of options is crucial to
build a challenge set and to avoid accidental spuri-
ous biases (Geirhos et al., 2020; Gururangan et al.,
2018; Le Bras et al., 2020). We ensure this via the
following filtering process. (1) For each masked
span, there is more than one correct answer in the
options. This makes the task more challenging for
models since more comprehensive understanding
of the context is required to recognize all the cor-
rect choices. In our dataset (§3) we guarantee two
correct answers for each masked span. (2) Some
incorrect options are selected to be spuriously cor-
related with the dialog context. For example, we
include temporal spans in the dialog context as neg-
ative options, which will challenge models that rely
primarily only on shallow pattern matching with-
out correct temporal reasoning. We present more
information in §3 about how the negative options
were created by human annotators.

3 Dataset: TIMEDIAL

The TIMEDIAL dataset is derived from DailyDi-
alog data (Li et al., 2017), which is a multi-turn
dialog corpus containing over 13K English dialogs.
Dialogs in this dataset consist of turn-taking be-
tween two people on topics over 10 broad cate-
gories, ranging from daily lives to financial topics.

3.1 Data Collection
Our data collection process involves two steps: (1)
identifying dialogs that are rich in temporal expres-
sions, and (2) asking human annotators to provide
correct and incorrect options for cloze instances
derived from these dialogs. We now describe these
steps in detail.

Temporal expression identification. Here, we
select dialogs that are rich with temporal informa-
tion, in order to focus on complex temporal rea-
soning that arises in natural dialogs. Temporal
expressions are automatically identified with SU-
Time (Chang and Manning, 2012), an off-the-shelf
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Category Dialog Options

World
Knowledge
(5%)

A: May we see the wine list ? B: Sure . Our special wine today is a 1989 Chardonnay .
A: That sounds pretty good! How much is it ? B: It’s $4.25 cents by the glass . The
whole bottle is $22.25 .
A: I’d like a bottle please . B: I’ll need to see your ID please .
A: Here you go . B: Sorry about the inconvenience, I had make sure you are over

.

3 21 years old
7 30 years old
7 4 years old
3 18 years old

Comparison
(24%)

A: Yes , sir. May I help you? B: Please I’d like a ticket to New York.
A: For today? B: No, early Saturday morning .
A: We have a flight that we’ll put you there at . Is that ok? B:
Nothing earlier? I prefer flight at 9 thirty.

A: I’m afraid not , unless you want a night flight. B: No, exactly not.

3 ten AM
7 9:30 PM
3 eleven AM
7 four AM

Arithmetic
(5%)

A: How long do you want the house ? All summer ? B: No , just for six weeks.
A: I’m afraid I can only rent it for two months .
B: My holiday is only , but I think my brother and his family would take it for
the other two weeks .

7 six decades
3 45 days
3 six weeks
7 two months

General
Commonsense
(60%)

A: Do you get up early every morning ? B: About 6 in the morning.
I like to walk to the office .

A: Good habit. How long does it take ? B: . Do you live alone ?
A: No , my little sister lives with me . . .

3 20 minutes
7 10 seconds
3 15 minutes
7 20 hours

Others
(6%)

A: How long does a facial service take? B: We have half-hour and one-hour treatments.
A: What’s the regular price? B: Well , the half-hour facial costs $50 and
the one-hour costs $80.

A: Good , I will take facial. B: That’s fine , madam.

3 the one hour
7 the 20 hour
7 the 80 second
3 the half hour

Table 2: Example dialogs and answer options from the TIMEDIAL dataset, categorized by the nature of reasoning
required to correctly answer them, along with the percentage of each reasoning category in the set of 100 sampled
examples. The relevant key information in the dialog context is highlighted.

temporal expression detector.1 We keep only the
dialogs with more than 3 temporal expressions and
at least one expression that contains numerals like
“two weeks” (as opposed to non-numeric spans, like
“summer”, “right now”, and “later”). In our initial
experiment, we observe that language models can
often correctly predict these non-numerical tempo-
ral phrases.

We note that temporal expressions containing
numerals serve as more challenging sets of options
than non-numerical ones. This filtering step results
in 1,127 unique dialogs for further processing.

Human annotated options. Next, we make
spans in the dialogs. For a dialog, we mask out
each temporal expression that contains numerals,
each resulting in a cloze question that is then sent
for human annotation.

This resulted in 1,526 instances for annotation.
For each masked span in each dialog, we obtain
human annotation to derive a fixed set of correct
and incorrect options given the context. Concretely,
given a masked dialog and a seed correct answer
(i.e., the original text) for the masked span, the

1https://nlp.stanford.edu/software/
sutime.shtml

annotators2 were asked to (1) come up with an al-
ternative correct answer that makes sense in the
dialog adhering to commonsense, and (2) formu-
late two incorrect answers that have no possibility
of making sense in the dialog context. We high-
light all time expressions in the context to make
it easier for annotators to select reasonable time
expressions.

To ensure that the annotated incorrect options
are not too trivially distinguishable by the models
(as discussed in §2), we define three rules for the
annotators to follow.

• Rule 1: Phrase Matching. The rater should
first try to pick another temporal span from the
dialog context that makes syntactic/semantic
sense (e.g., when the span is of the appro-
priate type, such as duration, for the masked
span) but is still incorrect according to com-
monsense.

• Rule 2: Numeral Matching. If Rule 1 does
not apply, raters should follow a relaxed ver-
sion of Rule 1, whereby the incorrect option
should contain any numeral occurring in the
dialog context.

2who are English linguists.

https://nlp.stanford.edu/software/sutime.shtml
https://nlp.stanford.edu/software/sutime.shtml
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# Dialog instances 1, 104
# Temporal Expressions 1, 985
# Avg. Turns Per Dialog 11.7
# Avg. Words Per Turn 16.5
# Avg. Time Spans Per Dialog 3.0

Incorrect Options

% Phrase Matching 16.3 %
% Numeral Matching 49.6 %
% Open-ended 45.4 %

Table 3: Statistics of our TIMEDIAL challenge set.

• Rule 3: Open-ended. If neither of the above
rules is applicable, then raters can come up
with an incorrect option using their own judg-
ment. The two incorrect options are required
to differ from each other as much as possible.

Rules-1&2 are designed to confuse models that
rely on shallow pattern matching. Finally, to en-
sure the quality of the human-annotated options,
we perform a subsequent round of human valida-
tion on the gathered data. The validators identify
and fix issues such as duplicate options, unreason-
able or obscure annotations w.r.t natural usage, or
ungrammatical annotations that do not fit in the
context.

3.2 Properties of TIMEDIAL

Table 3 shows statistics of TIMEDIAL. The dataset
contains over 1.1K test instances. Each dialog con-
tains 11.7 turns and 3 temporal expressions on av-
erage, presenting richer and more complex context
compared to the recent single-sentence-based tem-
poral question answering benchmarks (e.g., Zhou
et al., 2019; Vashishtha et al., 2020). As above,
each test instance contains two correct answers and
two incorrect ones.3 Over half of the incorrect op-
tions are annotated based on phrase and numeral
matching from context, which pose a significant
challenge for models relying on shallow text match-
ing, as we show in our experimental analysis (§5).

Answering different instances in the dataset re-
quires different types of core reasoning abilities,
such as comparison, arithmetic inference, or rea-
soning based on world knowledge or general com-
monsense. To facilitate fine-grained analysis, we
also annotate the reasoning categories for a ran-
domly sampled set of 100 dialogs. Though each

3We also collected 342 extra instances for which the an-
notators deem there is only one unique correct answer for the
context. Thus, each of those instances contains one correct
option and two incorrect ones. We release those instances
along with the dataset, though we did not include them in
empirical study in this paper.

instance can involve multiple reasoning types, we
associate it with one predefined category label that
indicates the primary type of reasoning it requires.
Table 2 shows the category distribution and exam-
ples in each of the category. We observe that the
dataset requires general commonsense for 60% of
the dialogs, making it the most common reasoning
type.

4 Modeling

We consider a broad set of methods and evalu-
ate their performance on our challenge TIMEDIAL

dataset. These methods vary in terms of the mod-
eling paradigms, the scope of the dialog contexts,
and training settings. In particular, they encompass
the major ways pre-trained LMs are currently used
in downstream tasks (§4.1) which often outperform
earlier specialized non-pretrained models. We also
consider different lengths of context used in reason-
ing, varying by their vicinity to the masked span
(§4.2). Finally, we study different training settings,
including zero-shot, in-domain, and out-of-domain
training (§4.3).

4.1 Modeling Paradigms

We experiment across three major modeling
paradigms: (i) Binary Classification, (ii) Mask Fill-
ing, and (iii) Generation. Figure 1 shows the differ-
ent architectures. For each test instance, the model
takes as input a pair of (masked dialog context, can-
didate), and outputs a score measuring how likely
the candidate being a correct answer. Based on
the prediction scores of all options, the model then
chooses the top two positive candidates as the pre-
dicted answer for the instance. Each paradigm of
models is finetuned using training data from differ-
ent domains, as discussed in §4.3.

4.1.1 Binary Classification
In this setting, we formulate the task as a binary
classification problem, i.e., we use a classifier to
measure the probability of the candidate in the
(masked dialog context, candidate) pair being a cor-
rect answer. Any powerful LM — e.g., BERT (De-
vlin et al., 2019), ALBERT (Lan et al., 2019),
ROBERTA (Liu et al., 2019), etc. can be used to
build the classifier.

This method’s key challenge is the lack of an-
notated training data for direct supervision. We
generate weak supervision training data as follows.
In an unlabeled corpus, we use the SUTime tool
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Input: [CLS] A: A: I’m … B: 
My holiday is only [MASK] … 
[SEP] six weeks

Classification Layer

BERT

Output: 1

(1) Classification

Input:  [CLS] A: I’m … B: My holiday is only [MASK] [MASK] ….

BERT

Output: six       weeks
(2) Mask Filling

T5 Encoder T5 Decoder

Input:  A: I’m … B: My holiday is only [MASK] ….

Output:(3) Generation six weeks

Input:

…… 

B:  No, not all summer. Just 
for six weeks. 

A:  I am afraid I can only rent it 
for two months. 

B:  My holiday is only _______, 
but I think my brother and his 
family would take it for the 
other two weeks.

Options:

a) six decades   b) 45 days 
c) six weeks   d) two months

Figure 1: We study three modeling paradigms for the task, based on BERT and T5, including (1) Classification, (2)
Mask Filling, and (3) Generation (§4.1). The models are finetuned with various training data, as discussed in §4.3.

to annotate temporal spans. We mask each tempo-
ral span in this corpus and use the masked text as
one positive example for binary classification. To
generate negative example, we randomly sample
another temporal span from the dialog context and
use it as a negative example for the masked tempo-
ral span. The resulting data is noisy because the
randomly sampled temporal span can also logically
fit in the masked span in the given context; how-
ever, we assume the likelihood of that happening
is low. We leave drawing harder negative instances
using heuristics to future work.

4.1.2 Mask Filling
We also use the mask filling approach of BERT-
like mask language models (MLMs). For each
dialog context and a candidate temporal span of m
tokens, we replace the blank in the dialog context
with m masked tokens. We then evaluate the like-
lihood of predicting the temporal span tokens for
those masked positions, and make average across
the positions. A key advantage of this method
is that we can directly apply a BERT model in
the zero-shot manner since the model was pre-
trained in the same way, as for accommodating for
[MASK] fillings. Additionally, we also finetune
BERT’s MLM for learning task specific properties.

4.1.3 Generation
The third method is a fully generative approach
using the text-to-text paradigm of T5 (Raffel et al.,
2020). Given a masked dialog context, the model
is trained to generate the masked text in an encoder-
decoder framework. As a result, evaluating the
likelihood of generating the given temporal span
(normalized with the length of the span) is used as
the probability of it being correct. Similar to mask

filling, we use T5 either in a zero-shot manner or
with additional fine-tuning.

4.2 Dialog Context
We aim to study the influence of context on a
model’s temporal reasoning in dialog by incorpo-
rating varying scopes of dialog context based on
their vicinity to the target span. Since the dialogs
in TIMEDIAL are rich in temporal concepts, we
want to evaluate LMs’ dependence on shallow text
matching vs. the ability to accurately understand
the causal relations between those concepts (see
Table 6). We use the following three settings:

• Full context, where the model is presented
with the complete available dialog to reason
on. Due to our design of challenging nega-
tives, the full context can often confuse mod-
els that rely on shallow cues.

• Local context, where we provide only with
the utterances that immediately precede and
follow the target utterance.

• Target context, where the context is restricted
to only the particular utterance that contains
the masked span.

4.3 Training Details
For all models, we consider two common training
settings, e.g., in-domain data, which is typically
small, and out-of-domain training where a large
amount of data is available. Table 4 shows training
data statistics. For mask-filling and generation, we
also evaluate in a zero-shot setup with no finetun-
ing.

In-domain training. Our challenge TIMEDIAL

test set is derived from contextually rich dialogs
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Mask Filling and Generation

# Train # Dev

In-domain (Daily) 14.5K 2.4K
Out-domain (Meena) 1.26M 23K

Classification

# Train # Dev # Spans

In-domain (Daily) 58.0K 9.6K 2,153
Out-domain (Meena) 5.04M 92K 38,750

Table 4: Number of training and development instances
for different settings. An instance is derived by mask-
ing one temporal span of a dialog. For classifica-
tion, we draw 3 negative samples per positive sample.
“# Spans” is the size of temporal span pool from which
negative samples are drawn for weak supervision.

from the DailyDialog dataset, based on the num-
ber of temporal spans. However, this still leaves
remaining data with less than 3 temporal spans or
with no numeric span. By masking each tempo-
ral span in each dialog, we obtain 14.5K training
instances to use in our domain specific fine-tuning.

Out-of-domain training. In this setting, we con-
sider a much larger corpus from a general do-
main. Specifically, we use the large scale training
set based on the Meena dataset Adiwardana et al.
(2020), which is mined and filtered from public
domain social media conversations over 341GB
of text (40B words).4 Compared to the above in-
domain data from DailyDialog which were man-
ually written by human annotators in a clean and
consistent way, the dialogs in the Meena corpus
tend to be noisy, casual, and usually short. Like our
DailyDialog processing, we identify all temporal
expressions for dialogs in Meena using SUTime.

5 Experiments and Analyses

Using the proposed TIMEDIAL challenge set, we
next conduct extensive experiments and analyses
on the different model variants and context settings.
We use either 4x4 or 8x8 Cloud TPUs V3 pod
slices5 for fine-tuning and one V100 GPU for infer-
ence. We provide more details of the experiment
configurations in the appendix.

Evaluation. Since each example of TIMEDIAL

contains two correct answers, we report the met-
ric 2-best accuracy, which measures whether both
of the model’s top-ranked answers are correct. In

4We acquired a trimmed down version of the Meena
dataset by contacting the authors.

5https://cloud.google.com/tpu

SIZE-TRAIN 2-best Acc (%)

Classification (BERT)

BASE-OUT 43.1
BASE-IN 51.1
LARGE-OUT 48.7
LARGE-IN 53.2

Mask Filling (BERT)

BASE-ZERO 44.8
BASE-OUT 47.4
BASE-IN 67.4
LARGE-ZERO 47.7
LARGE-OUT 54.8
LARGE-IN 70.0

Generation (T5)

BASE-ZERO 39.8
BASE-OUT 50.6
BASE-IN 59.2
LARGE-ZERO 39.1
LARGE-OUT 61.9
LARGE-IN 74.8

Human 97.8

Table 5: Model and human performance on TIMEDIAL.
BASE and LARGE denote the size of the pre-trained
BERT and T5; ZERO, IN, and OUT denote that the
model is zero-shot (with no finetuning), fintuned using
the in-domain DailyDialog data, or finetuned using the
out-of-domain Meena data, respectively. THe full dia-
log context is used for all models.

other words, if the model erroneously ranks an in-
correct answer over a correct one, we consider it to
be an error case. Note that we use the ranking-
based metric as opposed to classification-based
ones (for example, by asking the model to clas-
sify whether each individual candidate answer is
correct or not (e.g., Zhou et al., 2019)) and because
it presents a stricter measure that penalizes any in-
correct answers being ranked over correct answers,
and the ranking metric is not influenced by specific
choices of the threshold hyperparameter that cuts
off positive and negative predictions.

5.1 Model Performance
Table 5 shows model results and human perfor-
mance. Human performance achieves a near-
perfect level (97.80, with Cohen’s kappa score of
0.86 showing almost perfect inter-rater agreement
(Landis and Koch, 1977)).

Overall. The generation model based on T5-
LARGE and finetuned on the in-domain DailyDia-
log data achieves the best performance. However,
its 2-best accuracy (74.8) lagged far behind the hu-
man performance, demonstrating the difficulty of
the TIMEDIAL challenge set.

https://cloud.google.com/tpu
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Dialog Context Options GOLD CLS MF GEN

A: What’s the date today?
B: Today is September 28th, 2007.
A: I have a meeting this afternoon.
B: When will it begin?
A: It will begin at three o’clock. What’s the time now?
B: It is .
A: I have to go now. I don’t want to be late.
B: Don’t worry, time is enough.

half past one

quarter to two

half past three

half past nine

3

3

7

7

3

7

3

7

7

7

3

3

3

7

3

7

A: Doctor, I feel much better now. Will I be able to go home
some time this week?
B: That’s good to hear. You’ve had an ideal recovery from your
operation. We’re going to send you home tomorrow.
A: Do you think I can get back to work very soon?
B:Don’t be in such a hurry. I’m confident that you’ll be
completely recovered in .
A: Is there anything I should do?
B: You’d better have a good rest for a week.

4 to 6 weeks

5 to 7 weeks

a week

a day

3

3

7

7

7

3

3

7

7

7

3

3

3

7

3

7

Table 6: Example prediction errors made by different models for cases with challenging options, based on the
phrase and numeral matching rules (§3). GOLD denotes the true labels. The model predictions show that the
models get confused by learning shallow text matching in terms of pre-existing temporal concepts (marked by
bold faced text) in the context.

Zero-shot vs. out-of-domain vs. in-domain.
When comparing the different training data setup,
we observe that models with in-domain training us-
ing the DailyDialog data (e.g., LARGE-IN) consis-
tently outperforms those trained on the large out-of-
domain Meena dataset (e.g., LARGE-OUT). Both
setups outperform the zero-shot models (without
any fine-tuning) (e.g., LARGE-ZERO). The results
show that the large LMs still highly depend on in-
domain or at least dialog data to grasp and enhance
their temporal reasoning ability in dialog context.
Further, we see increasing performance with in-
creasing model size, which is not unexpected given
the complexity of the task.

5.2 Error Analysis

Next, we analyze the different types of errors based
on different rules for negative option creation in
the annotation process. In particular, the phrase
matching rule picks an exact time span from the
dialog context, and numeral matching picks numer-
als from the dialog context. Thus, models picking
those incorrect options imply reliance on spurious
shallow text matching features.

Figure 2 shows the percentage of errors in terms
of the different rules. For example, the BERT-
based classification model CLS-IN erroneously
picks 52% of negative options created by the phrase
matching rule as correct answers (i.e., by ranking
those negative options over the true correct options).
We observe that the various models are all most vul-
nerable to the phrase matching options compared

0

0.15

0.3

0.45

0.6

CLS-IN CLS-OUT MF-IN MF-OUT GEN-IN GEN-OUT

Error-Phrase Matching Error-Numeral Matching
Error-Open-ended

Table 1

Model Error 1 Error 2 Error 3

CLS-IN 0.52466368 0.19673469 0.20594634

CLS-OUT 0.55156951 0.18040816 0.2559826

MF-IN 0.18609865 0.1077551 0.15663524

MF-OUT 0.2690583 0.17877551 0.24873096

GEN-IN 0.19506726 0.06285714 0.14503263

GEN-OUT 0.29820628 0.12489796 0.21392313

BERT T5

1

Figure 2: Percentage of errors on options created by dif-
ferent rules. CLS, MF, and GEN represent classifica-
tion, mask-filling, and generation models, respectively;
and IN and OUT denote in-domain and out-of-domain
training. All models are of large size.

to other types of negative options, showing that
they rely on spurious text matching to a significant
extent. Between BERT and T5, we find T5 being
more robust to shallow text matching.

Table 6 provides further examples of prediction
errors, illustrating confusions due to shallow text
matching. In the first dialog, both incorrect an-
swers already partially occur in the context or are
related to preexisting concepts (i.e., “three” to

“three o’clock”, and “nine” to “September”). All
the three models were confused and chose either
of the two as the top prediction for the blank, even
though the options clearly violate the context. In-
terestingly, the mask filling model was completely
confused and ranked both incorrect answers over
the correct ones. Similarly in the second example,
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Size BASE LARGE
Training IN OUT IN OUT

Classification (BERT)

TARGET 50.5 40.0 50.5 47.5
LOCAL + 3.4 + 3.3 + 7.5 + 2.0
FULL − 0.6 − 0.1 + 2.7 + 1.2

Mask Filling (BERT)

TARGET 57.8 44.3 60.3 46.8
LOCAL + 5.4 + 3.0 + 8.1 + 4.9
FULL + 9.6 + 3.1 + 9.6 + 8.0

Generation (T5)

TARGET 55.5 45.9 66.7 56.1
LOCAL + 3.7 + 2.7 + 6.1 + 3.7
FULL + 3.7 + 4.7 + 8.2 + 5.8

Table 7: Impact of dialog context on reasoning accu-
racy. IN and OUT denote in-domain and out-of-domain
training, respectively. We use 2-best accuracy of target
context as reference and report the absolute changes in
performance of local and full context, respectively. Lo-
cal dialog context results in better performance to full
dialog context on 5 of the 12 cases, which are high-
lighted in the table.

the models fail to capture the contextual semantics.

5.3 Influence of Dialog Context

Table 7 shows how different scopes of dialog con-
text (§4.2) affect model performance. First, the
most restrictive target-only context is insufficient
for accurate reasoning, by producing the weakest
performance of most models. This highlights the
importance of context information for temporal
commonsense reasoning in dialog, which differs
from previous temporal reasoning studies based on
limited context (e.g., single-sentence question an-
swering). Second, we note that the full dialog con-
text does not always lead to the best performance.
In 5 out of the 12 cases, using the local context
yields equal or higher reasoning accuracy. The
results show that the LMs still fall short of prop-
erly modeling the rich dialog contexts and making
effective use of all information to do reasoning.

5.4 Errors of Reasoning Categories

Figure 3 shows the percentage of errors in each
reasoning category. We observe that the models
tend to make non-trivial portions of errors on com-
monsense/world knowledge questions. For exam-
ple, the strongest model, T5 GEN-IN, failed on
18% of the instances that require commonsense or
world knowledge, while BERT CLS-IN made er-
rors on 48% of such instances. The performance

Table 1

Commonsense/
World knowledge                        

Comparison Arithmetic/Others

CLS-IN 0.4769230769 0.5416666667 0.6363636364
CLS-OUT 0.4153846154 0.4583333333 0.2727272727
MF-IN 0.2461538462 0.2083333333 0.09090909091
MF-OUT 0.3538461538 0.3333333333 0.3636363636
GEN-IN 0.1846153846 0.1666666667 0.1818181818
GEN-OUT 0.2307692308 0.4166666667 0.2727272727

0.00

0.18

0.35

0.53

0.70

CLS-IN CLS-OUT MF-IN MF-OUT GEN-IN GEN-OUT

Commonsense/World knowledge Comparison
Arithmetic/Others

BERT T5

1

Figure 3: Percentage of errors on different reasoning
types. CLS, MF, and GEN represent classification,
mask-filling, and generation models, respectively. All
models are of large size.

on comparison-based instances seems similar.

6 Related Work

Temporal commonsense reasoning. Early stud-
ies related to temporal analysis define time in the
context of sets and relations (Bruce, 1972; Allen,
1983). More recent works often associate time
with events and focus on identifying time expres-
sions (Chang and Manning, 2012; Angeli et al.,
2012; Lee et al., 2014), extracting temporal re-
lations among events (Setzer and Gaizauskas,
2000; Pustejovsky et al., 2005; Lapata and Las-
carides, 2006; Chambers et al., 2007; Ning et al.,
2018b), and timeline construction (Do et al., 2012;
Leeuwenberg and Moens, 2018).

Some recent work has focused on building chal-
lenging benchmarks for temporal commonsense
reasoning. Story Cloze Test focuses on stereotyp-
ical causal temporal and causal relations between
events (Mostafazadeh et al., 2016). Vashishtha et al.
(2020) recast temporal reasoning datasets for event
duration and event ordering into the natural lan-
guage inference (NLI) format. Turque (Ning et al.,
2020) is an reading comprehension dataset where
the model needs to answer questions such as “what
happens before/after [event]”. Most related to our
work is McTaco (Zhou et al., 2019), a dataset for
evaluating temporal commonsense in the form of
multiple-choice reading comprehension, where the
context usually consists of a single sentence. Our
work instead studies temporal commonsense rea-
soning in dialogs which often require significant
commonsense and world knowledge to reason over
rich context (Qin et al., 2019b; Dinan et al., 2018).

Commonsense reasoning with LMs. With the
recent success of large pre-trained language models
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(LMs) (Devlin et al., 2019; Brown et al., 2020), it is
an open question whether these models, pretrained
on large amounts of data, capture commonsense
knowledge. Several works have been proposed to
assess the ability of LMs for commonsense or nu-
merical reasoning (Zhang et al., 2020; Bouraoui
et al., 2020), or to mine commonsense knowledge
from LMs (Davison et al., 2019). Lin et al. (2020)
showed that state-of-the-art LMs such as BERT
and RoBERTa performs poorly on numerical rea-
soning tasks without any finetuning. Works have
also been proposed to improve language model’s
commonsense reasoning (Qin et al., 2020, 2019a;
Zhou et al., 2020) and numerical reasoning abil-
ities (Geva et al., 2020). In our work, we study
several modeling approaches and finetuning set-
tings of large LMs, and establish strong baselines
for temporal commonsense reasoning in dialogs.

7 Conclusions

We introduced TIMEDIAL, a challenge set consist-
ting of 1.1K multiple-choice cloze questions for
temporal commonsense reasoning in dialog. The
dataset is carefully curated to evaluate a models’
ability to do temporal commonsense/numerical rea-
soning over dialog context. In order to establish
strong baselines and provide information on future
model development, we conducted extensive exper-
iments with state-of-the-art language models with
different settings: the scope of context, weak su-
pervision strategies, and learning objectives. While
humans can easily answer these questions (97.8%
accuracy), even our best model variant (T5-large
with in-domain training) struggles on this challenge
set (73%). Moreover, our qualitative error analy-
ses show that these large language models often
rely on shallow, spurious features (particularly text
matching) when answering these questions, instead
of truly doing reasoning over the context.
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