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Abstract

Temporal Knowledge Graphs (Temporal KGs)
extend regular Knowledge Graphs by provid-
ing temporal scopes (e.g., start and end times)
on each edge in the KG. While Question An-
swering over KG (KGQA) has received some
attention from the research community, QA
over Temporal KGs (Temporal KGQA) is a
relatively unexplored area. Lack of broad-
coverage datasets has been another factor lim-
iting progress in this area. We address this
challenge by presenting CRONQUESTIONS,
the largest known Temporal KGQA dataset,
clearly stratified into buckets of structural com-
plexity. CRONQUESTIONS expands the only
known previous dataset by a factor of 340×.
We find that various state-of-the-art KGQA
methods fall far short of the desired perfor-
mance on this new dataset. In response,
we also propose CRONKGQA, a transformer-
based solution that exploits recent advances in
Temporal KG embeddings, and achieves per-
formance superior to all baselines, with an in-
crease of 120% in accuracy over the next best
performing method. Through extensive experi-
ments, we give detailed insights into the work-
ings of CRONKGQA, as well as situations
where significant further improvements appear
possible. In addition to the dataset, we have re-
leased our code as well.

1 Introduction

Temporal Knowledge Graphs (Temporal KGs) are
multi-relational graph where each edge is associ-
ated with a time duration. This is in contrast to a
regular KG where no time annotation is present.
For example, a regular KG may contain a fact
such as (Barack Obama, held position, President
of USA), while a temporal KG would contain the
start and end time as well — (Barack Obama, held
position, President of USA, 2008, 2016). Edges
may be associated with a set of non-contiguous

time intervals as well. These temporal scopes on
facts can be either automatically estimated (Taluk-
dar et al., 2012) or user contributed. Several such
Temporal KGs have been proposed in the literature,
where the focus is on KG completion (Dasgupta
et al. 2018; Garcı́a-Durán et al. 2018; Leetaru and
Schrodt 2013; Lacroix et al. 2020; Jain et al. 2020).

The task of Knowledge Graph Question Answer-
ing (KGQA) is to answer natural language ques-
tions using a KG as the knowledge base. This is
in contrast to reading comprehension-based ques-
tion answering, where typically the question is ac-
companied by a context (e.g., text passage) and
the answer is either one of multiple choices (Ra-
jpurkar et al., 2016) or a piece of text from the
context (Yang et al., 2018). In KGQA, the an-
swer is usually an entity (node) in the KG, and the
reasoning required to answer questions is either
single-fact based (Bordes et al., 2015), multi-hop
(Yih et al. 2015, Zhang et al. 2017) or conjunc-
tion/comparison based reasoning (Talmor and Be-
rant, 2018). Temporal KGQA takes this a step
further where:

1. The underlying KG is a Temporal KG.
2. The answer is either an entity or time duration.
3. Complex temporal reasoning might be needed.

KG Embeddings are low-dimensional dense vec-
tor representations of entities and relations in a KG.
Several methods have been proposed in the litera-
ture to embed KGs (Bordes et al. 2013, Trouillon
et al. 2016, Vashishth et al. 2020). These embed-
dings were originally proposed for the task of KG
completion i.e., predicting missing edges in the
KG, since most real world KGs are incomplete.
Recently, however, they have also been applied to
the task of KGQA where they have been shown to
increase performance the settings of both of com-
plete and incomplete KGs (Saxena et al. 2020; Sun
et al. 2020).
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Question TypesDataset KG Temporal
facts Multi-Entity Multi-Relation Temporal # questions

SimpleQuestions FreeBase 7 7 7 0% 108k
MetaQA MetaQA KG 7 7 3 0% 400k
WebQuestions FreeBase 7 7 3 <16% 5,810
ComplexWebQuestions FreeBase 7 3 3 - 35k
TempQuestions FreeBase 7 3 3 100% 1,271
CRONQUESTIONS (ours) WikiData 3 3 3 100% 410k

Table 1: KGQA dataset comparison. Statistics about percentage of temporal questions for WebQuestions are taken
from Jia et al. (2018a). We do not have an explicit number of temporal questions for ComplexWebQuestions, but
since it is constructed automatically using questions from WebQuestions, we expect the percentage to be similar
to WebQuestions (16%). Please refer to Section 2.1 for details.

Temporal KG embeddings are another upcoming
area where entities, relations and timestamps in a
temporal KG are embedded in a low-dimensional
vector space (Dasgupta et al. 2018, Lacroix et al.
2020, Jain et al. 2020, Goel et al. 2019). Here too,
the main application so far has been temporal KG
completion. In our work, we investigate whether
temporal KG Embeddings can be applied to the
task of Temporal KGQA, and how they fare com-
pared to non-temporal embeddings or off-the-shelf
methods without any KG Embeddings.

In this paper we propose CRONQUESTIONS, a
new dataset for Temporal KGQA. CRONQUES-
TIONS consists of both a temporal KG and accom-
panying natural language questions. There were
three main guiding principles while creating this
dataset:
1. The associated KG must provide temporal an-

notations.
2. Questions must involve an element of temporal

reasoning.
3. The number of labeled instances must be large

enough that it can be used for training models,
rather than for evaluation alone.

Guided by the above principles, we present a
dataset consisting of a Temporal KG with 125k
entities and 328k facts, along with a set of 410k
natural language questions that require temporal
reasoning.

On this new dataset, we apply approaches based
on deep language models (LM) alone, such as T5
(Raffel et al., 2020), BERT (Devlin et al., 2019),
and KnowBERT (Peters et al., 2019), and also
hybrid LM+KG embedding approaches, such as
Entities-as-Experts (Févry et al., 2020) and Em-
bedKGQA (Saxena et al., 2020). We find that
these baselines are not suited to temporal reason-
ing. In response, we propose CRONKGQA, an
enhancement of EmbedKGQA, which outperforms

baselines across all question types. CRONKGQA
achieves very high accuracy on simple temporal
reasoning questions, but falls short when it comes
to questions requiring more complex reasoning.
Thus, although we get promising early results,
CRONQUESTIONS leaves ample scope to improve
complex Temporal KGQA. Our source code along
with the CRONQUESTIONS dataset can be found at
https://github.com/apoorvumang/CronKGQA.

2 Related work

2.1 Temporal QA data sets

There have been several KGQA datasets proposed
in the literature (Table 1). In SimpleQuestions (Bor-
des et al., 2015) one needs to extract just a single
fact from the KG to answer a question. MetaQA
(Zhang et al., 2017) and WebQuestionsSP (Yih
et al., 2015) require multi-hop reasoning, where
one must traverse over multiple edges in the KG
to reach the answer. ComplexWebQuestions (Tal-
mor and Berant, 2018) contains both multi-hop and
conjunction/comparison type questions. However,
none of these are aimed at temporal reasoning, and
the KG they are based on is non-temporal.

Temporal QA datasets have mostly been studied
in the area of reading comprehension. One such
dataset is TORQUE (Ning et al., 2020), where the
system is given a question along with some context
(a text passage) and is asked to answer a multiple
choice question with five choices. This is in con-
trast to KGQA, where there is no context, and the
answer is one of potentially hundreds of thousands
of entities.

TempQuestions (Jia et al., 2018a) is a KGQA
dataset specifically aimed at temporal QA. It con-
sists of a subset of questions from WebQuestions,
Free917 (Cai and Yates, 2013) and Complex-
Questions (Bao et al., 2016) that are temporal in

https://github.com/apoorvumang/CronKGQA
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Reasoning Example Template Example Question
Simple time When did {head} hold the position of {tail} When did Obama hold the position of President of USA
Simple entity Which award did {head} receive in {time} Which award did Brad Pitt receive in 2001
Before/After Who was the {tail} {type} {head} Who was the President of USA before Obama
First/Last When did {head} play their {adj} game When did Messi play their first game
Time join Who held the position of {tail} during {event} Who held the position of President of USA during WWII

Table 2: Example questions for different types of temporal reasoning. {head}, {tail} and {time} correspond to
entities/timestamps in facts of the form (head, relation, tail, timestamp). {event} corresponds to entities in event
facts eg. WWII. {type} can be one of before/after and {adj} can be one of first/last. Please refer to Section 3.2 for
details.

nature. They gave a definition for “temporal ques-
tion” and used certain trigger words (for example
‘before’, ‘after’) along with other constraints to
filter out questions from these datasets that fell un-
der this definition. However, this dataset contains
only 1271 questions — useful only for evaluation
— and the KG on which it is based (a subset of
FreeBase (Bollacker et al., 2008)) is not a temporal
KG. Another drawback is that FreeBase has not
been under active development since 2015, there-
fore some information stored in it is outdated and
this is a potential source of inaccuracy.

2.2 Temporal QA algorithms
To the best of our knowledge, recent KGQA al-
gorithms (Miller et al. 2016; Sun et al. 2019; Co-
hen et al. 2020; Sun et al. 2020) work with non-
temporal KGs, i.e., KGs containing facts of the
form (subject, relation, object). Extending these to
temporal KGs containing facts of the form (subject,
relation, object, start time, end time) is a non-trivial
task. TEQUILA (Jia et al., 2018b) is one method
aimed specifically at temporal KGQA. TEQUILA
decomposes and rewrites the question into non-
temporal sub-questions and temporal constraints.
Answers to sub-questions are then retrieved using
any KGQA engine. Finally, TEQUILA uses con-
straint reasoning on temporal intervals to compute
final answers to the full question. A major draw-
back of this approach is the use of pre-specified
templates for decomposition, as well as the as-
sumption of having temporal constraints on entities.
Also, since it is made for non-temporal KGs, there
is no direct way of applying it to temporal KGs
where facts are temporally scoped.

3 CRONQUESTIONS: The new Temporal
KGQA dataset

CRONQUESTIONS, our Temporal KGQA dataset
consists of two parts: a KG with temporal anno-
tations, and a set of natural language questions

requiring temporal reasoning.

3.1 Temporal KG

To prepare our temporal KG, we started by taking
all facts with temporal annotations from the Wiki-
Data subset proposed by Lacroix et al. (2020). We
removed some instances of the predicate “member
of sports team” in order to balance out the KG
since this predicate constituted over 50 percent of
the facts. Timestamps were discretized to years.
This resulted in a KG with 323k facts, 125k entities
and 203 relations.

However, this filtering of facts misses out on im-
portant world events. For example, the KG subset
created using the aforementioned technique con-
tains the entity World War II but no associated fact
that tells us when World War II started or ended.
This knowledge is needed to answer questions such
as “Who was the President of the USA during World
War II?.” To overcome this shortcoming, we first
extracted entities from WikiData that have a “start
time” and “end time” annotation. From this set,
we then removed entities which were game shows,
movies or television series (since these are not im-
portant world events, but do have a start and end
time annotation), and then removed entities with
less than 50 associated facts. This final set of enti-
tities was then added as facts in the format (WWII,
significant event, occurred, 1939, 1945). The final
Temporal KG consisted of 328k facts out of which
5k are event-facts.

3.2 Temporal Questions

To generate the QA dataset, we started with a set
of templates for temporal reasoning. These were
made using the five most frequent relations from
our WikiData subset, namely
• member of sports team
• position held
• award received
• spouse
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Template When did {head} play in {tail}
Seed Qn When did Messi play in FC Barcelona

Human
Paraphrases

When was Messi playing in FC Barcelona
Which years did Messi play in FC Barcelona
When did FC Barcelona have Messi in their team
What time did Messi play in FC Barcelona

Machine
Paraphrases

When did Messi play for FC Barcelona
When did Messi play at FC Barcelona
When has Messi played at FC Barcelona

Table 3: Slot-filled paraphrases generated by humans
and machine. Please refer to Section 3.2 for details.

Train Dev Test
Simple Entity 90,651 7,745 7,812
Simple Time 61,471 5,197 5,046
Before/After 23,869 1,982 2,151
First/Last 118,556 11,198 11,159
Time Join 55,453 3,878 3,832
Entity Answer 225,672 19,362 19,524
Time Answer 124,328 10,638 10,476
Total 350,000 30,000 30,000

Table 4: Number of questions in our dataset across dif-
ferent types of reasoning required and different answer
types. Please refer to Section 3.2.1 for details.

• employer
This resulted in 30 unique seed templates over

five relations and five different reasoning structures
(please see Table 2 for some examples). Each of
these templates has a corresponding procedure that
could be executed over the temporal KG to extract
all possible answers for that template. However,
similar to Zhang et al. (2017), we chose not to
make this procedure a part of the dataset, to remove
unwelcome dependence of QA systems on such
formal candidate collection methods. This also
allows easy augmentation of the dataset, since only
question-answer pairs are needed.

In the same spirit as ComplexWebQuestions,
we then asked human annotators to paraphrase
these templates in order to generate more linguistic
diversity. Annotators were given slot-filled tem-
plates with dummy entities and times, and asked
to rephrase the question such that the dummy en-
tities/times were present in the paraphrase and the
question meaning did not change. This resulted in
246 unique templates.

We then used the monolingual paraphraser de-
veloped by Hu et al. (2019) to automatically gen-
erate paraphrases using these 246 templates. After
verifying their correctness through annotators, we
ended up with 654 templates. These templates were

then filled using entity aliases from WikiData to
generate 410k unique question-answer pairs.

Finally, while splitting the data into train/test
folds, we ensured that
1. Paraphrases of train questions are not present in

test questions.
2. There is no entity overlap between test questions

and train questions. Event overlap is allowed.
The second requirement implies that, if the ques-
tion “Who was president before Obama” is present
in the train set, the test set cannot contain any ques-
tion that mentions the entity ‘Obama’. While this
policy may appear like an overabundance of cau-
tion, it ensures that models are doing temporal rea-
soning rather than guessing from entities seen dur-
ing training. Lewis et al. (2020) noticed an issue in
WebQuestions where they found that almost 30%
of test questions overlapped with training ques-
tions. The issue has been seen in the MetaQA
dataset as well, where there is significant overlap
between test/train entities and test/train question
paraphrases, leading to suspiciously high perfor-
mance on baseline methods even with partial KG
data (Saxena et al., 2020), which suggests that mod-
els that apparently perform well are not necessarily
performing the desired reasoning over the KG.

A drawback of our data creation protocol is
that question/answer pairs are generated automat-
ically. Therefore, the question distribution is ar-
tificial from a semantic perspective. (Complex-
WebQuestions has a similar limitation.) However,
since developing models that are capable of tempo-
ral reasoning is an important direction for natural
language understanding, we feel that our dataset
provides an opportunity to both train and evaluate
KGQA models because of its large size, notwith-
standing its lower-than-natural linguistic variety. In
Section 6.4, we show the effect that training data
size has on model performance.

Summarizing, each of our examples contains
1. A paraphrased natural language question.
2. A set of entities/times in the question.
3. A set of ‘gold’ answers (entity or time).

The entities are specified as WikiData IDs (e.g.,
Q219237), and times are years (e.g., 1991). We
include the set of entities/times in the test ques-
tions as well since similar to other KGQA datasets
(MetaQA, WebQuestions, ComplexWebQuestions)
and methods that use these datasets (PullNet,
EmQL), entity linking is considered as a sepa-
rate problem and complete entity linking is as-
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sumed. We also include the seed template and
head/tail/time annotation in the train fold, but omit
these from the test fold.

3.2.1 Question Categorization
In order to aid analysis, we categorize questions
into “simple reasoning” and “complex reasoning”
questions (please refer to Table 4 for the distribu-
tion statistics).
Simple reasoning: These questions require a sin-

gle fact to answer, where the answer can be ei-
ther an entity or a time instance. For example the
question “Who was the President of the United
States in 2008?” requires a single fact to answer
the question, namely (Barack Obama, held posi-
tion, President of USA, 2008, 2016)

Complex reasoning: These questions require
multiple facts to answer and can be more varied.
For example “Who was the first President of
the United States?” This requires reasoning
over multiple facts pertaining to the entity

“President of the United States”. In our dataset,
all questions that are not “simple reasoning”
questions are considered complex questions.
These are further categorized into the types
“before/after‘’, “first/last” and “time join” —
please refer Table 2 for examples of these
questions.

4 Temporal KG Embeddings

We investigate how we can use KG embeddings,
both temporal and non-temporal, along with pre-
trained language models to perform temporal
KGQA. We will first briefly describe the specific
KG embedding models we use, and then go on to
show how we use them in our QA models. In all
cases, the scores are turned into suitable losses with
regard to positive and negative tuples in an incom-
plete KG, and these losses minimized to train the
entity, time and relation representations.

4.1 ComplEx
ComplEx (Trouillon et al., 2016) represents each
entity e as a complex vector ue ∈ CD. Each rela-
tion r is represented as a complex vector vr ∈ CD

as well. The score φ of a claimed fact (s, r, o) is

φ(s, r, o) = <(〈us,vr,u
?
o〉)

= <
(∑D

d=1 us[d]vr[d]uo[d]?
)

(1)

where <(·) denotes the real part and c? is the
complex conjugate. Despite further developments,
ComplEx, along with refined training protocols

(Lacroix et al., 2018) remains among the strongest
KB embedding approaches (Ruffinelli et al., 2020).

4.2 TComplEx, TNTComplEx

Lacroix et al. (2020) took an early step to extend
ComplEx with time. Each timestamp t is also rep-
resented as a complex vector wt ∈ CD. For a
claimed fact (s, r, o, t), their TComplEx scoring
function is

φ(s, r, o, t) = <(〈us,vr,u
?
o,wt〉) (2)

Their TNTComplEx scoring function uses two rep-
resentations of relations r: vT

r , which is sensitive to
time, and vr, which is not. The scoring function is
the sum of a time-sensitive and a time-insensitive
part: <(〈us,v

T
r ,u

?
o,wt〉+ 〈us,vr,u

?
o,1〉).

4.3 TimePlex

TimePlex (Jain et al., 2020) augmented Com-
plEx with embeddings ut ∈ CD for discretized
time instants t. To incorporate time, TimePlex
uses three representations for each relation r, viz.,
(vSO

r ,vST
r ,vOT

r ) and writes the base score of a tuple
(s, r, o, t) as

φ(s, r, o, t) = 〈us,v
SO
r ,u?

o〉+ α 〈us,v
ST
r ,u?

t 〉
+ β 〈uo,v

OT
r ,u?

t 〉+ γ 〈us,uo,u
?
t 〉, (3)

where α, β, γ are hyperparameters.

5 CRONKGQA: Our proposed method

We start with a temporal KG, apply a time-agnostic
or time-sensitive KG embedding algorithm (Com-
plEx, TComplEx, or TimePlex) to it, and obtain
entity, relation, and timestamp embeddings for the
temporal KG. We will use the following notation.
• E is the matrix of entity embeddings
• T is the matrix of timestamp embeddings
• E .T is the concatenation of E and T matrices.

This is used for scoring answers, since the answer
can be either an entity or timestamp.

In case entity/timestamp embeddings are complex
valued vectors in CD, we expand them to real val-
ued vectors of size 2D, where the first half is the
real part and the second half is the complex part of
the original vector.

We first apply EmbedKGQA (Saxena et al.,
2020) directly to the task of Temporal KGQA. In its
original implementation, EmbedKGQA uses Com-
plEx (Section 4.1) embeddings and can only deal
with non-temporal KGs and single entity questions.
In order to apply it to CRONQUESTIONS, we set
the first entity encountered in the question as the
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BERT

-2.1, 30.2, ... -3.1, -50, ...

Harry Truman

[CLS] Who was the President of USA
after World War II

President
of USA

World 
War II occured

position held

position held

2008 - 2016

1945 - 1953

significant
event

1939 - 1945

Barack
Obama

Harry
Truman Q11696: President 

              of USA
Q11613: Harry 
              Truman

Q362: World 
           War II

Temporal KG Embeddings

1944

1945

<empty>

Temporal
KGE  Model

Figure 1: The CRONKGQA method. (i) A temporal KG embedding model (Section 4) is used to generate em-
beddings for each timestamp and entity in the temporal knowledge graph (ii) BERT is used to get two question
embeddings: qeent and qetime. (iii) Embeddings of entity/time mentions in the question are combined with ques-
tion embeddings using equations 4 and 5 to get score vectors for entity and time prediction. (iv) Score vectors are
concatenated and softmax is used get answer probabilities. Please refer to Section 5 for details.

“head entity” needed by EmbedKGQA. Along with
this, we set the entity embedding matrix E to be the
ComplEx embedding of our KG entities, and initial-
ize T to a random learnable matrix. EmbedKGQA
then performs prediction over E .T .

Next, we modify EmbedKGQA so that it can
use temporal KG embeddings. We use TComplEx
(Section 4.2) for getting entity and timestamp em-
beddings. CRONKGQA (Figure 1) utilizes two
scoring functions, one for predicting entity and
one for predicting time. Using a pre-trained LM
(BERT in our case) CRONKGQA finds a question
embedding qe. This is then projected to get two
embeddings, qeent and qetime, which are question
embeddings for entity and time prediction respec-
tively.
Entity scoring function: We extract a subject en-

tity s and a timestamp t from the question. If
either is missing, we use a dummy entity/time.
Then, using the scoring function φ(s, r, o, t) from
equation 2, we calculate a score for each entity
e ∈ E as

φent(e) = <(〈us, qeent,u
?
e,wt〉) (4)

where E is the set of entities in the KG. This
gives us a score for each entity being an answer.

Time scoring function: Similarly, we extract a
subject entity s and object entity o from the ques-
tion, using dummy entities if none are present.
Then, using 2, we calculate a score for each times-

tamp t ∈ T as

φtime(t) = <(〈us, qetime,u
?
o,wt〉) (5)

The scores for all entities and times are concate-
nated, and softmax is used to calculate answer
probabilities over this combined score vector. The
model is trained using cross entropy loss.

6 Experiments and diagnostics

In this section, we aim to answer the following
questions:
1. How do baselines and CRONKGQA perform

on the CRONQUESTIONS task? (Section 6.2.)
2. Do some methods perform better than others on

specific reasoning tasks? (Section 6.3.)
3. How much does the training dataset size (num-

ber of questions) affect the performance of a
model? (Section 6.4.)

4. Do temporal KG embeddings confer any advan-
tage over non-temporal KG embeddings? (Sec-
tion 6.5.)

6.1 Other methods compared
It has been shown by Petroni et al. (2019) and Raf-
fel et al. (2020) that large LMs, such as BERT
and its variants, capture real world knowledge (col-
lected from their massive, encyclopedic training
corpus) and can directly be applied to tasks such
as QA. In these baselines, we do not specifically
feed our version of the temporal KG to the model —
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Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type
Complex Simple Entity Time Complex Simple Entity Time

BERT 0.071 0.086 0.052 0.077 0.06 0.213 0.205 0.225 0.192 0.253
RoBERTa 0.07 0.086 0.05 0.082 0.048 0.202 0.192 0.215 0.186 0.231
KnowBERT 0.07 0.083 0.051 0.081 0.048 0.201 0.189 0.217 0.185 0.23
T5-3B 0.081 0.073 0.091 0.088 0.067 - - - - -
EmbedKGQA 0.288 0.286 0.29 0.411 0.057 0.672 0.632 0.725 0.85 0.341
T-EaE-add 0.278 0.257 0.306 0.313 0.213 0.663 0.614 0.729 0.662 0.665
T-EaE-replace 0.288 0.257 0.329 0.318 0.231 0.678 0.623 0.753 0.668 0.698
CRONKGQA 0.647 0.392 0.987 0.699 0.549 0.884 0.802 0.992 0.898 0.857

Table 5: Performance of baselines and our methods on the CRONQUESTIONS dataset. Methods above the midrule
do not use any KG embeddings, while the ones below use either temporal or non-temporal KG embeddings.
Hits@10 are not available for T5-3B since it is a text-to-text model and makes a single prediction. Please refer to
Section 6.2 for details.

we instead expect the model to have the real world
knowledge to compute the answer.
BERT: We experiment with BERT, RoBERTa

(Liu et al., 2019) and KnowBERT (Peters et al.,
2019) which is a variant of BERT where informa-
tion from knowledge bases such as WikiData and
WordNet has been injected into BERT. We add a
prediction head on top of the [CLS] token of the
final layer and do a softmax over it to predict the
answer probabilities.

T5: In order to apply T5 (Raffel et al., 2020)
to temporal QA, we transform each question
in our dataset to the form ‘temporal question:
〈question〉?’. For evaluation there are two cases:
1. Time answer: We do exact string matching

between T5 output and correct answer.
2. Entity answer: We compare the system output

to the aliases of all entities in the KG. The
entity having an alias with the smallest edit
distance (Levenshtein, 1966) to the predicted
text output is taken as the predicted entity.

Entities as experts: Févry et al. (2020) proposed
EaE, a model which aims to integrate entity
knowledge into a transformer-based language
model. For temporal KGQA on CRONQUES-
TIONS, we assume that all grounded entity and
time mention spans are marked in the question1.
We will refer to this model as T-EaE-add. We try
another variant of EaE, T-EaE-replace, where
instead of adding the entity/time and BERT token
embeddings, we replace the BERT embeddings
with the entity/time embeddings for entity/time
mentions.2

1This assumption can be removed by using EaE’s early
transformer stages as NE spotters and disambiguators.

2Appendix A.1 gives details of our EaE implementation.

6.2 Main results

Table 5 shows the results of various methods on
our dataset. We see that methods based on large
pre-trained LMs alone (BERT, RoBERTa, T5), as
well as KnowBERT, perform significantly worse
than methods that are augmented with KG embed-
dings (temporal or non-temporal). This is probably
because having KG embeddings specific to our
temporal KG helps the model to focus on those
entities/timestamps. In our experiments, BERT per-
forms slightly better than KnowBERT, even though
KnowBERT has entity knowledge in its parameters.
T5-3B performs the best among the LMs we tested,
possibly because of the large number of parameters
and pre-training.

Even among methods that use KG embeddings,
CRONKGQA performs the best on all metrics,
followed by T-EaE-replace. Since EmbedKGQA
has non-temporal embeddings, its performance on
questions where the answer is a time is very low —
comparable to BERT — which is the LM used in
our EmbedKGQA implementation.

Another interesting thing to note is the
performance on simple reasoning questions.
CRONKGQA far outperforms baselines for simple
questions, achieving close to 0.99 hits@1, which
is much lower for T-EaE (0.329). We believe there
might be a few reasons that contribute to this:
1. There is the inductive bias of combining em-

beddings using TComplEx scoring function in
CRONKGQA, which is the same one used in
creating the entity and time embeddings, thus
making the simple questions straightforward to
answer. However, not relying on a scoring func-
tion means that T-EaE can be extended to any
KG embedding, whereas CRONKGQA cannot.
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Figure 2: Model performance (hits@10) vs. training
dataset size (percentage) for CRONKGQA and T-EaE-
add. Solid line is for simple reasoning and dashed
line is for complex reasoning type questions. For
each dataset size, models were trained until validation
hits@10 did not increase for 10 epochs. Please refer to
Section 6.4 for details.

2. Another contributing reason could be that
there are fewer parameters to be trained in
CRONKGQA while a 6-layer Transformer en-
coder needs to be trained from scratch in T-EaE.
Transformers typically require large amounts of
varied data to train successfully.

6.3 Performance across question types

Table 6 shows the performance of KG embedding
based models across different types of reasoning.
As stated above in Section 6.2, CRONKGQA per-
forms very well on simple reasoning questions
(simple entity, simple time). Among complex ques-
tion types, all models (except EmbedKGQA) per-
form the best on time join questions (e.g., ‘Who
played with Roberto Dinamite on the Brazil na-
tional football team’). This is because such ques-
tions typically have multiple answers (such as all
the players when Roberto Dinamite was playing
for Brazil), which makes it easier for the model to
make a correct prediction. In the other two ques-
tion types, the answer is always a single entity/time.
Before/after questions seem most challenging for
all methods, with the best method achieving only
0.288 hits@1.

6.4 Effect of training dataset size

Figure 2 shows the effect of training dataset size on
model performance. As we can see, for T-EaE-add,

increasing the training dataset size from 10% to
100% steadily increases its performance for both
simple and complex reasoning type questions. This
effect is somewhat present in CRONKGQA for
complex reasoning, but not so for simple reasoning
type questions. We hypothesize that this is because
T-EaE has more trainable parameters — it has a
6-layer transformer that needs to be trained from
scratch — in contrast to CRONKGQA that needs
to merely fine tune BERT and train some shallow
projection layers. These results affirm our hypothe-
sis that having a large, even if synthetic, dataset is
useful for training temporal reasoning models.

6.5 Temporal vs. non-temporal KG
embeddings

We conducted further experiments to study the
effect of temporal vs. non-temporal KG embed-
dings. We replaced the temporal entity embeddings
in T-EaE-replace with ComplEx embeddings, and
treated timestamps as regular tokens (not associ-
ated with any entity/time mentions). CRONKGQA-
CX is the same as EmbedKGQA. The results can
be seen in Table 7. As we can see, for both
CRONKGQA and T-EaE-replace, using temporal
KGE (TComplex) gives a significant boost in per-
formance compared to non-temporal KGE (Com-
plEx). CRONKGQA receives a much larger boost
in performance compared to T-EaE-replace, proba-
bly because the scoring function has been modeled
after TComplEx and not ComplEx, while there
is no such embedding-specific engineering in T-
EaE-replace. Another observation is that ques-
tions having temporal answers achieve very low
accuracy (0.057 and 0.062 respectively) in both
CRONKGQA-CX and T-EaE-replace-CX, which
is much lower than what these models achieve with
TComplEx. This shows that having temporal KG
embeddings is essential for achieving good perfor-
mance for KG embedding-based methods.

7 Conclusion

In this paper we introduce CRONQUESTIONS, a
new dataset for Temporal Knowledge Graph Ques-
tion Answering. While there exist some Temporal
KGQA datasets, they are all based on non-temporal
KGs (e.g., Freebase) and have relatively few ques-
tions. Our dataset consists of both a temporal KG
as well as a large set of temporal questions requir-
ing various structures of reasoning. In order to
develop such a large dataset, we used a synthetic
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Before/
After

First/
Last

Time
Join

Simple
Entity

Simple
Time All

EmbedKGQA 0.199 0.324 0.223 0.421 0.087 0.288
T-EaE-add 0.256 0.285 0.175 0.296 0.321 0.278
T-EaE-replace 0.256 0.288 0.168 0.318 0.346 0.288
CRONKGQA 0.288 0.371 0.511 0.988 0.985 0.647

Table 6: Hits@1 for different reasoning type questions. ‘Simple Entity’ and ‘Simple Time’ correspond to simple
question type in Table 5 while the others correspond to complex question type. Please refer to section 6.3 for more
details.

Question
Type

CRONKGQA T-EaE-replace
CX TCX CX TCX

Simple 0.29 0.987 0.248 0.329
Complex 0.286 0.392 0.247 0.257
Entity Answer 0.411 0.699 0.347 0.318
Time Answer 0.057 0.549 0.062 0.231
Overall 0.288 0.647 0.247 0.288

Table 7: Hits@1 for CRONKGQA and T-EaE-replace
using ComplEx(CX) and TComplEx(TCX) KG embed-
dings. Please refer to Section 6.5 for more details.

generation procedure, leading to a question distri-
bution that is artificial from a semantic perspective.
However, having a large dataset provides an op-
portunity to train models, rather than just evaluate
them. We experimentally show that increasing the
training dataset size steadily improves the perfor-
mance of certain methods on the TKGQA task.

We first apply large pre-trained LM based QA
methods on our new dataset. Then we inject KG
embeddings, both temporal and non-temporal, into
these LMs and observe significant improvement
in performance. We also propose a new method,
CRONKGQA, that is able to leverage Temporal
KG Embeddings to perform TKGQA. In our ex-
periments, CRONKGQA outperforms all baselines.
These results suggest that KG embeddings can be
effectively used to perform temporal KGQA, al-
though there remains significant scope for improve-
ment when it comes to complex reasoning ques-
tions.
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A Appendix

A.1 Entities as Experts (EaE)

The model architecture follows Transformer
(Vaswani et al., 2017) interleaved with an entity
memory layer. It has two embedding matrices, for
tokens and entities. It works on the input sequence

x as follows.
X0 = TokenEmbed(x)

X1 = Transformer0(X
0, num layers = l0)

X2 = EntityMemory(X1)

X3 = LayerNorm(X2 +X1)

X4 = Transformer1(X
3, num layers = l1)

X5 = TaskSpecificHeads(X4)

(6)

The whole model (transformers, token and entity
embeddings, and task-specific heads) is trained end
to end using losses for entity linking, mention de-
tection and masked language modeling.

A.2 EaE for Temporal KGQA

CRONQUESTIONS does not provide a text cor-
pus for training language models. There-
fore, we use BERT (Devlin et al., 2019) for
Transformer0 as well as TokenEmbed (eqn. 6).
For EntityMemory, we use TComplEx/TimePlex
embeddings of entities and timestamps that have
been pre-trained using the CRONQUESTIONS KG
(please refer to Section 4 for details on KG embed-
dings). The modified model is as follows:

X1 = BERT(x)

X2 = EntityTimeEmbedding(X1)

X3 = LayerNorm(X2 +X1)

X4 = Transformer1(X
3,num layers = 6)

X5 = PredictionHead(X4)

(7)

For simplicity, we assume that all grounded entity
and time mention spans are marked in the ques-
tion, i.e., for each token, we know. which entity or
timestamp it belongs to (or if it doesn’t belong to
any). Thus, for each token xi in the input x,
• X1[i] contains the contextual BERT embedding

of xi
• For X2[i] there are 3 cases.

– xi is a mention of entity e. Then X2[i] = E [e].
– xi is a mention of timestamp t. Then X2[i] =
T [t].

– xi is not a mention. Then X2[i] is the zero
vector.

PredictionHead takes the final output from
Transformer1 of the token corresponding to the
[CLS] token of BERT as the predicted answer em-
bedding. This answer embedding is scored against
E .T using dot product to get a score for each possi-
ble answer, and softmax is taken to get answer
probabilities. The model is trained on the QA
dataset using cross-entropy loss. We will refer
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to this model as T-EaE-add since we are taking
element-wise sum of BERT and entity/time embed-
dings.

T-EaE-replace Instead of adding entity/time
and BERT embeddings, we replace the BERT em-
beddings with the entity/time embeddings for en-
tity/time mentions. Specifically, before feeding to
Transformer1 in step 4 of eqn. 7,
1. if xi is not an entity or time mention, X3[i] =

BERT(X1[i])
2. if xi is an entity or time mention, X3[i] =

EntityTimeEmbedding(X1[i])
The rest of the model remains the same.

A.3 Examples
Tables 8 to 12 contain some example questions
from the validation set of CRONQUESTIONS, along
with the top 5 predictions of the models we experi-
mented with. T5-3B has a single prediction since
it is a text-to-text model.
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Question Who held the position of Prime Minister of Sweden before 2nd World War

Question Type Before/After
Gold answer(s) Per Albin Hansson

BERT Emil Stang, Sr., Sigurd Ibsen, Johan Nygaardsvold, Laila Freivalds, J. S. Woodsworth

KnowBERT Benito Mussolini, Östen Undén, Hans-Dietrich Genscher, Winston Churchill,
Lutz Graf Schwerin von Krosigk

T5-3B bo osten unden
EmbedKGQA Per Albin Hansson, Tage Erlander, Carl Gustaf Ekman, Arvid Lindman, Hjalmar Branting
T-EaE-add Per Albin Hansson, Manuel Roxas, Arthur Sauvé, Konstantinos Demertzis, Karl Renner
T-EaE-replace Per Albin Hansson, Tage Erlander, Arvid Lindman, Valère Bernard, Vladko Maček
CRONKGQA Per Albin Hansson, Tage Erlander, Arvid Lindman, Carl Gustaf Ekman, Hjalmar Branting

Table 8: Before/After reasoning type question.

Question When did Man on Wire receive Oscar for Best Documentary Feature

Question Type Simple time
Gold answer(s) 2008

BERT 1995, 1993, 1999, 1991, 1987
KnowBERT 1993, 1996, 1994, 2006, 1995
T5-3B 1997
EmbedKGQA 2017, 2008, 2016, 2013, 2004
T-EaE-add 2008, 2009, 2005, 1999, 2007
T-EaE-replace 2009, 2008, 2005, 2006, 2007
CRONKGQA 2008, 2007, 2009, 2002, 1945

Table 9: Simple reasoning question with time answer.

Question Who did John Alan Lasseter work with while employed at Pixar

Question Type Time join
Gold answer(s) Floyd Norman

BERT Tim Cook, Eleanor Winsor Leach, David R. Williams, Robert M. Boynton,
Jules Steeg

KnowBERT 1994, 1997, Walt Disney Animation Studios, Christiane Kubrick, 1989
T5-3B john alan lasseter
EmbedKGQA John Lasseter, Floyd Norman, Duncan Marjoribanks, Glen Keane, Theodore Ty

T-EaE-add John Lasseter, Anne Marie Bardwell, Will Finn, Floyd Norman,
Rejean Bourdages

T-EaE-replace John Lasseter, Will Finn, Floyd Norman, Nik Ranieri, Ken Duncan

CRONKGQA John Lasseter, Floyd Norman, Duncan Marjoribanks, David Pruiksma,
Theodore Ty

Table 10: Time join type question.
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Question Where did John Hubley work before working for Industrial Films

Question Type Before/After
Gold answer(s) The Walt Disney Studios

BERT The Walt Disney Studios, Warner Bros. Cartoons, Pixar, Microsoft, United States Navy

KnowBERT École Polytechnique, Pitié-Salpêtrière Hospital, The Walt Disney Studios,
Elisabeth Buddenbrook, Yale University

T5-3B london film school

EmbedKGQA The Walt Disney Studios, Collège de France, Warner Bros. Cartoons,
University of Naples Federico II, ETH Zurich

T-EaE-add The Walt Disney Studios, Fleischer Studios, UPA, Walter Lantz Productions,
Wellesley College

T-EaE-replace The Walt Disney Studios, City College of New York, UPA,
Yale University, Indiana University

CRONKGQA The Walt Disney Studios, UPA, Saint Petersburg State University,
Warner Bros. Cartoons, Collège de France

Table 11: Before/After reasoning type question.

Question The last person that Naomi Foner Gyllenhaal was married to was

Question Type First/Last
Gold answer(s) Stephen Gyllenhaal

BERT 1928, Jennifer Lash, Stephen Mallory, Martin Landau, Bayerische Verfassungsmedaille in Gold
KnowBERT Nadia Benois, Eugenia Zukerman, Germany national football team, Talulah Riley, Lola Landau
T5-3B gyllenhaal

EmbedKGQA Stephen Gyllenhaal, Naomi Foner Gyllenhaal, Wolfhard von Boeselager,
Heinrich Schweiger, Bruce Paltrow

T-EaE-add Stephen Gyllenhaal, Marianne Zoff, Cotter Smith, Douglas Wilder, Gerd Vespermann

T-EaE-replace Stephen Gyllenhaal, Hetty Broedelet-Henkes, Naomi Foner Gyllenhaal,
Miles Copeland, Jr., member of the Chamber of Representatives of Colombia

CRONKGQA Stephen Gyllenhaal, Antonia Fraser, Bruce Paltrow,
Naomi Foner Gyllenhaal, Wolfhard von Boeselager

Table 12: First/Last reasoning type question.


