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Abstract

Few-shot crosslingual transfer has been shown
to outperform its zero-shot counterpart with
pretrained encoders like multilingual BERT.
Despite its growing popularity, little to no at-
tention has been paid to standardizing and an-
alyzing the design of few-shot experiments.
In this work, we highlight a fundamental risk
posed by this shortcoming, illustrating that the
model exhibits a high degree of sensitivity to
the selection of few shots. We conduct a large-
scale experimental study on 40 sets of sampled
few shots for six diverse NLP tasks across up
to 40 languages. We provide an analysis of
success and failure cases of few-shot transfer,
which highlights the role of lexical features.
Additionally, we show that a straightforward
full model finetuning approach is quite effec-
tive for few-shot transfer, outperforming sev-
eral state-of-the-art few-shot approaches. As
a step towards standardizing few-shot crosslin-
gual experimental designs, we make our sam-
pled few shots publicly available.1

1 Introduction

Multilingual pretrained encoders like multilingual
BERT (mBERT; Devlin et al. (2019)) and XLM-
R (Conneau et al., 2020) are the top performers
in crosslingual tasks such as natural language in-
ference (Conneau et al., 2018), document clas-
sification (Schwenk and Li, 2018; Artetxe and
Schwenk, 2019), and argument mining (Toledo-
Ronen et al., 2020). They enable transfer learn-
ing through language-agnostic representations in
crosslingual setups (Hu et al., 2020).

A widely explored transfer scenario is zero-shot
crosslingual transfer (Pires et al., 2019; Conneau
and Lample, 2019; Artetxe and Schwenk, 2019),

* Equal contribution.
1Code and resources are available at https://github.

com/fsxlt

where a pretrained encoder is finetuned on abun-
dant task data in the source language (e.g., English)
and then directly evaluated on target-language test
data, achieving surprisingly good performance (Wu
and Dredze, 2019; Hu et al., 2020). However, there
is evidence that zero-shot performance reported in
the literature has large variance and is often not re-
producible (Keung et al., 2020a; Rios et al., 2020);
the results in languages distant from English fall far
short of those similar to English (Hu et al., 2020;
Liang et al., 2020).

Lauscher et al. (2020) stress the importance of
few-shot crosslingual transfer instead, where the
encoder is first finetuned on a source language
and then further finetuned with a small amount
(10–100) of examples (few shots) of the target lan-
guage. The few shots substantially improve model
performance of the target language with negligi-
ble annotation costs (Garrette and Baldridge, 2013;
Hedderich et al., 2020).

In this work, however, we demonstrate that the
gains from few-shot transfer exhibit a high degree
of sensitivity to the selection of few shots. For
example, different choices for the few shots can
yield a performance variance of over 10% accuracy
in a standard document classification task. Mo-
tivated by this, we propose to fix the few shots
for fair comparisons between different crosslingual
transfer methods, and provide a benchmark resem-
bling the standard “N -wayK-shot” few-shot learn-
ing configuration (Fei-Fei et al., 2006; Koch et al.,
2015). We also evaluate and compare several state-
of-the-art (SotA) few-shot finetuning techniques,
in order to understand their performance and sus-
ceptibility to the variance related to few shots.

We also demonstrate that the effectiveness of
few-shot crosslingual transfer depends on the type
of downstream task. For syntactic tasks such as
named-entity recognition, the few shots can im-
prove results by up to ≈20 F1 points. For chal-

https://github.com/fsxlt
https://github.com/fsxlt
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lenging tasks like adversarial paraphrase identifica-
tion, the few shots do not help and even sometimes
lead to worse performance than zero-shot transfer.
To understand these phenomena, we conduct addi-
tional in-depth analyses, and find that the models
tend to utilize shallow lexical hints (Geirhos et al.,
2020) in the target language, rather than leverag-
ing abstract crosslingual semantic features learned
from the source language.

Our contributions: 1) We show that few-shot
crosslingual transfer is prone to large variations in
task performance; this property hinders unbiased
assessments of the effectiveness of different few-
shot methods. 2) To remedy this issue, we publish
fixed and standardized few shots to support fair
comparisons and reproducibility. 3) We empiri-
cally verify that few-shot crosslingual transfer has
different performance impact on structurally differ-
ent tasks; we provide in-depth analyses concerning
the source of performance gains. 4) We analyze
several SotA few-shot learning methods, and show
that they underperform simple full model finetun-
ing. We hope that our work will shed new light
on the potential and current difficulties of few-shot
learning in crosslingual setups.

2 Background and Related Work

Zero-/Few-Shot Crosslingual Transfer. Multi-
lingual pretrained encoders show strong zero-shot
crosslingual transfer (ZS-XLT) ability in various
NLP tasks (Pires et al., 2019; Hsu et al., 2019;
Artetxe and Schwenk, 2019). In order to guide
and measure the progress, standardized bench-
marks like XTREME (Hu et al., 2020) and XGLUE
(Liang et al., 2020) have been developed.

Recently, Lauscher et al. (2020) and Hedderich
et al. (2020) extended the focus on few-shot
crosslingual transfer (FS-XLT): They assume the
availability of a handful of labeled examples in a
target language,2 which are used to further finetune
a source-trained model. The extra few shots bring
large performance gains at low annotation cost. In
this work, we systematically analyze this recent
FS-XLT scenario.

FS-XLT resembles the intermediate-task trans-
fer (STILT) approach (Phang et al., 2018; Pruk-
sachatkun et al., 2020). In STILT, a pretrained
encoder is finetuned on a resource-rich intermedi-

2According to Garrette and Baldridge (2013), it is possible
to collect ≈100 POS-annotated sentences in two hours even
for low-resource languages such as Malagasy.

ate task, and then finetuned on a (resource-lean)
target task. Likewise, FS-XLT focuses on transfer-
ring knowledge and general linguistic intelligence
(Yogatama et al., 2019), although such transfer is
between languages in the same task instead of be-
tween different tasks.

Few-shot learning was first explored in com-
puter vision (Miller et al., 2000; Fei-Fei et al., 2006;
Koch et al., 2015); the aim there is to learn new
concepts with only few images. Methods like pro-
totypical networks (Snell et al., 2017) and model-
agnostic meta-learning (MAML; Finn et al. (2017))
have also been applied to many monolingual (typi-
cally English) NLP tasks such as relation classifi-
cation (Han et al., 2018; Gao et al., 2019), named-
entity recognition (Hou et al., 2020a), word sense
disambiguation (Holla et al., 2020), and text clas-
sification (Yu et al., 2018; Yin, 2020; Yin et al.,
2020; Bansal et al., 2020; Gupta et al., 2020). How-
ever, recent few-shot learning methods in computer
vision consisting of two simple finetuning stages,
first on base-class images and then on new-class
few shots, have been shown to outperform MAML
and achieve SotA scores (Wang et al., 2020; Chen
et al., 2020; Tian et al., 2020; Dhillon et al., 2020).
Inspired by this work, we compare various few-
shot finetuning methods from computer vision in
the context of FS-XLT.

Task Performance Variance. Deep neural net-
works’ performance on NLP tasks is bound to ex-
hibit large variance. Reimers and Gurevych (2017)
and Dror et al. (2019) stress the importance of re-
porting score distributions instead of a single score
for fair(er) comparisons. Dodge et al. (2020), Mos-
bach et al. (2021), and Zhang et al. (2021) show
that finetuning pretrained encoders with different
random seeds yields performance with large vari-
ance. In this work, we examine a specific source
of variance: We show that the choice of the few
shots in crosslingual transfer learning also intro-
duces large variance in performance; consequently,
we offer standardized few shots for more controlled
and fair comparisons.

3 Method

Following Lauscher et al. (2020) and Hedderich
et al. (2020), our FS-XLT method comprises two
stages. First, we conduct source-training: The
pretrained mBERT is finetuned with abundant an-
notated data in the source language. Similar to
Hu et al. (2020), Liang et al. (2020) and due to
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Name Metric Task |T | TS # of lang.
XNLI Acc. Natural language inference 3 No 15

PAWSX Acc. Paraphrase identification 2 No 7
MLDoc Acc. News article classification 4 Yes 8
MARC Acc. Amazon reviews 5 Yes 6

POS F1 Part-of-speech tagging 17 Yes 29
NER F1 Named-entity recognition 7 Yes 40

Table 1: Evaluation datasets. |T |: Number of classes
(classification tasks) and label set size (POS and NER).
TS: availability of a training split in the target language.

the abundant labeled data for many NLP tasks, we
choose English as the source in our experiments.
Directly evaluating the source-trained model af-
ter this stage corresponds to the widely studied
ZS-XLT scenario. The second stage is target-
adapting: The source-trained model from previ-
ous stage is adapted to a target language using few
shots. We discuss details of sampling the few shots
in §4. The development set of the target language
is used for model selection in this stage.

4 Experimental Setup

We consider three types of tasks requiring vary-
ing degrees of semantic and syntactic knowledge
transfer: Sequence classification (CLS), named-
entity recognition (NER), and part-of-speech tag-
ging (POS) in up to 40 typologically diverse lan-
guages (cf., Appendix §B).

4.1 Datasets and Selection of Few Shots

For the CLS tasks, we sample few shots from
four multilingual datasets: News article classifi-
cation (MLDoc; Schwenk and Li (2018)); Ama-
zon review classification (MARC; Keung et al.
(2020b)); natural language inference (XNLI; Con-
neau et al. (2018); Williams et al. (2018)); and
crosslingual paraphrase adversaries from word
scrambling (PAWSX; Zhang et al. (2019); Yang
et al. (2019)). We use treebanks in Universal
Dependencies (Nivre et al., 2020) for POS, and
WikiANN dataset (Pan et al., 2017; Rahimi et al.,
2019) for NER. Table 1 reports key information
about the datasets.

We adopt the conventional few-shot sampling
strategy (Fei-Fei et al., 2006; Koch et al., 2015;
Snell et al., 2017), and conduct “N -way K-shot”
sampling from the datasets; N is the number of
classes and K refers to the number of shots per
class. A group of N -way K-shot data is referred
to as a bucket. We set N equal to the number of
labels |T |. Following Wang et al. (2020), we sam-
ple 40 buckets for each target (i.e., non-English)

language of a task to get a reliable estimation of
model performance.

CLS Tasks. For MLDoc and MARC, each lan-
guage has a train/dev/test split. We sample the
buckets without replacement from the training set
of each target language, so that buckets are dis-
joint from each other. Target languages in XNLI
and PAWSX only have dev/test splits. We sam-
ple the buckets from the dev set; the remaining
data serves as a single new dev set for model selec-
tion during target-adapting. For all tasks, we use
K ∈ {1, 2, 4, 8}.

POS and NER. For the two structured predic-
tion tasks, “N -way K-shot” is not well-defined be-
cause each sentence contains one or more labeled
tokens. We use a similar sampling principle as with
CLS, where N is the size of the label set for each
language and task, but K is set to the minimum
number of occurrences for each label. In particu-
lar, we utilize the Minimum-Including Algorithm
(Hou et al., 2020b,a) to satisfy the following criteria
when sampling a bucket: 1) each label appears at
least K times, and 2) at least one label will appear
less than K times if any sentence is removed from
the bucket. Appendix §C gives sampling details.
In contrast to sampling for CLS, we do not enforce
samples from different buckets to be disjoint due
to the small amount of data in some low-resource
languages. We only use K ∈ {1, 2, 4} and ex-
clude K = 8, as 8-shot buckets already have lots
of labeled tokens, and thus (arguably) might not be
considered few-shot.

4.2 Training Setup

We use the pretrained cased mBERT model (Devlin
et al., 2019), and rely on the PyTorch-based (Paszke
et al., 2019) HuggingFace Transformers repository
(Wolf et al., 2019) in all experiments.

For source-training, we finetune the pretrained
encoder for 10 epochs with batch size 32. For
target-adapting to every target language, the few-
shot data is a sampled bucket in this language,
and we finetune on the bucket for 50 epochs with
early-stopping of 10 epochs. The batch size is
set to the number of shots in the bucket. Each
target-adapting experiment is repeated 40 times us-
ing the 40 buckets. We use the Adam optimizer
(Kingma and Ba, 2015) with default parameters
in both stages with learning rates searched over
{1e−5, 3e−5, 5e−5, 7e−5}. For CLS tasks, we
use mBERT’s [CLS] token as the final represen-
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Figure 1: Histograms of dev set accuracies. Top: 40
runs with different random seeds. Bottom: 40 runs with
different 1-shot buckets. Left: DE MARC. Right: ES
MLDoc. The variance due to buckets is larger.

tation. For NER and POS, following Devlin et al.
(2019), we use a linear classifier layer on top of the
representation of each tokenized word, which is its
last wordpiece (He and Choi, 2020).

We set the maximum sequence length to 128
after wordpiece tokenization (Wu et al., 2016), in
all experiments. Further implementation details
are shown in our Reproducibility Checklist in Ap-
pendix §A.

5 Results and Discussion

5.1 Source-Training Results

The ZS-XLT performance from English (EN) to
target languages of the four CLS tasks are shown in
the K = 0 column in Table 2. For NER and POS,
the results are shown in Figure 2.

For XTREME tasks (XNLI, PAWSX, NER,
POS), our implementation delivers results compa-
rable to Hu et al. (2020). For MLDoc, our results
are comparable to (Dong and de Melo, 2019; Wu
and Dredze, 2019; Eisenschlos et al., 2019). It is
worth noting that reproducing the exact results is
challenging, as suggested by Keung et al. (2020a).
For MARC, our zero-shot results are worse than
Keung et al. (2020b)’s who use the dev set of each
target language for model selection while we use
EN dev, following the common true ZS-XLT setup.

5.2 Target-Adapting Results

Variance of Few-Shot Transfer. We hypothesize
that FS-XLT suffers from large variance (Dodge
et al., 2020) due to the large model complexity
and small amount of data in a bucket. To test this
empirically, we first conduct two experiments on
MLDoc and MARC. First, for a fixed random seed,
we repeat 1-shot target-adapting 40 times using dif-
ferent 1-shot buckets in German (DE) and Spanish
(ES). Second, for a fixed 1-shot bucket, we repeat
the same experiment 40 times using random seeds

in {0 . . . 39}. Figure 1 presents the dev set perfor-
mance distribution of the 40 runs with 40 random
seeds (top) and 40 1-shot buckets (bottom).

With exactly the same training data, using differ-
ent random seeds yields a 1–2 accuracy difference
of FS-XLT (Figure 1 top). A similar phenomenon
has been observed in finetuning monolingual en-
coders (Dodge et al., 2020) and multilingual en-
coders with ZS-XLT (Keung et al., 2020a; Wu and
Dredze, 2020b; Xia et al., 2020); we show this ob-
servation also holds for FS-XLT. The key takeaway
is that varying the buckets is a more severe problem.
It causes much larger variance (Figure 1 bottom):
The maximum accuracy difference is ≈6 for DE
MARC and ≈10 for ES MLDoc. This can be due
to the fact that difficulty of individual examples
varies in a dataset (Swayamdipta et al., 2020), re-
sulting in different amounts of information encoded
in buckets.

This large variance could be an issue when com-
paring different few-shot learning algorithms. The
bucket choice is a strong confounding factor that
may obscure the strength of a promising few-shot
technique. Therefore, for fair comparison, it is nec-
essary to work with a fixed set of few shots. We
propose to fix the sampled buckets for unbiased
comparison of different FS-XLT methods. We pub-
lish the sampled buckets from the six multilingual
datasets as a fixed and standardized few-shot evalu-
ation benchmark.

In what follows, each FS-XLT experiment is re-
peated 40 times using 40 different buckets with
the same fixed random seed; we report mean and
standard deviation. As noted, the variance due to
random seeds is smaller (cf., Figure 1) and has
been well studied before (Reimers and Gurevych,
2017; Dodge et al., 2020). In this work, we thus fo-
cus our attention and limited computing resources
on understanding the impact of buckets, the newly
detected source of variance. However, we encour-
age practitioners to report results with both factors
considered in the future.

Different Numbers of Shots. A comparison
concerning the number of shots (K), based on the
few-shot results in Table 2 and Figure 2, reveals that
the buckets largely improve model performance on
a majority of tasks (MLDoc, MARC, POS, NER)
over zero-shot results. This is in line with prior
work (Lauscher et al., 2020; Hedderich et al., 2020)
and follows the success of work on using boot-
strapped data (Chaudhary et al., 2019; Sherborne
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K=0 K=1 K=2 K=4 K=8

M
L

D
oc

EN 96.88 - - - -
DE 88.30 90.36± 1.48 90.77± 0.87 91.85± 0.83 91.98± 0.82
FR 83.05 88.94± 2.46 89.71± 1.68 90.80± 0.88 91.01± 0.94
ES 81.90 83.99± 2.35 85.65± 1.60 86.30± 1.85 88.46± 1.90
IT 74.13 74.97± 2.04 75.29± 1.57 76.43± 1.41 78.12± 1.25
RU 72.33 77.40± 4.27 80.57± 1.37 81.33± 1.33 81.91± 1.21
ZH 84.38 87.18± 1.45 87.31± 1.53 88.33± 1.11 88.72± 1.05
JA 74.58 76.23± 1.59 76.71± 2.12 78.60± 2.43 81.17± 1.72

M
A

R
C

EN 64.52 - - - -
DE 49.62 51.50± 1.58 52.76± 0.87 52.78± 1.00 53.32± 0.59
FR 47.30 49.32± 1.34 49.70± 1.43 50.64± 0.94 51.23± 0.76
ES 48.44 49.72± 1.24 49.96± 1.12 50.45± 1.22 51.25± 0.93
ZH 40.40 43.19± 1.76 44.45± 1.36 45.40± 1.26 46.40± 0.93
JA 38.84 41.95± 2.09 43.63± 1.30 43.98± 0.89 44.44± 0.69

X
N

L
I

EN 82.67 - - - -
DE 70.32 70.58± 0.36 70.60± 0.34 70.61± 0.39 70.70± 0.50
FR 73.57 73.41± 0.48 73.74± 0.46 73.57± 0.49 73.77± 0.44
ES 73.71 73.84± 0.40 73.87± 0.44 73.74± 0.48 73.87± 0.46
RU 68.70 68.81± 0.52 68.76± 0.54 68.87± 0.55 68.81± 0.77
ZH 69.32 69.73± 0.94 69.75± 0.94 70.56± 0.76 70.62± 0.86
AR 64.97 64.75± 0.36 64.82± 0.23 64.82± 0.23 64.94± 0.37
BG 67.58 68.15± 0.69 68.19± 0.75 68.55± 0.67 68.32± 0.70
EL 65.67 65.64± 0.40 65.73± 0.36 65.80± 0.41 66.00± 0.53
HI 56.57 56.94± 0.82 57.07± 0.82 57.21± 1.14 57.82± 1.18
SW 48.08 50.33± 1.08 50.28± 1.24 51.08± 0.62 51.01± 0.79
TH 46.17 49.43± 2.60 50.08± 2.42 51.32± 2.07 52.16± 2.43
TR 60.40 61.02± 0.68 61.20± 0.61 61.35± 0.49 61.31± 0.56
UR 57.05 57.56± 0.85 57.83± 0.91 58.20± 0.93 58.67± 1.03
VI 69.82 70.04± 0.59 70.14± 0.75 70.23± 0.63 70.41± 0.70

PA
W

SX

EN 93.90 - - - -
DE 83.80 84.14± 0.40 84.08± 0.42 84.04± 0.47 84.23± 0.66
FR 86.90 87.07± 0.27 87.06± 0.37 87.03± 0.31 86.94± 0.41
ES 88.25 87.90± 0.54 87.80± 0.56 87.84± 0.53 87.85± 0.75
ZH 77.75 77.71± 0.37 77.63± 0.47 77.68± 0.51 77.82± 0.64
JA 73.30 73.78± 0.75 73.71± 1.04 73.48± 0.69 73.79± 1.28
KO 72.05 73.75± 1.30 73.11± 1.05 73.79± 0.92 73.31± 0.61

Table 2: Zero-shot (column K = 0) and few-shot
(columns K > 0) results (Acc. in %) on the test set
for CLS tasks. Green [red]: few-shot transfer outper-
forms [underperforms] zero-shot transfer.

et al., 2020).
In general, we observe that: 1) 1-shot buckets

bring the largest relative performance improvement
over ZS-XLT; 2) the gains follow the increase ofK,
but with diminishing returns; 3) the performance
variance across the 40 buckets decreases as K in-
creases. These observations are more pronounced
for POS and NER; e.g., 1-shot EN to Urdu (UR)
POS transfer shows gains of ≈22 F1 points (52.40
with zero-shot, 74.95 with 1-shot).

For individual runs, we observe that models in
FS-XLT tend to overfit the buckets quickly at small
K values. For example, in around 32% of NER 1-
shot buckets, the model achieves the best dev score
right after the first epoch; continuing the training
only degrades performance. Similar observations
hold for semantic tasks like MARC, where in 10
out of 40 DE 1-shot buckets, the dev set perfor-
mance peaks at epoch 1 (cf. learning curve in Ap-
pendix §D Figure 6). This suggests the necessity of
running the target-adapting experiments on multi-
ple buckets if reliable conclusions are to be drawn.

Different Downstream Tasks. The models for
different tasks present various levels of sensitiv-

ity to FS-XLT. Among the CLS tasks that require
semantic reasoning, FS-XLT benefits MLDoc the
most. This is not surprising given the fact that key-
word matching can largely solve MLDoc (Artetxe
et al., 2020a,b): A few examples related to target
language keywords are expected to significantly
improve performance. FS-XLT also yields promi-
nent gains on the Amazon review classification
dataset MARC. Similar to MLDoc, we hypothe-
size that just matching a few important opinion and
sentiment words (Liu, 2012) in the target language
brings large gains already. We provide further qual-
itative analyses in §5.4.

XNLI and PAWSX behave differently from
MLDoc and MARC. XNLI requires higher level
semantic reasoning on pairs of sentences. FS-
XLT performance improves modestly (XNLI) or
even decreases (PAWSX-ES) compared to ZS-
XLT, even with large K. PAWSX requires a
model to distinguish adversarially designed non-
paraphrase sentence pairs with large lexical over-
lap like “Flights from New York to Florida” and
“Flights from Florida to New York” (Zhang et al.,
2019). This poses a challenge for FS-XLT, given
the small amount of target language information
in the buckets. Therefore, when buckets are small
(e.g., K = 1) and for challenging semantic tasks
like PAWSX, the buckets do not substantially help.
Annotating more shots in the target language is an
intuitive solution. Designing task-specific pretrain-
ing/finetuning objectives could also be promising
(Klein and Nabi, 2020; Ram et al., 2021).

Unlike CLS tasks, POS and NER benefit from
FS-XLT substantially. We speculate that there are
two reasons: 1) Both tasks often require little to no
high-level semantic understanding or reasoning; 2)
due to i.i.d. sampling, train/dev/test splits are likely
to have overlapping vocabulary, and the labels in
the buckets can easily propagate to dev and test.
We delve deeper into these conjectures in §5.4.

Different Languages. For languages that are
more distant from EN, e.g., with different scripts,
small lexical overlap, or fewer common typological
features (Pires et al., 2019; Wu and Dredze, 2020a),
FS-XLT introduces crucial lexical and structural
information to guide the update of embedding and
transformer layers in mBERT.

We present several findings based on the NER
and POS results for a typologically diverse lan-
guage sample. Figure 2 shows that for languages
with non-Latin scripts (different from EN), despite
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Figure 2: Improvement in F1 (mean and standard deviation) of FS-XLT over ZS-XLT (numbers shown on x-
axis beneath each language) for NER (top) and POS (bottom) for three different bucket sizes. See Appendix §D
(Tables 12 and 13) for absolute numerical values.

Task Factor S P

NER
lexical overlap -0.34 -0.35

# of common linguistic features -0.37 -0.10

POS
lexical overlap -0.63 -0.50

# of common linguistic features -0.57 -0.54

Table 3: Correlations between FS-XLT F1 score gains
and the two factors (lexical overlap and the number of
common linguistic features with EN) when considered
independently for POS and NER: S/R denotes Spear-
man’s/Pearson’s ρ. See Footnotes 3, 4 for information
on the two factors.

their small to non-existent lexical overlap3 and di-
verging typological features (see Appendix §D Ta-
bles 9 and 14), the performance boosts are gen-
erally larger than those in the same-script target
languages: 6.2 vs. 3.0 average gain in NER and
11.4 vs. 5.4 in POS for K = 1. This clearly man-
ifests the large information discrepancy between
target-language buckets and source-language data.
EN data is less relevant to these languages, so
they obtain very limited gain from source-training,
reflected by their low ZS-XLT scores. With a
small amount of target-language knowledge in the
buckets, the performance is improved dramatically,
highlighting the effectiveness of FS-XLT.

Table 3 shows that, besides script form, lexical
overlap and the number of linguistic features com-

3We define lexical overlap as |V |L∩|V |EN

|V |EN
where V denotes

vocabulary. |V |L is computed with the 40 buckets of a target
language L.

mon with EN4 also contribute directly to FS-XLT
performance difference among languages: There is
a moderate negative correlation between F1 score
gains vs. the two factors when considered indepen-
dently for both syntactic tasks: The fewer over-
laps/features a target language shares with EN, the
larger the gain FS-XLT achieves.

This again stresses the importance of buckets –
they contain target-language-specific knowledge
about a task that cannot be obtained by ZS-XLT,
which solely relies on language similarity. Interest-
ingly, Pearson’s ρ indicates that common linguistic
features are much less linearly correlated with FS-
XLT gains in NER than in POS.

5.3 Importance of Source-Training

Table 4 reports the performance drop when directly
carrying out target-adapting, without any prior
source-training of mBERT. We show the scores
for MLDoc and PAWSX as a simple and a chal-
lenging CLS task, respectively. For NER and POS,
we select two high- (Russian (RU), ES), mid- (Viet-
namese (VI), Turkish (TR)), and low-resource lan-
guages (Tamil (TA), Marathi (MR)) each.5

The results clearly indicate that omitting the

4Following Pires et al. (2019), we use six WALS features:
81A (Order of Subject, Object and Verb), 85A (Order of Ad-
position and Noun), 86A (Order of Genitive and Noun), 87A
(Order of Adjective and Noun), 88A (Order of Demonstrative
and Noun), and 89A (Order of Numeral and Noun).

5The categorization based on resource availability is ac-
cording to WikiSize (Wu and Dredze, 2020a).
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MLDoc PAWSX POS NER
K=1 K=8 K=1 K=8 K=1 K=4 K=1 K=4

DE -37.73 -7.67 -31.11 -30.82 RU -15.89 -3.20 -48.19 -35.77
FR -38.14 -13.21 -33.02 -32.34 ES -9.51 -0.93 -63.98 -41.53
ES -33.69 -14.38 -33.76 -33.97 VI -7.82 -0.36 -54.41 -41.45
IT -33.63 -12.62 - - TR -15.05 -8.08 -54.35 -34.52
RU -30.66 -11.08 - - TA -13.72 -4.40 -34.70 -24.81
ZH -37.31 -12.57 -23.74 -23.65 MR -11.34 -3.63 -40.10 -25.68
JA -29.82 -14.32 -20.97 -20.82 - - - - -
KO - - -19.83 -19.68 - - - - -

Table 4: Performance drop when conducting target-
adapting without source-training.

5 0 7 25 1 34 13 2 22 32
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Figure 3: Normalized (with softmax) Jaccard index
(%) of a bucket (row) and the improved predictions
achieved with 10 buckets (column).

source-training stage yields large performance
drops. Even larger variance is also observed in
this scenario (cf. Appendix §D Table 11). There-
fore, the model indeed learns, when trained on the
source language, some transferable crosslingual
features that are beneficial to target languages, both
for semantic and syntactic tasks.

5.4 Importance of Lexical Features

We now investigate the sources of gains brought by
FS-XLT over ZS-XLT.

For syntactic tasks, we take Persian (FA) POS as
an example. Figure 3 visualizes the lexical overlap,
measured by the Jaccard index, of 10 1-shot buck-
ets (rows) and the improved word-label predictions
introduced by target-adapting on each of the buck-
ets (columns). In more detail, for column c, we
collect the set (denoted as Cc) of all test set words
whose label is incorrectly predicted by the zero-
shot model, but correctly predicted by the model
trained on the c-th bucket. For row i, we denote
with Bi the set of words occurring in bucket i. The
figure shows in cell (i, k) the Jaccard index of Bi

and Ck. The bright color (i.e., higher lexical over-
lap) on the diagonal reflects that the improvements
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Figure 4: Improvement of word-label predictions intro-
duced by a bucket (x-axis) in FA (top), UR (mid), and
HI (bottom), in relation to the words’ presence in the
bucket (True or False).

1 2 3 4 5

1
2

3
4

5

0-shot Predictions DE

1 2 3 4 5

1-shot Predictions DE

100

200

300

400

500

600

100

200

300

400

500

600

1 2 3 4 5

1
2

3
4

5

0-shot Predictions ZH

1 2 3 4 5

1-shot Predictions ZH

100

200

300

400

500

100

200

300

400

500

Figure 5: MARC (5 classes) test set prediction confu-
sion matrices. Top: DE. Bottom: ZH. Left: zero-shot
models. Right: 1-shot models. Colorbar numbers rep-
resent the number of instances in that cell.

introduced by a bucket are mainly6 those word-
label predictions that are lexically more similar to
the bucket than to other buckets.

We also investigate the question: How many
word-label predictions that are improved after FS-
XLT occur in the bucket, i.e., in the training data?
Figure 4 plots this for the 40 1-shot buckets in FA,
UR, and Hindi (HI). We see that many test words
do occur in the bucket (shown in orange), in line
with recent findings (Lewis et al., 2021; Elangovan
et al., 2021). These analyses shed light on why
the buckets benefit NER/POS – which heavily rely
on lexical information – more than higher level
semantic tasks.

For the CLS task MARC, which requires un-

6Note that the sampled buckets for POS are not completely
disjoint (cf. sampling strategy in §4).
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token [SEP] . nicht ! Die sehr
∆Attn +4.13 +2.91 +1.84 -1.75 -0.92 -0.81

Table 5: Tokens with the highest attention change from
[CLS], comparing zero-shot with a 1-shot DE bucket.

derstanding product reviews, Figure 5 visualizes
the confusion matrices of test set predictions for
DE and Chinese (ZH) zero- and 1-shot models;
axis ticks are review scores in {1, 2, 3, 4, 5}. The
squares on the diagonals in the two left heatmaps
show that parameter initialization on EN is a good
basis for well-performing ZS-XLT: This is particu-
larly true for DE, which is linguistically closer to
EN. Two extreme review scores – 1 (for DE) and
5 (for ZH) – have the largest confusions. The two
right heatmaps show that improvements brought
by the 1-shot buckets are mainly achieved by cor-
rectly predicting more cases of the two extreme
review scores: 2→ 1 (DE) and 4→ 5 (ZH). But
the more challenging cases (reviews with scores 2,
3, 4), which require non-trivial reasoning, are not
significantly improved, or even become worse.

We inspect examples that are incorrectly pre-
dicted by the few-shot model (predicting 1), but are
correctly predicted by the zero-shot model (predict-
ing 2). Specifically, we compute the difference of
where [CLS] attends to, before and after adapting
the model on a 1-shot DE bucket. We extract and
average attentions computed by the 12 heads from
the topmost transformer layer.

Table 5 shows that “nicht” (“not”) draws high
attention change from [CLS]. “Nicht” (i.e., nega-
tion) by itself is not a reliable indicator of senti-
ment, so giving the lowest score to reviews solely
because they contain “nicht” is not a good strategy.
The following review is classified as 1 by the 1-shot
model, but 2 is the gold label (as the review is not
entirely negative):

“Die Uhr ging nicht einmal eine Minute ... Op-
tisch allerdings sehr schön.” (“The clock didn’t even

work one minute ... Visually, however, very nice.”)

Pretrained multilingual encoders are shown to
learn and store “language-agnostic” features (Pires
et al., 2019; Zhao et al., 2020); §5.3 shows that
source-training mBERT on EN substantially ben-
efits other languages, even for difficult semantic
tasks like PAWSX. Conditioning on such language-
agnostic features, we expect that the buckets should
lead to good understanding and reasoning capabili-
ties for a target language. However, plain few-shot
finetuning still relies heavily on unintended shallow

lexical cues and shortcuts (Niven and Kao, 2019;
Geirhos et al., 2020) that generalize poorly. Other
open research questions for future work arise: How
do we overcome this excessive reliance on lexical
features? How can we leverage language-agnostic
features with few shots? Our standardized buckets,
baseline results, and analyses are the initial step to-
wards researching and answering these questions.

5.5 Target-Adapting Methods
SotA few-shot learning methods (Chen et al., 2019;
Wang et al., 2020; Tian et al., 2020; Dhillon et al.,
2020) from computer vision consist of two stages:
1) training on base-class images, and 2) few-shot
finetuning using new-class images. Source-training
and target-adapting stages of FS-XLT, albeit among
languages, follow an approach very similar to these
methods. Therefore, we test their effectiveness
for crosslingual transfer. These methods are built
upon cosine similarity that imparts inductive bias
about distance and is more effective than a fully-
connected classifier layer (FC) with smallK (Wang
et al., 2020). Following (Chen et al., 2019; Wang
et al., 2020; Tian et al., 2020), we freeze the em-
bedding and transformer layers of mBERT, and
explore four variants of the target-adapting stage
using MARC.

COS+Pooler. We randomly initialize a train-
able weight matrix W ∈ Rh×c where h is the hid-
den dimension size and c is the number of classes.
Rewriting W as [w1, . . . ,wi, . . . ,wc], we com-
pute the logits of an input sentence representation
x ∈ Rh (from mBERT) belonging to class i as

α · xᵀwi

‖x‖2 · ‖wi‖2
,

where α is a scaling hyperparameter, set to 10 in
all experiments. During training, W and mBERT’s
pooler layer containing a linear layer and a tanh
non-linearity are updated.

FC+Pooler. During training, we update the lin-
ear classifier layer and mBERT’s pooler layer.

FC only. During training, we only update the
linear classifier layer. This variant largely reduces
model complexity and exhibit lower variance when
K is small.

FC(reset)+Pooler. Similar to FC+Pooler, but
the source-trained linear classifier layer is randomly
re-initialized before training.

Table 6 shows the performance of these methods
along with full model finetuning (without freez-
ing). FC+Pooler performs the best among the
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Full-Model Finetuning FC only FC + Pooler COS + Pooler FC (reset) + Pooler
K=0 K=1 K=8 K=1 K=8 K=1 K=8 K=1 K=8 K=1 K=8

DE 49.62 51.50± 1.58 53.32± 0.59 50.82± 1.17 52.58± 0.63 51.18± 1.13 53.17± 0.58 37.98± 5.53 45.85± 2.14 38.52± 6.64 49.46± 2.21
FR 47.30 49.32± 1.34 51.23± 0.76 48.19± 0.78 49.05± 0.93 48.60± 1.02 49.97± 0.77 39.93± 3.50 44.41± 1.95 40.12± 5.04 47.77± 2.00
ES 48.44 49.72± 1.24 51.25± 0.93 49.03± 0.73 49.69± 0.57 49.28± 0.85 50.21± 0.63 40.01± 4.33 45.35± 2.37 40.89± 4.96 47.73± 2.33
ZH 40.40 43.19± 1.76 46.40± 0.93 41.90± 1.15 43.34± 0.88 42.30± 1.37 44.42± 0.65 33.10± 5.48 38.31± 1.87 31.83± 7.00 42.07± 2.19
JA 38.84 41.95± 2.09 44.44± 0.69 40.76± 1.76 43.14± 0.76 41.40± 1.74 43.81± 0.56 34.36± 4.19 38.95± 1.80 32.80± 5.17 41.18± 1.68

Table 6: Accuracy (%) on MARC when varying classifier head configurations. Full-Model Finetuning updates
all parameters during training; the other four methods only update a subset as described in §5.5. The best results
(excluding Full-Model Finetuning) are in bold.

four for both K = 1 and K = 8 in all lan-
guages. However, it underperforms the full model
finetuning, especially when K = 8. FC only is
sub-optimal; yet the decrease in comparison to
FC+Pooler is small, highlighting that EN-trained
mBERT is a strong feature extractor. COS+Pooler
and FC(reset)+Pooler perform considerably worse
than the other two methods and zero-shot transfer –
presumably because their new parameters need to
be trained from scratch with few shots.

We leave further exploration of other possibil-
ities of exploiting crosslingual features through
collapse-preventing regularization (Aghajanyan
et al., 2021) or contrastive learning (Gunel et al.,
2021) to future work. Integrating prompting
(Brown et al., 2020; Schick and Schütze, 2020;
Gao et al., 2020; Liu et al., 2021) – a strong per-
forming few-shot learning methodology for NLP
– into the crosslingual transfer learning pipeline is
also a promising direction.

6 Conclusion and Future Work

We have presented an extensive study of few-shot
crosslingual transfer. The focus of the study has
been on an empirically detected performance vari-
ance in few-shot scenarios: The models exhibit a
high level of sensitivity to the choice of few shots.
We analyzed and discussed the major causes of
this variance across six diverse tasks for up to 40
languages. Our results show that large language
models tend to overfit to few shots quickly and
mostly rely on shallow lexical features present
in the few shots, though they have been trained
with abundant data in English. Moreover, we have
empirically validated that state-of-the-art few-shot
learning methods in computer vision do not outper-
form a conceptually simple alternative: Full model
finetuning.

Our study calls for more rigor and accurate re-
porting of the results of few-shot crosslingual trans-
fer experiments. They should include score distri-
butions over standardized and fixed few shots. To

aid this goal, we have created and provided such
fixed few shots as a standardized benchmark for six
multilingual datasets.

Few-shot learning is promising for crosslingual
transfer, because it mirrors how people acquire new
languages, and that the few-shot data annotation is
feasible. In future work, we will investigate more
sophisticated techniques and extend the work to
more NLP tasks.

Acknowledgments

This work was funded by the European Research
Council: ERC NonSequeToR (#740516) and ERC
LEXICAL (#648909). We thank the anonymous
reviewers and Fei Mi for their helpful suggestions.

References
Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,

Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representa-
tional collapse. In International Conference on
Learning Representations.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020a. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

Mikel Artetxe, Sebastian Ruder, Dani Yogatama,
Gorka Labaka, and Eneko Agirre. 2020b. A call
for more rigor in unsupervised cross-lingual learn-
ing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 7375–7388, Online. Association for Compu-
tational Linguistics.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Trapit Bansal, Rishikesh Jha, and Andrew McCallum.
2020. Learning to few-shot learn across diverse

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.18653/v1/2020.acl-main.658
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://www.aclweb.org/anthology/2020.coling-main.448


5760

natural language classification tasks. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5108–5123, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aditi Chaudhary, Jiateng Xie, Zaid Sheikh, Graham
Neubig, and Jaime Carbonell. 2019. A little anno-
tation does a lot of good: A study in bootstrapping
low-resource named entity recognizers. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5164–5174, Hong
Kong, China. Association for Computational Lin-
guistics.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-
Chiang Frank Wang, and Jia-Bin Huang. 2019. A
closer look at few-shot classification. In Interna-
tional Conference on Learning Representations.

Yinbo Chen, Xiaolong Wang, Zhuang Liu, Huijuan
Xu, and Trevor Darrell. 2020. A new meta-
baseline for few-shot learning. arXiv preprint
arXiv:2003.04390.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7059–7069.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Guneet Singh Dhillon, Pratik Chaudhari, Avinash
Ravichandran, and Stefano Soatto. 2020. A baseline
for few-shot image classification. In International
Conference on Learning Representations.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping.

Xin Dong and Gerard de Melo. 2019. A robust self-
learning framework for cross-lingual text classifica-
tion. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6306–6310, Hong Kong, China. Association for
Computational Linguistics.

Rotem Dror, Segev Shlomov, and Roi Reichart. 2019.
Deep dominance - how to properly compare deep
neural models. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2773–2785, Florence, Italy. Associa-
tion for Computational Linguistics.

Julian Eisenschlos, Sebastian Ruder, Piotr Czapla,
Marcin Kadras, Sylvain Gugger, and Jeremy
Howard. 2019. MultiFiT: Efficient multi-lingual lan-
guage model fine-tuning. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5702–5707, Hong Kong,
China. Association for Computational Linguistics.

Aparna Elangovan, Jiayuan He, and Karin Verspoor.
2021. Memorization vs. generalization : Quantify-
ing data leakage in NLP performance evaluation. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1325–1335, Online.
Association for Computational Linguistics.

L. Fei-Fei, R. Fergus, and P. Perona. 2006. One-
shot learning of object categories. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(4):594–611.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-

https://www.aclweb.org/anthology/2020.coling-main.448
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/D19-1520
https://doi.org/10.18653/v1/D19-1520
https://doi.org/10.18653/v1/D19-1520
https://openreview.net/forum?id=HkxLXnAcFQ
https://openreview.net/forum?id=HkxLXnAcFQ
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=rylXBkrYDS
https://openreview.net/forum?id=rylXBkrYDS
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
https://doi.org/10.18653/v1/D19-1658
https://doi.org/10.18653/v1/D19-1658
https://doi.org/10.18653/v1/D19-1658
https://www.aclweb.org/anthology/P19-1266
https://www.aclweb.org/anthology/P19-1266
https://doi.org/10.18653/v1/D19-1572
https://doi.org/10.18653/v1/D19-1572
https://www.aclweb.org/anthology/2021.eacl-main.113
https://www.aclweb.org/anthology/2021.eacl-main.113
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html


5761

search, pages 1126–1135, International Convention
Centre, Sydney, Australia. PMLR.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2019. FewRel 2.0:
Towards more challenging few-shot relation classifi-
cation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6251–6256, Hong Kong, China. Association for
Computational Linguistics.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 138–147, Atlanta, Georgia. Association for
Computational Linguistics.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin
Stoyanov. 2021. Supervised contrastive learning for
pre-trained language model fine-tuning. In Interna-
tional Conference on Learning Representations.

Aakriti Gupta, Kapil Thadani, and Neil O’Hare. 2020.
Effective few-shot classification with transfer learn-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 1061–
1066, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan
Yao, Zhiyuan Liu, and Maosong Sun. 2018. FewRel:
A large-scale supervised few-shot relation classifica-
tion dataset with state-of-the-art evaluation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4803–
4809, Brussels, Belgium. Association for Computa-
tional Linguistics.

Han He and Jinho D. Choi. 2020. Establishing Strong
Baselines for the New Decade: Sequence Tagging,
Syntactic and Semantic Parsing with BERT. In
Proceedings of the 33rd International Florida Ar-
tificial Intelligence Research Society Conference,
FLAIRS’20. Best Paper Candidate.

Michael A. Hedderich, David Adelani, Dawei Zhu, Je-
sujoba Alabi, Udia Markus, and Dietrich Klakow.
2020. Transfer learning and distant supervision
for multilingual transformer models: A study on
African languages. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 2580–2591, Online. As-
sociation for Computational Linguistics.

Nithin Holla, Pushkar Mishra, Helen Yannakoudakis,
and Ekaterina Shutova. 2020. Learning to learn
to disambiguate: Meta-learning for few-shot word
sense disambiguation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 4517–4533, Online. Association for Compu-
tational Linguistics.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020a. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 1381–1393. Associa-
tion for Computational Linguistics.

Yutai Hou, Jiafeng Mao, Yongkui Lai, Cheng Chen,
Wanxiang Che, Zhigang Chen, and Ting Liu. 2020b.
Fewjoint: A few-shot learning benchmark for joint
language understanding. CoRR, abs/2009.08138.

Tsung-Yuan Hsu, Chi-Liang Liu, and Hung-yi Lee.
2019. Zero-shot reading comprehension by cross-
lingual transfer learning with multi-lingual lan-
guage representation model. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5933–5940, Hong Kong,
China. Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
4411–4421, Virtual. PMLR.

Phillip Keung, Yichao Lu, Julian Salazar, and Vikas
Bhardwaj. 2020a. Don’t use English dev: On the
zero-shot cross-lingual evaluation of contextual em-
beddings. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 549–554, Online. Association for
Computational Linguistics.

Phillip Keung, Yichao Lu, György Szarvas, and
Noah A. Smith. 2020b. The multilingual Amazon
reviews corpus. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4563–4568, Online. As-
sociation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In ICLR
(Poster).

Tassilo Klein and Moin Nabi. 2020. Contrastive self-
supervised learning for commonsense reasoning. In

https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://www.aclweb.org/anthology/N13-1014
https://www.aclweb.org/anthology/N13-1014
https://doi.org/10.1038/s42256-020-00257-z
https://openreview.net/forum?id=cu7IUiOhujH
https://openreview.net/forum?id=cu7IUiOhujH
https://www.aclweb.org/anthology/2020.coling-main.92
https://www.aclweb.org/anthology/2020.coling-main.92
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://www.flairs-33.info
https://www.flairs-33.info
https://www.flairs-33.info
https://www.aclweb.org/anthology/2020.emnlp-main.204
https://www.aclweb.org/anthology/2020.emnlp-main.204
https://www.aclweb.org/anthology/2020.emnlp-main.204
https://doi.org/10.18653/v1/2020.findings-emnlp.405
https://doi.org/10.18653/v1/2020.findings-emnlp.405
https://doi.org/10.18653/v1/2020.findings-emnlp.405
https://www.aclweb.org/anthology/2020.acl-main.128/
https://www.aclweb.org/anthology/2020.acl-main.128/
https://www.aclweb.org/anthology/2020.acl-main.128/
http://arxiv.org/abs/2009.08138
http://arxiv.org/abs/2009.08138
https://doi.org/10.18653/v1/D19-1607
https://doi.org/10.18653/v1/D19-1607
https://doi.org/10.18653/v1/D19-1607
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
http://proceedings.mlr.press/v119/hu20b.html
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.acl-main.671
https://doi.org/10.18653/v1/2020.acl-main.671


5762

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7517–
7523, Online. Association for Computational Lin-
guistics.

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition. In ICML 2015 Deep Learning
Workshop.

Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and
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A Reproducibility Checklist

A.1 mBERT Architecture and Number of
Parameters

We use the “bert-base-multilingual-cased” model7.
It contains 12 Transformer blocks with 768 hidden
dimensions. Each block has 12 self attention heads.
The model is pretrained on the concatenation of the
Wikipedia dump of 104 languages.

There are about 179 million parameters in
mBERT. For all the tasks, we use a linear output
layer. Denoting the output dimension of a task as
m, e.g., m = 2 for PAWSX. Then we have in total
179 million + 768×m + m parameters for the task.

A.2 Computing Infrastructure

All experiments are conducted on GeForce GTX
1080Ti. In the source-training stage, we use 4
GPUs with per-GPU batch size 32. In the target-
adapting stage, we use a single GPU and the batch
size is equal to the number of examples in a bucket.

A.3 Evaluation Metrics and Validation
Performance

We follow the standard evaluation metrics
used in XTREME (Hu et al., 2020) and
they are shown in Table 1; evaluation func-
tions in scikit-learn (Pedregosa et al.,
2011) and seqeval (https://github.com/
chakki-works/seqeval) are used. Link to code:
code/utils/eval meters.py.

The validation performance of the English-
trained models are shown in the first row of Table 7;
the optimal learning rate for each task is shown in
the second row.

MLDoc MARC XNLI PAWSX POS NER
98.1 65.1 83.5 94.5 95.6 84.3
1e-5 1e-5 3e-5 1e-5 1e-5 1e-5

Table 7: Source-training validation performance (%)
and the optimal learning rate.

For all the FS-XLT experiments, we enclosed the
validation scores in https://github.com/fsxlt/

running-logs.

A.4 Hyperparameter Search

For both source-training and target-adapting, the
only hyperparameter we search is learning rate
(from {1e− 5, 3e− 5, 5e− 5, 7e− 5}) to reduce

7https://github.com/google-research/
bert/blob/master/multilingual.md

Algorithm 1: Minimum-including
Require: # of shot K, language data D, label set LD
1: Initialize a bucket S = {}, Count`j = 0 (∀`j ∈ LD)
2: for ` in LD do

while Count` < K do
From D, randomly sample a

(x(i),y(i)) pair that y(i) includes `
Add (x(i),y(i)) to S
Update all Count`j (∀`j ∈ LD)

3: for each (x(i),y(i)) in S do
Remove (x(i),y(i)) from S
Update all Count`j (∀`j ∈ LD)
if any Count`j < K then

Put (x(i),y(i)) back to S
Update all Count`j (∀`j ∈ LD)

4: Return S

the sensitivity of our results to hyperparameter se-
lection.

A.5 Datasets and Preprocessing
For tasks (XNLI, PAWSX, POS, NER) covered
in XTREME (Hu et al., 2020), we utilize the
provided preprocessed datasets. Our MLDoc
dataset is obtained from https://github.com/

facebookresearch/MLDoc. We retrieve MARC
from docs.opendata.aws/amazon-reviews-ml/

readme.html. Table 8 shows example entries of
the datasets. It is worth noting that MARC is a
single sentence review classification task, however,
we put the “review title” and “product category” in
the “Text B” field, following Keung et al. (2020b).

We utilize the tokenizer in the HuggingFace
Transformers package (Wolf et al., 2019) to
preprocess all the texts. In all experiments, we use
128 maximum sequence length and truncate from
the end of a sentence if its length exceeds the limit.

B Languages

We work on 40 languages in total. They are shown
in Table 9, together with their ISO 639-1 codes,
writing script, and language features from WALs
(https://wals.info/) used in our experiments.

C Minimum-Including Algorithm

We utilize the Minimum-including Algorithm from
Hou et al. (2020a,b) for sampling the buckets of
POS and NER which have several labels in a sen-
tence. Denoting as x a sentence that consists of an
array of words (x1, . . . , xn), and the array y that
consists of a series of labels (y1, . . . , yn). We sam-
ple the buckets by using Algorithm 1. Note that we

https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/fsxlt/running-logs
https://github.com/fsxlt/running-logs
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/facebookresearch/MLDoc
https://github.com/facebookresearch/MLDoc
docs.opendata.aws/amazon-reviews-ml/readme.html
docs.opendata.aws/amazon-reviews-ml/readme.html
https://wals.info/
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MARC
Text A Très mignons et de bonne qualité. La figurine est assez imposante mais conforme à la taille indiquée dans le descriptif.
Text B Jolis détails . home

XNLI
Text A Ich musste anfagen Seminare zu belegen .
Text B Ich brauchte keine Vorbereitung .

PAWSX
Text A Lo entrenó John Velázquez y en sus carreras más importantes lo montó el jinete Dale Romans.
Text B Lo entrenó John Velázquez, y el jinete Dale Romans lo montó en las carreras más importantes.

POS Text A (Lo,PRON), (sanno,VERB), (oramai,ADV), (quasi,ADV), (tutti,PRON), (che,SCONJ), (un,DET), (respiro,NOUN), (affannoso,ADJ) ...
NER Text A (Sempat,O), (pindah,O), (ke,O), (HJK,B-ORG), (dan,O), (1899,B-ORG), (Hoffenheim,I-ORG), (yang,O), (meminjamkannya,O), (ke,O) ...

Table 8: Example entries of the datasets. We convert the raw text to the mBERT format “Text A” and “Text B”
(Devlin et al., 2019). For POS and NER, we list (word, tag) pairs in the sentence. Following Schwenk and Li
(2018), we provide document indices of MLDoc for retrieving the documents from RCV1 and RCV2.

Language Writing Script
81A 85A 86A 87A 88A 89A

Order of Subject, Object and Verb Order of adposition and noun Order of genitive and noun Order of adjective and noun Order of demonstrative and noun Order of numeral and noun
English (EN) Latin SVO Prepositions No dominant order Adjective-noun Demonstrative-noun Numeral-noun

Afrikaans (AF) Latin - - - - - -
Arabic (AR) Arabic VSO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun

Bulgarian (BG) Cyrillic SVO Prepositions No dominant order Adjective-noun Demonstrative-noun Numeral-noun
Bengali (BN) Brahmic SOV - - - - -
German (DE) Latin No dominant order Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun
Greek (EL) Greek No dominant order Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun

Spanish (ES) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Estonian (ET) Latin SVO Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Basque (EU) Latin SOV Postpositions Genetive-noun Noun-adjective Noun-demonstrative Numeral-noun
Persian (FA) Perso-Arabic SOV Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Finnish (FI) Latin SVO Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
French (FR) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Hebrew (HE) Hebrew SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Numeral-noun

Hindi (HI) Devanagari SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Hungarian (HU) Latin No dominant order Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Indonesian (ID) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Numeral-noun

Italian (IT) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun Numeral-noun
Japanese (JA) Ideograms SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Javanese (JV) Latin - - - - - -
Georgian (KA) Georgian SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Kazakh (KK) Cyrillic - - - - - -
Korean (KO) Hangul SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun

Malayalam (ML) Brahmic SOV - Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Marathi (MR) Devanagari SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Malay (MS) Latin - - - - - -

Burmese (MY) Brahmic SOV Postpositions Genetive-noun Noun-adjective Demonstrative-noun Noun-numeral
Dutch (NL) Latin No dominant order Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun

Portuguese (PT) Latin SVO Prepositions Noun-genetive Noun-adjective Demonstrative-noun -
Russian (RU) Cyrillic SVO Prepositions Noun-genetive Adjective-noun Demonstrative-noun Numeral-noun
Swahili (SW) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Noun-numeral
Tamil (TA) Brahmic SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Telugu (TE) Brahmic SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Thai (TH) Brahmic SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Noun-numeral

Tagalog (TL) Latin VSO - Noun-genetive No dominant order Mixed Numeral-noun
Turkish (TR) Latin SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun
Urdu (UR) Perso-Arabic SOV Postpositions Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun

Vietnamese (VI) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Numeral-noun
Yoruba (YO) Latin SVO Prepositions Noun-genetive Noun-adjective Noun-demonstrative Noun-numeral
Chinese (ZH) Chinese ideograms SVO No dominant order Genetive-noun Adjective-noun Demonstrative-noun Numeral-noun

Table 9: All languages for the experiments along with their ISO 639-1 codes, writing script, and linguistic features.
“-” denotes lacking feature information from WALS.

sample with replacement for POS and NER.

D Additional Results

D.1 Learning Curve
Figure 6 visualizes the averaged learning curve
of 10 out of 40 German 1-shot MARC buckets
for which the best dev performance is obtained at
epoch 1.

D.2 Numerical Values
The numerical values of the POS and NER FS-XLT
results are shown in Table 13 and Table 12. The
absolute performances of few-shot transfer without
English source-training are shown in Table 11. The
lexical overlap of target languages with EN for
NER and POS is shown in Table 14.

292 584 78 27 19 526 361 43 31 40
45 630 250 64 11 176 554 162 80 28
24 259 497 196 24 65 298 369 218 50
4 69 237 525 165 22 87 176 471 244
6 25 75 357 537 16 27 42 245 670

599 316 36 33 16 570 262 45 56 67
255 543 112 70 20 269 416 126 125 65
136 401 266 174 23 143 284 219 270 84
60 262 283 322 73 63 163 190 395 189
38 83 127 462 290 32 39 59 314 555

Table 10: Numerical value of the confusion matrices
in Figure 5. For 1-shot confusion matrices (right), we
average results of 5 buckets and then round to integers.
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MLDoc PAWSX POS NER
K=1 K=8 K=1 K=8 K=1 K=4 K=1 K=4

DE 52.63± 8.98 84.31± 3.60 53.03± 1.67 53.41± 1.47 RU 73.18± 4.42 86.65± 1.32 19.11± 6.94 35.57± 6.23
FR 50.80± 8.50 77.80± 4.44 54.05± 1.33 54.60± 0.97 ES 80.54± 4.17 90.26± 0.99 15.21± 5.98 39.37± 5.33
ES 50.30± 8.30 74.08± 6.48 54.14± 1.53 53.88± 1.72 VI 56.97± 5.16 72.00± 1.99 14.36± 4.28 29.63± 5.55
IT 41.34± 6.82 65.50± 4.21 - - TR 48.96± 3.15 59.65± 1.83 15.02± 5.58 37.81± 5.63
RU 46.74± 9.48 70.83± 5.63 - - TA 49.12± 4.67 64.96± 2.16 13.11± 4.55 27.42± 4.82
ZH 49.87± 10.44 76.15± 5.10 53.97± 1.79 54.17± 1.38 MR 60.26± 5.72 73.58± 2.39 15.68± 7.09 33.50± 6.02
JA 46.41± 6.59 66.85± 6.54 52.81± 0.96 52.97± 1.15 - - - - -
KO - - 53.92± 0.78 53.63± 0.99 - - - - -

Table 11: Target-adapting results without source-training. Numbers are mean and standard deviation of 40 runs.

K=0 K=1 K=2 K=4
EN 95.39 - - -
AF 86.60 91.10± 1.11 92.12± 1.15 93.50± 0.56
AR 66.55 75.64± 1.09 77.01± 0.84 78.52± 0.67
BG 87.02 91.01± 0.97 91.97± 0.90 93.18± 0.56
DE 86.38 89.38± 0.90 90.21± 0.50 91.32± 0.43
EL 81.89 89.69± 1.05 90.53± 0.89 91.58± 0.72
ES 86.64 90.05± 1.01 91.19± 0.74 92.31± 0.52
ET 79.17 81.69± 1.09 83.05± 0.98 84.39± 0.56
EU 49.51 68.44± 2.47 71.94± 1.78 75.89± 1.20
FA 65.73 80.82± 2.14 82.81± 1.79 84.95± 1.16
FI 74.49 78.25± 1.22 79.65± 0.85 81.32± 0.82
FR 82.54 89.55± 1.08 90.84± 0.64 91.66± 0.60
HE 76.79 80.40± 1.42 82.42± 1.06 83.98± 0.83
HI 64.29 78.87± 1.26 80.80± 0.80 81.97± 0.92
HU 75.10 84.44± 1.40 86.31± 0.90 88.61± 0.67
ID 70.80 72.68± 1.08 73.64± 0.78 74.34± 0.75
IT 85.97 88.77± 0.87 89.93± 0.50 90.77± 0.59
JA 47.60 75.84± 1.68 78.46± 1.31 80.42± 0.98
KO 42.29 57.43± 1.36 59.92± 1.18 62.37± 1.22
MR 58.70 71.60± 2.52 74.89± 1.95 77.21± 1.77
NL 88.35 88.97± 0.73 89.55± 0.79 90.83± 0.54
PT 86.45 88.18± 0.70 88.98± 0.66 89.78± 0.38
RU 86.36 89.07± 0.76 89.85± 0.57 91.13± 0.51
TA 53.51 62.84± 2.69 66.30± 1.56 69.36± 1.13
TE 67.48 71.46± 2.58 75.72± 1.94 78.84± 1.44
TR 57.58 64.01± 1.53 66.02± 1.28 67.73± 0.82
UR 52.40 74.95± 2.15 78.53± 1.38 79.57± 1.24
VI 54.96 64.79± 2.33 69.39± 1.73 72.36± 1.51
ZH 63.01 74.15± 1.96 76.62± 1.39 79.42± 0.83

Table 12: Zero- (column K=0) and few- (columns
K>0) shot cross-lingual transfer results (%) on POS
test set.

K=0 K=1 K=2 K=4
EN 83.65 - - -
AF 78.36 79.07± 1.47 79.69± 1.40 80.24± 1.16
AR 39.91 54.44± 6.74 60.51± 4.30 63.61± 2.65
BG 78.59 78.65± 0.38 78.70± 0.39 78.87± 0.48
BN 64.17 66.37± 1.69 66.66± 1.57 65.98± 2.11
DE 79.00 79.33± 0.71 79.61± 0.76 79.74± 0.73
EL 75.20 74.93± 0.79 75.18± 0.95 75.40± 0.93
ES 77.16 79.19± 1.97 80.28± 1.71 80.90± 1.94
ET 71.88 72.58± 1.17 73.60± 1.65 74.60± 1.59
EU 55.35 59.60± 3.32 61.59± 3.84 64.68± 2.96
FA 40.73 59.20± 5.34 68.55± 4.04 71.13± 3.45
FI 68.43 71.43± 2.61 73.92± 2.44 75.81± 2.15
FR 80.38 80.54± 0.93 81.08± 0.85 81.22± 0.93
HE 56.36 58.24± 2.25 59.43± 2.29 60.27± 2.43
HI 65.84 67.16± 1.61 67.56± 2.18 68.29± 1.76
HU 71.28 72.23± 1.33 73.03± 1.44 74.14± 1.61
ID 60.10 77.87± 6.31 78.57± 4.14 81.07± 1.50
IT 80.30 80.68± 0.79 81.00± 0.92 80.90± 1.12
JA 7.16 20.71± 7.07 28.23± 5.32 32.93± 6.03
JV 61.18 67.80± 4.72 69.79± 3.37 72.12± 3.34
KA 61.26 61.62± 1.09 62.25± 1.56 63.68± 1.66
KK 40.29 50.42± 5.49 54.97± 6.81 62.94± 4.55
KO 46.50 47.25± 1.36 48.69± 1.82 51.76± 2.30
ML 46.77 47.83± 2.30 49.51± 3.01 51.41± 3.31
MR 54.70 55.78± 2.54 57.22± 2.43 59.18± 3.13
MS 68.61 71.04± 3.07 74.51± 4.28 76.25± 3.04
MY 42.45 43.55± 3.88 46.03± 4.48 47.81± 4.28
NL 82.77 82.73± 0.43 82.83± 0.54 82.82± 0.46
PT 79.28 79.89± 0.99 80.39± 0.98 80.49± 0.95
RU 65.20 67.30± 2.38 68.78± 2.73 71.34± 2.82
SW 68.36 71.07± 4.28 70.08± 3.15 74.33± 5.25
TA 46.12 47.81± 1.81 49.86± 2.99 52.23± 2.63
TE 50.02 52.57± 1.91 54.02± 2.65 55.75± 2.72
TH 1.53 4.56± 4.87 6.08± 4.88 5.87± 4.14
TL 69.23 72.34± 2.25 72.63± 2.43 73.55± 2.25
TR 65.78 69.37± 2.24 69.53± 2.07 72.33± 2.85
UR 40.77 58.48± 6.51 63.38± 4.88 66.49± 4.64
VI 64.67 68.77± 3.54 69.64± 3.63 71.08± 3.28
YO 35.48 53.55± 6.19 58.22± 5.47 65.46± 7.10
ZH 13.95 32.84± 7.10 40.34± 5.32 48.49± 4.30

Table 13: Zero- (column K=0) and few- (columns
K>0) shot cross-lingual transfer results (%) on NER
test set.
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Figure 6: Early stopped 1-shot transfer (EN → DE)
learning curve. The English-trained model overfits the
1-shot bucket quickly, showing decreasing dev perfor-
mance during training.

NER POS

K=1 K=2 K=4 K=1 K=2 K=4
AF 4.54 8.75 13.44 4.97 6.11 7.90
AR 0.65 0.95 1.57 3.51 4.49 5.30
BG 0.98 2.19 3.23 - - -
BN 0.39 0.77 0.80 - - -
DE 8.75 13.20 20.61 9.36 15.33 21.48
EL 1.45 1.84 3.59 1.96 2.87 3.04
ES 6.29 10.59 19.66 10.00 17.53 22.63
ET 4.80 5.96 11.24 5.81 9.22 13.17
EU 3.77 5.55 12.31 2.60 3.45 4.69
FA 0.27 0.44 1.01 0.37 0.37 0.41
FI 5.61 9.05 15.66 4.59 7.03 8.78
FR 6.26 10.83 19.01 15.60 25.23 37.39
HE 0.86 1.90 3.23 1.22 1.93 2.26
HI 0.95 1.16 1.99 0.44 0.27 0.51
HU 5.07 9.19 14.35 3.18 3.92 4.15
ID 5.34 9.82 16.94 9.39 13.78 21.75
IT 7.89 10.94 21.27 11.99 16.15 21.35
JA 1.75 2.02 2.14 2.60 3.68 5.00
JV 2.49 3.05 3.44 - - -
KA 1.99 4.00 5.78 - - -
KK 0.89 1.22 2.11 - - -
KO 1.48 1.54 3.32 2.33 3.85 5.67
ML 0.36 1.04 1.30 - - -
MR 0.53 0.56 0.71 0.24 0.24 0.24
MS 4.86 7.44 13.70 - - -
MY 0.21 0.36 0.42 - - -
NL 7.18 10.65 20.14 7.94 11.42 16.79
PT 6.29 11.00 19.13 8.88 13.38 20.13
RU 1.60 2.34 3.77 4.15 6.11 9.32
SW 5.90 8.10 12.37 - - -
TA 0.65 1.54 2.08 1.32 1.28 1.62
TE 0.77 0.80 1.19 0.20 0.20 0.20
TH 1.63 1.87 2.08 - - -
TL 4.83 8.96 14.98 - - -
TR 4.89 8.48 16.43 2.09 2.26 3.01
UR 0.30 0.27 0.68 0.74 1.35 2.16
VI 4.33 8.39 13.41 1.62 2.16 2.90
YO 1.90 2.58 2.88 - - -
ZH 1.81 1.99 2.14 3.04 4.86 7.33

Table 14: Lexical overlap (per-mille) of target lan-
guages with EN for NER and POS using different K-
shot buckets.


