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Abstract

In this work, we provide a systematic and
comprehensive empirical comparison of pre-
trained multilingual language models versus
their monolingual counterparts with regard to
their monolingual task performance. We study
a set of nine typologically diverse languages
with readily available pretrained monolingual
models on a set of five diverse monolingual
downstream tasks. We first aim to establish,
via fair and controlled comparisons, if a gap
between the multilingual and the correspond-
ing monolingual representation model of that
language exists, and subsequently investigate
the reason for any performance difference. To
disentangle conflating factors, we train new
monolingual models on the same data, with
monolingually and multilingually trained tok-
enizers. We find that while the pretraining data
size is an important factor, a designated mono-
lingual tokenizer plays an equally important
role in the downstream performance. Our re-
sults show that languages that are adequately
represented in the multilingual model’s vocab-
ulary exhibit negligible performance decreases
over their monolingual counterparts. We fur-
ther find that replacing the original multilin-
gual tokenizer with the specialized monolin-
gual tokenizer improves the downstream per-
formance of the multilingual model for almost
every task and language.

1 Introduction

Following large transformer-based language mod-
els (LMs, Vaswani et al., 2017) pretrained on large
English corpora (e.g., BERT, RoBERTa, T5; Devlin
et al., 2019; Liu et al., 2019; Raffel et al., 2020),
similar monolingual language models have been in-
troduced for other languages (Virtanen et al., 2019;
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Our code is available at https://github.com/Adapter-Hub/hgiyt.

Antoun et al., 2020; Martin et al., 2020, inter alia),
offering previously unmatched performance in all
NLP tasks. Concurrently, massively multilingual
models with the same architectures and training
procedures, covering more than 100 languages,
have been proposed (e.g., mBERT, XLM-R, mT5;
Devlin et al., 2019; Conneau et al., 2020; Xue et al.,
2021).

The “industry” of pretraining and releasing new
monolingual BERT models continues its operations
despite the fact that the corresponding languages
are already covered by multilingual models. The
common argument justifying the need for mono-
lingual variants is the assumption that multilingual
models—due to suffering from the so-called curse
of multilinguality (Conneau et al., 2020, i.e., the
lack of capacity to represent all languages in an eq-
uitable way)—underperform monolingual models
when applied to monolingual tasks (Virtanen et al.,
2019; Antoun et al., 2020; Rönnqvist et al., 2019,
inter alia). However, little to no compelling em-
pirical evidence with rigorous experiments and fair
comparisons have been presented so far to support
or invalidate this strong claim. In this regard, much
of the work proposing and releasing new mono-
lingual models is grounded in anecdotal evidence,
pointing to the positive results reported for other
monolingual BERT models (de Vries et al., 2019;
Virtanen et al., 2019; Antoun et al., 2020).

Monolingual BERT models are typically eval-
uated on downstream NLP tasks to demonstrate
their effectiveness in comparison to previous mono-
lingual models or mBERT (Virtanen et al., 2019;
Antoun et al., 2020; Martin et al., 2020, inter alia).
While these results do show that certain monolin-
gual models can outperform mBERT in certain
tasks, we hypothesize that this may substantially
vary across different languages and language prop-
erties, tasks, pretrained models and their pretrain-
ing data, domain, and size. We further argue that
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conclusive evidence, either supporting or refuting
the key hypothesis that monolingual models cur-
rently outperform multilingual models, necessitates
an independent and controlled empirical compari-
son on a diverse set of languages and tasks.

While recent work has argued and validated that
mBERT is under-trained (Rönnqvist et al., 2019;
Wu and Dredze, 2020), providing evidence of im-
proved performance when training monolingual
models on more data, it is unclear if this is the only
factor relevant for the performance of monolin-
gual models. Another so far under-studied factor is
the limited vocabulary size of multilingual models
compared to the sum of tokens of all corresponding
monolingual models. Our analyses investigating
dedicated (i.e., language-specific) tokenizers reveal
the importance of high-quality tokenizers for the
performance of both model variants. We also shed
light on the interplay of tokenization with other
factors such as pretraining data size.

Contributions. 1) We systematically compare
monolingual with multilingual pretrained language
models for 9 typologically diverse languages on 5
structurally different tasks. 2) We train new mono-
lingual models on equally sized datasets with differ-
ent tokenizers (i.e., shared multilingual versus ded-
icated language-specific tokenizers) to disentangle
the impact of pretraining data size from the vocabu-
lary of the tokenizer. 3) We isolate factors that con-
tribute to a performance difference (e.g., tokenizers’
“fertility”, the number of unseen (sub)words, data
size) and provide an in-depth analysis of the im-
pact of these factors on task performance. 4) Our
results suggest that monolingually adapted tokeniz-
ers can robustly improve monolingual performance
of multilingual models.

2 Background and Related Work

Multilingual LMs. The widespread usage of pre-
trained multilingual Transformer-based LMs has
been instigated by the release of multilingual BERT
(Devlin et al., 2019), which followed on the success
of the monolingual English BERT model. mBERT
adopted the same pretraining regime as mono-
lingual BERT by concatenating the 104 largest
Wikipedias. Exponential smoothing was used when
creating the subword vocabulary based on Word-
Pieces (Wu et al., 2016) and a pretraining corpus.
By oversampling underrepresented languages and
undersampling overrepresented ones, it aims to
counteract the imbalance of pretraining data sizes.

The final shared mBERT vocabulary comprises a
total of 119,547 subword tokens.

Other multilingual models followed mBERT,
such as XLM-R (Conneau et al., 2020). Con-
currently, many studies analyzed mBERT’s and
XLM-R’s capabilities and limitations, finding that
the multilingual models work surprisingly well for
cross-lingual tasks, despite the fact that they do not
rely on direct cross-lingual supervision (e.g., par-
allel or comparable data, translation dictionaries;
Pires et al., 2019; Wu and Dredze, 2019; Artetxe
et al., 2020; Hu et al., 2020; K et al., 2020).

However, recent work has also pointed to some
fundamental limitations of multilingual LMs. Con-
neau et al. (2020) observe that, for a fixed model
capacity, adding new languages increases cross-
lingual performance up to a certain point, after
which adding more languages results in perfor-
mance drops. This phenomenon, termed the curse
of multilinguality, can be attenuated by increas-
ing the model capacity (Artetxe et al., 2020; Pfeif-
fer et al., 2020b; Chau et al., 2020) or through
additional training for particular language pairs
(Pfeiffer et al., 2020b; Ponti et al., 2020). Another
observation concerns substantially reduced cross-
lingual and monolingual abilities of the models
for resource-poor languages with smaller pretrain-
ing data (Wu and Dredze, 2020; Hu et al., 2020;
Lauscher et al., 2020). Those languages remain un-
derrepresented in the subword vocabulary and the
model’s shared representation space despite over-
sampling. Despite recent efforts to mitigate this
issue (e.g., Chung et al. (2020) propose to cluster
and merge the vocabularies of similar languages,
before defining a joint vocabulary across all lan-
guages), the multilingual LMs still struggle with
balancing their parameters across many languages.

Monolingual versus Multilingual LMs. New
monolingual language-specific models also
emerged for many languages, following BERT’s
architecture and pretraining procedure. There are
monolingual BERT variants for Arabic (Antoun
et al., 2020), French (Martin et al., 2020), Finnish
(Virtanen et al., 2019), Dutch (de Vries et al.,
2019), to name only a few. Pyysalo et al. (2020)
released 44 monolingual WikiBERT models
trained on Wikipedia. However, only a few
studies have thus far, either explicitly or implicitly,
attempted to understand how monolingual and
multilingual LMs compare across languages.
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Nozza et al. (2020) extracted task results from
the respective papers on monolingual BERTs to
facilitate an overview of monolingual models and
their comparison to mBERT.1 However, they have
not verified the scores, nor have they performed a
controlled impartial comparison.

Vulić et al. (2020) probed mBERT and monolin-
gual BERT models across six typologically diverse
languages for lexical semantics. They show that
pretrained monolingual BERT models encode sig-
nificantly more lexical information than mBERT.

Zhang et al. (2020) investigated the role of pre-
training data size with RoBERTa, finding that the
model learns most syntactic and semantic features
on corpora spanning 10M–100M word tokens, but
still requires massive datasets to learn higher-level
semantic and commonsense knowledge.

Mulcaire et al. (2019) compared monolingual
and bilingual ELMo (Peters et al., 2018) LMs
across three downstream tasks, finding that contex-
tualized representations from the bilingual models
can improve monolingual task performance relative
to their monolingual counterparts.2 However, it is
unclear how their findings extend to massively mul-
tilingual LMs potentially suffering from the curse
of multilinguality.

Rönnqvist et al. (2019) compared mBERT to
monolingual BERT models for six languages
(German, English, Swedish, Danish, Norwegian,
Finnish) on three different tasks. They find that
mBERT lags behind its monolingual counterparts
in terms of performance on cloze and generation
tasks. They also identified clear differences among
the six languages in terms of this performance gap.
They speculate that mBERT is under-trained with
respect to individual languages. However, their set
of tasks is limited, and their language sample is
typologically narrow; it remains unclear whether
these findings extend to different language families
and to structurally different tasks.

Despite recent efforts, a careful, systematic study
within a controlled experimental setup, a diverse
language sample and set of tasks is still lacking.
We aim to address this gap in this work.

3 Controlled Experimental Setup

We compare multilingual BERT with its monolin-
gual counterparts in a spectrum of typologically

1https://bertlang.unibocconi.it/
2Mulcaire et al. (2019) clearly differentiate between mul-

tilingual and polyglot models. Their definition of polyglot
models is in line with what we term multilingual models.

diverse languages and across a variety of down-
stream tasks. By isolating and analyzing crucial
factors contributing to downstream performance,
such as tokenizers and pretraining data, we can
conduct unbiased and fair comparisons.

3.1 Language and Task Selection

Our selection of languages has been guided by sev-
eral (sometimes competing) criteria: C1) typologi-
cal diversity; C2) availability of pretrained mono-
lingual BERT models; C3) representation of the
languages in standard evaluation benchmarks for a
sufficient number of tasks.

Regarding C1, most high-resource languages be-
long to the same language families, thus sharing
a majority of their linguistic features. Neglecting
typological diversity inevitably leads to poor gener-
alizability and language-specific biases (Gerz et al.,
2018; Ponti et al., 2019; Joshi et al., 2020). Fol-
lowing recent work in multilingual NLP that pays
particular attention to typological diversity (Clark
et al., 2020; Hu et al., 2020; Ponti et al., 2020, in-
ter alia), we experiment with a language sample
covering a broad spectrum of language properties.

Regarding C2, for computational tractability, we
only select languages with readily available BERT
models. Unlike prior work, which typically lacks
either language (Rönnqvist et al., 2019; Zhang
et al., 2020) or task diversity (Wu and Dredze,
2020; Vulić et al., 2020), we ensure that our ex-
perimental framework takes both into account, thus
also satisfying C3. We achieve task diversity and
generalizability by selecting a combination of tasks
driven by lower-level syntactic and higher-level
semantic features (Lauscher et al., 2020).

Finally, we select a set of 9 languages from 8
language families, as listed in Table 1.3 We evalu-
ate mBERT and monolingual BERT models on five
downstream NLP tasks: named entity recognition
(NER), sentiment analysis (SA), question answer-
ing (QA), universal dependency parsing (UDP),
and part-of-speech tagging (POS).4

3Note that, since we evaluate monolingual performance
and not cross-lingual transfer performance, we require train-
ing data in the target language. Therefore, we are unable to
leverage many of the available multilingual evaluation data
such as XQuAD (Artetxe et al., 2020), MLQA (Lewis et al.,
2020), or XNLI (Conneau et al., 2018). These evaluation sets
do not provide any training portions for languages other than
English. Additional information regarding our selection of
pretrained models is available in Appendix A.1.

4Information on which datasets are associated with which
language and the dataset sizes (examples per split) are pro-
vided in Appendix A.4.

https://bertlang.unibocconi.it/
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Language ISO Language Family Pretrained BERT Model

Arabic AR Afroasiatic AraBERT (Antoun et al., 2020)
English EN Indo-European BERT (Devlin et al., 2019)
Finnish FI Uralic FinBERT (Virtanen et al., 2019)
Indonesian ID Austronesian IndoBERT (Wilie et al., 2020)
Japanese JA Japonic Japanese-char BERT5

Korean KO Koreanic KR-BERT (Lee et al., 2020)
Russian RU Indo-European RuBERT (Kuratov and Arkhipov, 2019)
Turkish TR Turkic BERTurk (Schweter, 2020)
Chinese ZH Sino-Tibetan Chinese BERT (Devlin et al., 2019)

Table 1: Overview of selected languages and their re-
spective pretrained monolingual BERT models.

Named Entity Recognition (NER). We rely on:
CoNLL-2003 (Tjong Kim Sang and De Meulder,
2003), FiNER (Ruokolainen et al., 2020), Chi-
nese Literature (Xu et al., 2017), KMOU NER,6

WikiAnn (Pan et al., 2017; Rahimi et al., 2019).

Sentiment Analysis (SA). We employ: HARD
(Elnagar et al., 2018), IMDb Movie Reviews
(Maas et al., 2011), Indonesian Prosa (Purwari-
anti and Crisdayanti, 2019), Yahoo Movie Re-
views,7 NSMC,8 RuReviews (Smetanin and Ko-
marov, 2019), Turkish Movie and Product Reviews
(Demirtas and Pechenizkiy, 2013), ChnSentiCorp.9

Question Answering (QA). We use: SQuADv1.1
(Rajpurkar et al., 2016), KorQuAD 1.0 (Lim et al.,
2019), SberQuAD (Efimov et al., 2020), TQuAD,10

DRCD (Shao et al., 2019), TyDiQA-GoldP (Clark
et al., 2020).

Dependency Parsing (UDP). We rely on Univer-
sal Dependencies (Nivre et al., 2016, 2020) v2.6
(Zeman et al., 2020) for all languages.

Part-of-Speech Tagging (POS). We again utilize
Universal Dependencies v2.6.

3.2 Task-Based Fine-Tuning

Fine-Tuning Setup. For all tasks besides UDP,
we use the standard fine-tuning setup of Devlin
et al. (2019). For UDP, we use a transformer-based
variant (Glavaš and Vulić, 2021) of the standard
deep biaffine attention dependency parser (Dozat
and Manning, 2017). We distinguish between fully
fine-tuning a monolingual BERT model and fully
fine-tuning mBERT on the task. For both settings,
we average scores over three random initializations
on the development set. On the test set, we report

5https://github.com/cl-tohoku/bert-japanese
6https://github.com/kmounlp/NER
7 https://github.com/dennybritz/sentiment-analysis
8 https://www.lucypark.kr/docs/2015-pyconkr/#39
9https://github.com/pengming617/bert classification

10https://tquad.github.io/turkish-nlp-qa-dataset/

Lg Model
NER SA QA UDP POS
Test Test Dev Test Test
F1 Acc EM / F1 UAS / LAS Acc

AR
Monolingual 91.1 95.9 68.3 / 82.4 90.1 / 85.6 96.8
mBERT 90.0 95.4 66.1 / 80.6 88.8 / 83.8 96.8

EN
Monolingual 91.5 91.6 80.5 / 88.0 92.1 / 89.7 97.0
mBERT 91.2 89.8 80.9 / 88.4 91.6 / 89.1 96.9

FI
Monolingual 92.0 —– 69.9 / 81.6 95.9 / 94.4 98.4
mBERT 88.2 —– 66.6 / 77.6 91.9 / 88.7 96.2

ID
Monolingual 91.0 96.0 66.8 / 78.1 85.3 / 78.1 92.1
mBERT 93.5 91.4 71.2 / 82.1 85.9 / 79.3 93.5

JA
Monolingual 72.4 88.0 —– / —– 94.7 / 93.0 98.1
mBERT 73.4 87.8 —– / —– 94.0 / 92.3 97.8

KO
Monolingual 88.8 89.7 74.2 / 91.1 90.3 / 87.2 97.0
mBERT 86.6 86.7 69.7 / 89.5 89.2 / 85.7 96.0

RU
Monolingual 91.0 95.2 64.3 / 83.7 93.1 / 89.9 98.4
mBERT 90.0 95.0 63.3 / 82.6 91.9 / 88.5 98.2

TR
Monolingual 92.8 88.8 60.6 / 78.1 79.8 / 73.2 96.9
mBERT 93.8 86.4 57.9 / 76.4 74.5 / 67.4 95.7

ZH
Monolingual 76.5 95.3 82.3 / 89.3 88.6 / 85.6 97.2
mBERT 76.1 93.8 82.0 / 89.3 88.1 / 85.0 96.7

AVG
Monolingual 87.4 92.4 70.8 / 84.0 90.0 / 86.3 96.9
mBERT 87.0 91.0 69.7 / 83.3 88.4 / 84.4 96.4

Table 2: Performance on Named Entity Recognition
(NER), Sentiment Analysis (SA), Question Answering
(QA), Universal Dependency Parsing (UDP), and Part-
of-Speech Tagging (POS). We use development (dev)
sets only for QA. Finnish (FI) SA and Japanese (JA)
QA lack respective datasets.

the results of the initialization that achieved the
highest score on the development set.

Evaluation Measures. We report F1 scores for
NER, accuracy scores for SA and POS, unlabeled
and labeled attachment scores (UAS & LAS) for
UDP, and exact match and F1 scores for QA.

Hyper-Parameters and Technical Details. We
use AdamW (Kingma and Ba, 2015) in all experi-
ments, with a learning rate of 3e−5.11 We train for
10 epochs with early stopping (Prechelt, 1998).12

11Preliminary experiments indicated this to be a well per-
forming learning rate. Due to the large volume of our exper-
iments, we were unable to tune all the hyper-parameters for
each setting. We found that a higher learning rate of 5e− 4
works best for adapter-based fine-tuning (see later) since the
task adapter parameters are learned from scratch (i.e., they are
randomly initialized).

12We evaluate a model every 500 gradient steps on the
development set, saving the best-performing model based on
the respective evaluation measures. We terminate training if
no performance gains are observed within five consecutive
evaluation runs (= 2,500 steps). For QA and UDP, we use the
F1 scores and LAS, respectively. For FI and ID QA, we train
for 20 epochs due to slower convergence. We train with batch
size 32 and max sequence length 256 for all tasks except QA.
In QA, the batch size is 24, max sequence length 384, query
length 64, and document stride is set to 128.

https://github.com/cl-tohoku/bert-japanese
https://github.com/kmounlp/NER
https://github.com/dennybritz/sentiment-analysis/tree/master/data
https://www.lucypark.kr/docs/2015-pyconkr/#39
https://github.com/pengming617/bert_classification/tree/master/data
https://tquad.github.io/turkish-nlp-qa-dataset/
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3.3 Initial Results

We report our first set of results in Table 2.13 We
find that the performance gap between monolingual
models and mBERT does exist to a large extent,
confirming anecdotal evidence from prior work.
However, we also notice that the score differences
are largely dependent on the language and task at
hand. The largest performance gains of monolin-
gual models over mBERT are found for FI, TR, KO,
and AR. In contrast, mBERT outperforms the In-
doBERT (ID) model in all tasks except SA, and
performs competitively with the JA and ZH mono-
lingual models on most datasets. In general, the
gap is particularly narrow for POS tagging, where
all models tend to score high (in most cases north of
95% accuracy). ID aside, we also see a clear trend
for UDP, with monolingual models outperforming
fully fine-tuned mBERT models, most notably for
FI and TR. In what follows, we seek to understand
the causes of this behavior in relation to different
factors such as tokenizers, corpora sizes, as well as
languages and tasks in consideration.

4 Tokenizer versus Corpus Size

4.1 Pretraining Corpus Size

The size of the pretraining corpora plays an impor-
tant role in the performance of transformers (Liu
et al., 2019; Conneau et al., 2020; Zhang et al.,
2020, inter alia). Therefore, we compare how
much data each monolingual model was trained on
with the amount of data in the respective language
that mBERT has seen during training. Given that
mBERT was trained on entire Wikipedia dumps,
we estimate the latter by the total number of words
across all articles listed for each Wiki.14 For the
monolingual LMs, we extract information on pre-
training data from the model documentation. If no
exact numbers are explicitly stated, and the pretrain-
ing corpora are unavailable, we make estimations
based on the information provided by the authors.15

The statistics are provided in Figure 1a. For EN, JA,
RU, and ZH, both the respective monolingual BERT
and mBERT were trained on similar amounts of
monolingual data. On the other hand, monolingual
BERTs of AR, ID, FI, KO, and TR were trained on
about twice (KO) up to more than 40 times (TR) as
much data in their language than mBERT.

13See Appendix Table 8 for the results on development sets.
14Based on the numbers from

https://meta.m.wikimedia.org/wiki/List of Wikipedias
15We provide further details in Appendix A.2.

4.2 Tokenizer

Compared to monolingual models, mBERT is sub-
stantially more limited in terms of the parameter
budget that it can allocate for each of its 104 lan-
guages in its vocabulary. In addition, monolingual
tokenizers are typically trained by native-speaking
experts who are aware of relevant linguistic phe-
nomena exhibited by their target language. We
thus inspect how this affects the tokenizations of
monolingual data produced by our sample of mono-
lingual models and mBERT. We tokenize examples
from Universal Dependencies v2.6 treebanks and
compute two metrics (Ács, 2019).16 First, the sub-
word fertility measures the average number of sub-
words produced per tokenized word. A minimum
fertility of 1 means that the tokenizer’s vocabu-
lary contains every single word in the text. We
plot the fertility scores in Figure 1b. We find that
mBERT has similar fertility values as its mono-
lingual counterparts for EN, ID, JA, and ZH. In
contrast, mBERT has a much higher fertility for
AR, FI, KO, RU, and TR, indicating that such lan-
guages are over-segmented. mBERT’s fertility is
the lowest for EN; this is due to mBERT having
seen the most data in this language during training,
as well as English being morphologically poor in
contrast to languages such as AR, FI, RU, or TR.17

The second metric we employ is the proportion
of words where the tokenized word is continued
across at least two sub-tokens (denoted by contin-
uation symbols ##). Whereas the fertility is con-
cerned with how aggressively a tokenizer splits,
this metric measures how often it splits words. In-
tuitively, low scores are preferable for both metrics
as they indicate that the tokenizer is well suited to
the language. The plots in Figure 1c show similar
trends as with the fertility statistic. In addition to
AR, FI, KO, RU, and TR, which already displayed
differences in fertility, mBERT also produces a pro-
portion of continued words more than twice as high
as the monolingual model for ID.18

16We provide further details in Appendix A.3.
17The JA model is the only monolingual BERT with a fertil-

ity score higher than mBERT; its tokenizer is character-based
and thus by design produces the maximum number of sub-
words.

18We discuss additional tokenization statistics, further high-
lighting the differences (or lack thereof) between the indi-
vidual monolingual tokenizers and the mBERT tokenizer, in
Appendix B.1.

https://meta.m.wikimedia.org/wiki/List_of_Wikipedias
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Figure 1: Comparison of monolingual models with mBERT w.r.t. pretraining corpus size (measured in billions of
words), subword fertility (i.e., the average number of subword tokens produced per tokenized word (Ács, 2019)),
and proportion of continued words (i.e., words split into multiple subword tokens (Ács, 2019)).

4.3 New Pretrained Models

The differences in pretraining corpora and tok-
enizer statistics seem to align with the variations
in downstream performance across languages. In
particular, it appears that the performance gains of
monolingual models over mBERT are larger for
languages where the differences between the re-
spective tokenizers and pretraining corpora sizes
are also larger (AR, FI, KO, RU, TR vs. EN, JA,
ZH).19 This implies that both the data size and
the tokenizer are among the main driving forces of
downstream task performance. To disentangle the
effects of these two factors, we pretrain new mod-
els for AR, FI, ID, KO, and TR (the languages that
exhibited the largest discrepancies in tokenization
and pretraining data size) on Wikipedia data.

We train four model variants for each language.
First, we train two new monolingual BERT models
on the same data, one with the original monolingual
tokenizer (MONOMODEL-MONOTOK) and one with
the mBERT tokenizer (MONOMODEL-MBERTTOK).20

Second, similar to Artetxe et al. (2020), we re-
train the embedding layer of mBERT, once with the
respective monolingual tokenizer (MBERTMODEL-

MONOTOK) and once with the mBERT tokenizer
(MBERTMODEL-MBERTTOK). We freeze the trans-
former and only retrain the embedding weights,
thus largely preserving mBERT’s multilingual-
ity. The reason we retrain mBERT’s embed-
ding layer with its own tokenizer is to further
eliminate confounding factors when comparing
to the version of mBERT with monolingually
retrained embeddings. By comparing models

19The only exception is ID, where the monolingual model
has seen significantly more data and also scores lower on the
tokenizer metrics, yet underperforms mBERT in most tasks.
We suspect this exception is because IndoBERT is uncased,
whereas the remaining models are cased.

20The only exception is ID; instead of relying on the uncased
IndoBERT tokenizer by Wilie et al. (2020), we introduce a
new cased tokenizer with identical vocabulary size (30,521).

trained on the same amount of data, but with
different tokenizers (MONOMODEL-MONOTOK vs.
MONOMODEL-MBERTTOK, MBERTMODEL-MBERTTOK

vs. MBERTMODEL-MONOTOK), we disentangle the
effect of the dataset size from the tokenizer, both
with monolingual and multilingual LM variants.

Pretraining Setup. We pretrain new BERT mod-
els for each language on its respective Wikipedia
dump.21 We apply two preprocessing steps to
obtain clean data for pretraining. First, we use
WikiExtractor (Attardi, 2015) to extract text pas-
sages from the raw dumps. Next, we follow
Pyysalo et al. (2020) and utilize UDPipe (Straka
et al., 2016) parsers pretrained on UD data to seg-
ment the extracted text passages into texts with
document, sentence, and word boundaries.

Following Liu et al. (2019); Wu and Dredze
(2020), we only use the masked language mod-
eling (MLM) objective and omit the next sen-
tence prediction task. Besides that, we largely
follow the default pretraining procedure by De-
vlin et al. (2019). We pretrain the new monolin-
gual LMs (MONOMODEL-*) from scratch for 1M
steps.22 We enable whole word masking (Devlin
et al., 2019) for the FI monolingual models, follow-
ing the pretraining procedure for FinBERT (Virta-
nen et al., 2019). For the retrained mBERT mod-
els (MBERTMODEL-*), we train for 250,000 steps
following Artetxe et al. (2020).23 We freeze all
parameters outside the embedding layer.24

Results. We perform the same evaluations on
downstream tasks for our new models as described

21We use Wiki dumps from June 20, 2020 (e.g., fiwiki-
20200720-pages-articles.xml.bz2 for FI).

22The batch size is 64; the sequence length is 128 for the
first 900,000 steps, and 512 for the remaining 100,000 steps.

23We train with batch size 64 and sequence length 512,
otherwise using the same hyper-parameters as for the mono-
lingual models.

24For more details see Appendix A.5.
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Lg Model
NER SA QA UDP POS
Test Test Dev Test Test
F1 Acc EM / F1 UAS / LAS Acc

AR

Monolingual 91.1 95.9 68.3 / 82.4 90.1 / 85.6 96.8

MONOMODEL-MONOTOK 91.7 95.6 67.7 / 81.6 89.2 / 84.4 96.6
MONOMODEL-MBERTTOK 90.0 95.5 64.1 / 79.4 88.8 / 84.0 97.0

MBERTMODEL-MONOTOK 91.2 95.4 66.9 / 81.8 89.3 / 84.5 96.4
MBERTMODEL-MBERTTOK 89.7 95.6 66.3 / 80.7 89.1 / 84.2 96.8

mBERT 90.0 95.4 66.1 / 80.6 88.8 / 83.8 96.8

FI

Monolingual 92.0 —– 69.9 / 81.6 95.9 / 94.4 98.4

MONOMODEL-MONOTOK 89.1 —– 66.9 / 79.5 93.7 / 91.5 97.3
MONOMODEL-MBERTTOK 90.0 —– 65.1 / 77.0 93.6 / 91.5 97.0

MBERTMODEL-MONOTOK 88.1 —– 66.4 / 78.3 92.4 / 89.6 96.6
MBERTMODEL-MBERTTOK 88.1 —– 65.9 / 77.3 92.2 / 89.4 96.7

mBERT 88.2 —– 66.6 / 77.6 91.9 / 88.7 96.2

ID

Monolingual 91.0 96.0 66.8 / 78.1 85.3 / 78.1 92.1

MONOMODEL-MONOTOK 92.5 96.0 73.1 / 83.6 85.0 / 78.5 93.9
MONOMODEL-MBERTTOK 93.2 94.8 67.0 / 79.2 84.9 / 78.6 93.6

MBERTMODEL-MONOTOK 93.9 94.6 74.1 / 83.8 86.4 / 80.2 93.8
MBERTMODEL-MBERTTOK 93.9 94.6 71.9 / 82.7 86.2 / 79.6 93.7

mBERT 93.5 91.4 71.2 / 82.1 85.9 / 79.3 93.5

KO

Monolingual 88.8 89.7 74.2 / 91.1 90.3 / 87.2 97.0

MONOMODEL-MONOTOK 87.1 88.8 72.8 / 90.3 89.8 / 86.6 96.7
MONOMODEL-MBERTTOK 85.8 87.2 68.9 / 88.7 88.9 / 85.6 96.4

MBERTMODEL-MONOTOK 86.6 88.1 72.9 / 90.2 90.1 / 87.0 96.5
MBERTMODEL-MBERTTOK 86.2 86.6 69.3 / 89.3 89.2 / 85.9 96.2

mBERT 86.6 86.7 69.7 / 89.5 89.2 / 85.7 96.0

TR

Monolingual 92.8 88.8 60.6 / 78.1 79.8 / 73.2 96.9

MONOMODEL-MONOTOK 93.4 87.0 56.2 / 73.7 76.1 / 68.9 96.3
MONOMODEL-MBERTTOK 93.3 84.8 55.3 / 72.5 75.3 / 68.3 96.5

MBERTMODEL-MONOTOK 93.7 85.3 59.4 / 76.7 77.1 / 70.2 96.3
MBERTMODEL-MBERTTOK 93.8 86.1 58.7 / 76.6 76.2 / 69.2 96.3

mBERT 93.8 86.4 57.9 / 76.4 74.5 / 67.4 95.7

AVG

Monolingual 91.1 92.6 68.0 / 82.3 88.3 / 83.7 96.2

MONOMODEL-MONOTOK 90.8 91.9 67.3 / 81.7 86.8 / 82.0 96.2
MONOMODEL-MBERTTOK 90.5 90.6 64.1 / 79.4 86.3 / 81.6 96.1

MBERTMODEL-MONOTOK 90.7 90.9 68.0 / 82.2 87.1 / 82.3 95.9
MBERTMODEL-MBERTTOK 90.3 90.7 66.4 / 81.3 86.6 / 81.7 95.9

mBERT 90.4 90.0 66.3 / 81.2 86.1 / 81.0 95.6

Table 3: Performance of our new MONOMODEL-* and
MBERTMODEL-* models (see §A.5) fine-tuned for the
NER, SA, QA, UDP, and POS tasks (see §3.1), com-
pared to the monolingual models from prior work and
fully fine-tuned mBERT. We group model counterparts
w.r.t. tokenizer choice to facilitate a direct comparison
between respective counterparts. We use development
sets only for QA. Bold denotes best score across all
models for a given language and task. Underlined de-
notes best score compared to its respective counterpart.

in §3, and report the results in Table 3.25

The results indicate that the models trained with
dedicated monolingual tokenizers outperform their
counterparts with multilingual tokenizers in most
tasks, with particular consistency for QA, UDP,
and SA. In NER, the models trained with multilin-
gual tokenizers score competitively or higher than
the monolingual ones in half of the cases. Over-
all, the performance gap is the smallest for POS
tagging (at most 0.4% accuracy). We observe the

25Full results including development set scores are available
in Table 9 of the Appendix.

largest gaps for QA (6.1 EM / 4.4 F1 in ID), SA
(2.2% accuracy in TR), and NER (1.7 F1 in AR).
Although the only language in which the monolin-
gual counterpart always comes out on top is KO,
the multilingual counterpart comes out on top at
most 3/10 times (for AR and TR) in the other lan-
guages. The largest decrease in performance of a
monolingual tokenizer relative to its multilingual
counterpart is found for SA in TR (0.8% accuracy).

Overall, we find that for 38 out of 48 task, model,
and language combinations, the monolingual tok-
enizer outperforms the mBERT counterpart. We
were able to improve the monolingual performance
of the original mBERT for 20 out of 24 languages
and tasks by only replacing the tokenizer and, thus,
leveraging a specialized monolingual version. Sim-
ilar to how the chosen method of tokenization af-
fects neural machine translation quality (Domingo
et al., 2019), these results establish that, in fact,
the designated pretrained tokenizer plays a funda-
mental role in the monolingual downstream task
performance of contemporary LMs.

In 18/24 language and task settings, the mono-
lingual model from prior work (trained on more
data) outperforms its corresponding MONOMODEL-

MONOTOK model. 4/6 settings in which our
MONOMODEL-MONOTOK model performs better are
found for ID, where IndoBERT uses an uncased
tokenizer and our model uses a cased one, which
may affect the comparison. Expectedly, these re-
sults strongly indicate that data size plays a major
role in downstream performance and corroborate
prior research findings (Liu et al., 2019; Conneau
et al., 2020; Zhang et al., 2020, inter alia).

4.4 Adapter-Based Training

Another way to provide more language-specific ca-
pacity to a multilingual LM beyond a dedicated to-
kenizer, thereby potentially making gains in mono-
lingual downstream performance, is to introduce
adapters (Pfeiffer et al., 2020b,c; Üstün et al.,
2020), a small number of additional parameters at
every layer of a pretrained model. To train adapters,
usually all pretrained weights are frozen, while only
the adapter weights are fine-tuned.26 The adapter-
based approaches thus offer increased efficiency
and modularity; it is crucial to verify to which ex-
tent our findings extend to the more efficient and

26Pfeiffer et al. (2020b) propose to stack task-specific
adapters on top of language adapters and extend this approach
in Pfeiffer et al. (2020c) by additionally training new embed-
dings for the target language.
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Lg Model
NER SA QA UDP POS
Test Test Dev Test Test
F1 Acc EM / F1 UAS / LAS Acc

AR

mBERT 90.0 95.4 66.1 / 80.6 88.8 / 83.8 96.8
+ ATask 89.6 95.6 66.7 / 81.1 87.8 / 82.6 96.8
+ ATask + ALang 89.7 95.7 66.9 / 81.0 88.0 / 82.8 96.8
+ ATask + ALang + MONOTOK 91.1 95.7 67.7 / 82.1 88.5 / 83.4 96.5

FI

mBERT 88.2 —– 66.6 / 77.6 91.9 / 88.7 96.2
+ ATask 88.5 —– 65.2 / 77.3 90.8 / 87.0 95.7
+ ATask + ALang 88.4 —– 65.7 / 77.1 91.8 / 88.5 96.6
+ ATask + ALang + MONOTOK 88.1 —– 66.7 / 79.0 92.8 / 90.1 97.3

ID

mBERT 93.5 91.4 71.2 / 82.1 85.9 / 79.3 93.5
+ ATask 93.5 90.6 70.6 / 82.5 84.8 / 77.4 93.4
+ ATask + ALang 93.5 93.6 70.8 / 82.2 85.4 / 78.1 93.4
+ ATask + ALang + MONOTOK 93.4 93.8 74.4 / 84.4 85.1 / 78.3 93.5

KO

mBERT 86.6 86.7 69.7 / 89.5 89.2 / 85.7 96.0
+ ATask 86.2 86.5 69.8 / 89.7 87.8 / 83.9 96.2
+ ATask + ALang 86.2 86.3 70.0 / 89.8 88.3 / 84.3 96.2
+ ATask + ALang + MONOTOK 86.5 87.9 73.1 / 90.4 88.9 / 85.2 96.5

TR

mBERT 93.8 86.4 57.9 / 76.4 74.5 / 67.4 95.7
+ ATask 93.0 83.9 55.3 / 75.1 72.4 / 64.1 95.7
+ ATask + ALang 93.5 84.8 56.9 / 75.8 73.0 / 64.7 95.9
+ ATask + ALang + MONOTOK 92.7 85.3 60.0 / 77.0 75.7 / 68.1 96.3

AVG

mBERT 90.4 90.0 66.3 / 81.2 86.0 / 81.0 95.6
+ ATask 90.2 89.2 65.5 / 81.1 84.7 / 79.0 95.6
+ ATask + ALang 90.3 90.1 66.1 / 81.2 85.3 / 79.7 95.8
+ ATask + ALang + MONOTOK 90.4 90.7 68.4 / 82.6 86.2 / 81.0 96.0

Table 4: Performance on the different tasks leveraging
mBERT with different adapter components (see §4.4).

more versatile adapter-based fine-tuning setup.
We evaluate the impact of different adapter com-

ponents on the downstream task performance and
their complementarity with monolingual tokenizers
in Table 4.27 Here, +ATask and +ALang implies
adding task- and language-adapters respectively,
whereas +MONOTOK additionally includes a new
embedding layer. As mentioned, we only fine-tune
adapter weights on the downstream task, leveraging
the adapter architecture proposed by Pfeiffer et al.
(2021). For the +ATask +ALang setting we lever-
age pretrained language adapter weights available
at AdapterHub.ml (Pfeiffer et al., 2020a). Lan-
guage adapters are added to the model and frozen
while only task adapters are trained on the target
task. For the +ATask+ALang+ MONOTOK we train
language adapters and new embeddings with the
corresponding monolingual tokenizer equally as de-
scribed in the previous section (e.g. MBERTMODEL-

MONOTOK), task adapters are trained with a learning
rate of 5e− 4 and 30 epochs with early stopping.

Results. Similar to previous findings, adapters im-
prove upon mBERT in 18/24 language, and task
settings, 13 of which can be attributed to the im-
proved MBERTMODEL-MONOTOK tokenizer. Figure 2
illustrates the average performance of the different
adapter components in comparison to the mono-
lingual models. We find that adapters with dedi-
cated tokenizers reduce the performance gap con-

27See Appendix Table 10 for the results on dev sets.
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Figure 2: Task performance averaged over all lan-
guages for different models: fully fine-tuned mono-
lingual (Mono), fully fine-tuned mBERT (mBERT),
mBERT with task adapter (+ATask), with task and
language adapter (+ATask +ALang), with task and
language adapter and embedding layer retraining
(+ATask +ALang+ MONOTOK).

siderably without leveraging more training data,
and even outperform the monolingual models in
QA. This finding shows that adding additional
language-specific capacity to existing multilingual
LMs, which can be achieved with adapters in a
portable and efficient way, is a viable alternative to
monolingual pretraining.

5 Further Analysis

At first glance, our results displayed in Table 2
seem to confirm the prevailing view that mono-
lingual models are more effective than multilin-
gual models (Rönnqvist et al., 2019; Antoun et al.,
2020; de Vries et al., 2019, inter alia). However,
the broad scope of our experiments reveals certain
nuances that were previously undiscovered. Un-
like prior work, which primarily attributes gaps
in performance to mBERT being under-trained
(Rönnqvist et al., 2019; Wu and Dredze, 2020),
our disentangled results (Table 3) suggest that a
large portion of existing performance gaps can be
attributed to the capability of the tokenizer.

With monolingual tokenizers with lower fertil-
ity and proportion-of-continued-words values than
the mBERT tokenizer (such as for AR, FI, ID,
KO, TR), consistent gains can be achieved, irre-
spective of whether the LMs are monolingual (the
MONOMODEL-* comparison) or multilingual (a com-
parison of MBERTMODEL-* variants).

Whenever the differences between monolingual
models and mBERT with respect to the tokenizer
properties and the pretraining corpus size are small
(e.g., for EN, JA, and ZH), the performance gap is
typically negligible. In QA, we even find mBERT
to be favorable for these languages. Therefore, we
conclude that monolingual models are not superior
to multilingual ones per se, but gain advantage in
direct comparisons by incorporating more pretrain-
ing data and using language-adapted tokenizers.

https://AdapterHub.ml
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Figure 3: Spearman’s ρ correlation of a relative de-
crease in the proportion of continued words (Cont. Pro-
portion), a relative decrease in fertility, and a rela-
tive increase in pretraining corpus size with a relative
increase in downstream performance over fully fine-
tuned mBERT. For the proportion of continued words
and the fertility, we consider fully fine-tuned mBERT,
the MONOMODEL-* models, and the MBERTMODEL-*
models. For the pretraining corpus size, we consider
the original monolingual models and the MONOMODEL-
MONOTOK models. We exclude the ID models (see Ap-
pendix B.2 for the clarification).

Correlation Analysis. To uncover additional pat-
terns in our results (Tables 2, 3, 4), we perform
a statistical analysis assessing the correlation be-
tween the individual factors (pretraining data size,
subword fertility, proportion of continued words)
and the downstream performance. Although our
framework may not provide enough data points
to be statistically representative, we argue that the
correlation coefficient can still provide reasonable
indications and reveal relations not immediately
evident by looking at the tables.

Figure 3 shows that both decreases in the propor-
tion of continued words and the fertility correlate
with an increase in downstream performance rel-
ative to fully fine-tuned mBERT across all tasks.
The correlation is stronger for UDP and QA, where
we find models with monolingual tokenizers to
outperform their counterparts with the mBERT to-
kenizer consistently. The correlation is weaker for
NER and POS tagging, which is also expected,
considering the inconsistency of the results.28

Overall, we find that the fertility and the pro-
portion of continued words have a similar effect
on the monolingual downstream performance as
the corpus size for pretraining; This indicates that
the tokenizer’s ability of representing a language
plays a crucial role; Consequently, choosing a sub-
optimal tokenizer typically results in deteriorated
downstream performance.

28For further information, see Appendix B.2.

6 Conclusion

We have conducted the first comprehensive em-
pirical investigation concerning the monolingual
performance of monolingual and multilingual lan-
guage models (LMs). While our results support the
existence of a performance gap in most but not all
languages and tasks, further analyses revealed that
the gaps are often substantially smaller than what
was previously assumed. The gaps exist in certain
languages due to the discrepancies in 1) pretraining
data size, and 2) chosen tokenizers, and the level
of their adaptation to the target language.

Further, we have disentangled the impact of pre-
trained corpora size from the influence of the tok-
enizers on the downstream task performance. We
have trained new monolingual LMs on the same
data, but with two different tokenizers; one being
the dedicated tokenizer of the monolingual LM
provided by native speakers; the other being the
automatically generated multilingual mBERT tok-
enizer. We have found that for (almost) every task
and language, the use of monolingual tokenizers
outperforms the mBERT tokenizer.

Consequently, in line with recent work by Chung
et al. (2020), our results suggest that investing more
effort into 1) improving the balance of individ-
ual languages’ representations in the vocabulary
of multilingual LMs, and 2) providing language-
specific adaptations and extensions of multilingual
tokenizers (Pfeiffer et al., 2020c) can reduce the
gap between monolingual and multilingual LMs.
Another promising future research direction is com-
pletely disposing of any (language-specific or mul-
tilingual) tokenizers during pretraining (Clark et al.,
2021).

Our code, pretrained models, and adapters are
available at https://github.com/Adapter-Hub/hgiyt.
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Daniela Gerz, Ivan Vulić, Edoardo Maria Ponti, Roi
Reichart, and Anna Korhonen. 2018. On the relation
between linguistic typology and (limitations of) mul-
tilingual language modeling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 316–327, Brussels, Bel-
gium. Association for Computational Linguistics.
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Goran Glavaš. 2020. From zero to hero: On the
limitations of zero-shot language transfer with mul-
tilingual Transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499, On-
line. Association for Computational Linguistics.

Sangah Lee, Hansol Jang, Yunmee Baik, Suzi Park,
and Hyopil Shin. 2020. KR-BERT: A small-scale
Korean-specific language model. arXiv preprint.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. MLQA: Evalu-
ating cross-lingual extractive question answering. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7315–
7330, Online. Association for Computational Lin-
guistics.

Seungyoung Lim, Myungji Kim, and Jooyoul Lee.
2019. KorQuAD1.0: Korean QA dataset for ma-
chine reading comprehension. arXiv preprint.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
7th International Conference on Learning Represen-
tations (ICLR), New Orleans, LA, USA. OpenRe-
view.net.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.

2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Louis Martin, Benjamin Muller, Pedro Javier Or-
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vart, Berta González Saavedra, Bernadeta Griciūtė,
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Szántó, Dima Taji, Yuta Takahashi, Fabio Tam-
burini, Takaaki Tanaka, Samson Tella, Isabelle
Tellier, Guillaume Thomas, Liisi Torga, Marsida
Toska, Trond Trosterud, Anna Trukhina, Reut Tsar-
faty, Utku Türk, Francis Tyers, Sumire Uematsu,
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A Reproducibility

A.1 Pretrained Models

All of the pretrained language models we use are
available on the HuggingFace model hub29 and
compatible with the HuggingFace transformers
Python library (Wolf et al., 2020). Table 5 displays
the model hub identifiers of our selected models.

A.2 Estimating the Pretraining Corpora
Sizes

Since mBERT was pretrained on the entire
Wikipedia dumps of all languages it covers (De-
vlin et al., 2019), we estimate the language-specific
shares of the mBERT pretraining corpus by word
counts of the respective raw Wikipedia dumps, ac-
cording to numbers obtained from Wikimedia30:
327M words for AR, 3.7B for EN, 134M for FI,
142M for ID, 1.1B for JA, 125M for KO, 781M for
RU, 104M for TR, 482M for ZH.31 Devlin et al.
(2019) only included text passages from the arti-
cles, and used older Wikipedia dumps, so these
numbers should serve as upper limits, yet be rea-
sonably accurate. For the monolingual models, we
rely on information provided by the authors.32

A.3 Data for Tokenizer Analyses

We tokenize the training and development splits
of the UD (Nivre et al., 2016, 2020) v2.6 (Zeman
et al., 2020) treebanks listed in Table 6.

A.4 Fine-Tuning Datasets

We list the datasets we used, including the number
of examples per dataset split, in the Table 7.

A.5 Training Procedure of New Models

We pretrain our models on single Nvidia Tesla
V100, A100, and Titan RTX GPUs with 32GB,
40GB, and 24GB of video memory, respectively.
To support larger batch sizes, we train in mixed-
precision (fp16) mode. Following Wu and Dredze
(2020), we only use masked language modeling
(MLM) as pretraining objective and omit the next
sentence prediction task as Liu et al. (2019) find it
does not yield performance gains. We otherwise

29https://huggingface.co/models
30https://meta.m.wikimedia.org/wiki/List of Wikipedias
31We obtained the numbers for ID and TR on Dec 10, 2020

and for the remaining languages on Sep 10, 2020.
32For JA, RU, and ZH, the authors do not provide exact word

counts. Therefore, we estimate them using other provided
information (RU, ZH) or scripts for training corpus reconstruc-
tion (JA).

mostly follow the default pretraining procedure by
Devlin et al. (2019).
We pretrain the new monolingual models
(MONOMODEL-*) from scratch for 1M steps with
batch size 64. We choose a sequence length of
128 for the first 900,000 steps and 512 for the
remaining 100,000 steps. In both phases, we
warm up the learning rate to 1e − 4 over the first
10,000 steps, then decay linearly. We use the
Adam optimizer with weight decay (AdamW)
(Loshchilov and Hutter, 2019) with default
hyper-parameters and a weight decay of 0.01. We
enable whole word masking (Devlin et al., 2019)
for the FI monolingual models, following the
pretraining procedure for FinBERT (Virtanen et al.,
2019). To lower computational requirements for
the monolingual models with mBERT tokenizers,
we remove all tokens from mBERT’s vocabulary
that do not appear in the pretraining data. We,
thereby, obtain vocabularies of size 78,193 (AR),
60,827 (FI), 72,787 (ID), 66,268 (KO), and 71,007
(TR), which for all languages reduces the number
of parameters in the embedding layer significantly,
compared to the 119,547 word piece vocabulary of
mBERT.
For the retrained mBERT models (i.e.,
MBERTMODEL-*), we run MLM for 250,000
steps (similar to Artetxe et al. (2020)) with batch
size 64 and sequence length 512, otherwise using
the same hyper-parameters as for the monolingual
models. In order to retrain the embedding layer,
we first resize it to match the vocabulary of
the respective tokenizer. For the MBERTMODEL-

MBERTTOK models, we use the mBERT tokenizers
with reduced vocabulary as outlined above. We
initialize the positional embeddings, segment
embeddings, and embeddings of special tokens
([CLS], [SEP], [PAD], [UNK], [MASK]) from
mBERT, and reinitialize the remaining embeddings
randomly. We freeze all parameters outside the
embedding layer. For all pretraining runs, we set
the random seed to 42.

A.6 Code

Our code with usage instructions for fine-
tuning, pretraining, data preprocessing, and cal-
culating the tokenizer statistics is available at
https://github.com/Adapter-Hub/hgiyt. The repos-
itory also contains further links to a collection of
our new pretrained models and language adapters.

https://huggingface.co/models
https://meta.m.wikimedia.org/wiki/List_of_Wikipedias
https://github.com/Adapter-Hub/hgiyt
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B Further Analyses and Discussions

B.1 Tokenization Analysis
In our tokenization analysis in §4.2 of the main text,
we only include the fertility and the proportion of
continued words as they are sufficient to illustrate
and quantify the differences between tokenizers. In
support of the findings in §4.2 and for complete-
ness, we provide additional tokenization statistics
here.

For each tokenizer, Table 5 lists the respective
vocabulary size and the proportion of its vocabu-
lary also contained in mBERT. It shows that the
tokenizers scoring lower in fertility (and accord-
ingly performing better) than mBERT are often not
adequately covered by mBERT’s vocabulary. For
instance, only 5.6% of the AraBERT (AR) vocabu-
lary is covered by mBERT.

Figure 4 compares the proportion of unknown
tokens ([UNK]) in the tokenized data. It shows that
the proportion is generally extremely low, i.e., the
tokenizers can typically split unknown words into
known subwords.

Similar to the work by Ács (2019), Figure 5
compares the tokenizations produced by the mono-
lingual models and mBERT with the reference to-
kenizations provided by the human dataset anno-
tators with respect to their sentence lengths. We
find that the tokenizers scoring low in fertility and
the proportion of continued words typically exhibit
sentence length distributions much closer to the
reference tokenizations by human UD annotators,
indicating they are more capable than the mBERT
tokenizer. Likewise, the monolingual models’ and
mBERT’s sentence length distributions are closer
for languages with similar fertility and proportion
of continued words, such as EN, JA, and ZH.

B.2 Correlation Analysis
To uncover some of the hidden patterns in our re-
sults (Tables 2, 3, 4), we perform a statistical analy-
sis assessing the correlation between the individual
factors (pretraining data size, subword fertility, pro-
portion of continued words) and the downstream
performance.

Figure 6b shows that both decreases in the pro-
portion of continued words and the fertility corre-
late with an increase in downstream performance
relative to fully fine-tuned mBERT across all tasks.
The correlation is stronger for UDP and QA, where
we found models with monolingual tokenizers to
outperform their counterparts with the mBERT to-

kenizer consistently. The correlation is weaker for
NER and POS tagging, which is also expected,
considering the inconsistency of the results.

Somewhat surprisingly, the tokenizer metrics
seem to be more indicative of high downstream
performance than the size of the pretraining cor-
pus. We believe that this in parts due to the overall
poor performance of the uncased IndoBERT model,
which we (in this case unfairly) compare to our
cased ID-MONOMODEL-MONOTOK model. Therefore,
we plot the same correlation matrix excluding ID

in Figure 3.
Compared to Figure 6b, the overall correlations

for the proportion of continued words and the fer-
tility remain mostly unaffected. In contrast, the
correlation for the pretraining corpus size becomes
much stronger, confirming that the subpar perfor-
mance of IndoBERT is indeed an outlier in this
scenario. Leaving out Indonesian also strengthens
the indication that the performance in POS tagging
correlates more with the data size than with the
tokenizer, although we argue that this indication
may be misleading. The performance gap is gen-
erally very minor in POS tagging. Therefore, the
Spearman correlation coefficient, which only takes
the rank into account, but not the absolute score
differences, is particularly sensitive to changes in
POS tagging performance.

Finally, we plot the correlation between the three
metrics and the downstream performance under
consideration of all languages and models, includ-
ing the adapter-based fine-tuning settings, to gain
an understanding of how pronounced their effects
are in a more “noisy” setting.

As Figure 6a shows, the three factors still corre-
late with the downstream performance in a similar
manner even when not isolated. This correlation
tells us that even when there may be other factors
that could have an influence, these three factors
are still highly indicative of the downstream perfor-
mance.

We also see that the correlation coefficients for
the proportion of continued words and the fertility
are nearly identical, which is expected based on
the visual similarity of the respective plots (seen in
Figures 1b and 1c).
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C Full Results

For compactness, we have only reported the perfor-
mance of our models on the respective test datasets
in the main text.33 For completeness, we also in-
clude the full tables, including development (dev)
dataset performance averaged over three random
initializations, as described in §3. Table 8 shows
the full results corresponding to Table 2 (initial
results), Table 9 shows the full results correspond-
ing to Table 3 (results for our new models), and
Table 10 shows the full results corresponding to
Table 4 (adapter-based training).

Lang Model Reference V. Size % Voc

MULTI bert-base-multilingual-cased Devlin et al. (2019) 119547 100

AR aubmindlab/bert-base-arabertv01 Antoun et al. (2020) 64000 5.6
EN bert-base-cased Devlin et al. (2019) 28996 66.4
FI TurkuNLP/bert-base-finnish-cased-v1 Virtanen et al. (2019) 50105 14.3
ID indobenchmark/indobert-base-p2 Wilie et al. (2020) 30521 40.5
JA cl-tohoku/bert-base-japanese-char 5 4000 99.1
KO snunlp/KR-BERT-char16424 Lee et al. (2020) 16424 47.4
RU DeepPavlov/rubert-base-cased Kuratov and Arkhipov (2019) 119547 21.1
TR dbmdz/bert-base-turkish-cased Schweter (2020) 32000 23.0
ZH bert-base-chinese Devlin et al. (2019) 21128 79.4

Table 5: Selection of pretrained models used in our ex-
periments. We display the respective vocabulary sizes
and the proportion of tokens that are also covered by
mBERT’s vocabulary.

Lang Treebank # Words

AR PADT 254192
EN LinES, EWT, GUM, ParTUT 449977
FI FTB, TDT 324680
ID GSD 110141
JA GSD 179571
KO GSD 390369
RU GSD, SynTagRus, Taiga 1130482
TR IMST 47830
ZH GSD, GSDSimp 222558

Table 6: UD v2.6 (Zeman et al., 2020) treebanks used
for our tokenizer analyses. We use training and devel-
opment portions only and display the total number of
words per language.
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Figure 4: Proportion of unknown tokens in respective
monolingual corpora tokenized by monolingual models
vs. mBERT.

33Except for QA, where we do not use any test data

Task Lang Dataset Reference Train / Dev / Test

NER

AR WikiAnn Pan et al. (2017); Rahimi et al. (2019) 20000 / 10000 / 10000
EN CoNLL-2003 Tjong Kim Sang and De Meulder (2003) 14041 / 3250 / 3453
FI FiNER Ruokolainen et al. (2020) 13497 / 986 / 3512
ID WikiAnn Pan et al. (2017); Rahimi et al. (2019) 20000 / 10000 / 10000
JA WikiAnn Pan et al. (2017); Rahimi et al. (2019) 20202 / 10100 / 10113
KO KMOU NER 6 23056 / 468 / 463
RU WikiAnn Pan et al. (2017); Rahimi et al. (2019) 20000 / 10000 / 10000
TR WikiAnn Pan et al. (2017); Rahimi et al. (2019) 20000 / 10000 / 10000
ZH Chinese Literature Xu et al. (2017) 24270 / 1902 / 2844

SA

AR HARD Elnagar et al. (2018) 84558 / 10570 / 10570
EN IMDb Movie Reviews Maas et al. (2011) 20000 / 5000 / 25000
FI — — —
ID Indonesian Prosa Purwarianti and Crisdayanti (2019) 6853 / 763 / 409
JA Yahoo Movie Reviews 7 30545 / 3818 / 3819
KO NSMC 8 120000 / 30000 / 50000
RU RuReviews Smetanin and Komarov (2019) 48000 / 6000 / 6000
TR Movie & Product Reviews Demirtas and Pechenizkiy (2013) 13009 / 1627 / 1629
ZH ChnSentiCorp 9 9600 / 1200 / 1200

QA

AR TyDiQA-GoldP Clark et al. (2020) 14805 / 921
EN SQuAD v1.1 Rajpurkar et al. (2016) 87599 / 10570
FI TyDiQA-GoldP Clark et al. (2020) 6855 / 782
ID TyDiQA-GoldP Clark et al. (2020) 5702 / 565
JA — — —
KO KorQuAD 1.0 Lim et al. (2019) 60407 / 5774
RU SberQuAD Efimov et al. (2020) 45328 / 5036
TR TQuAD 10 8308 / 892
ZH DRCD Shao et al. (2019) 26936 / 3524

UD

AR PADT (Zeman et al., 2020) 6075 / 909 / 680
EN EWT (Zeman et al., 2020) 12543 / 2002 / 2077
FI FTB (Zeman et al., 2020) 14981 / 1875 / 1867
ID GSD (Zeman et al., 2020) 4477 / 559 / 557
JA GSD (Zeman et al., 2020) 7027 / 501 / 543
KO GSD (Zeman et al., 2020) 4400 / 950 / 989
RU GSD (Zeman et al., 2020) 3850 / 579 / 601
TR IMST (Zeman et al., 2020) 3664 / 988 / 983
ZH GSD (Zeman et al., 2020) 3997 / 500 / 500

Table 7: Named entity recognition (NER), sentiment
analysis (SA), question answering (QA), and universal
dependencies (UD) datasets used in our experiments
and the number of examples in their respective train-
ing, development, and test portions. UD datasets were
used for both universal dependency parsing and POS
tagging experiments.
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Figure 5: Sentence length distributions of monolin-
gual UD corpora tokenized by respective monolingual
BERT models and mBERT, compared to the reference
tokenizations by human UD treebank annotators.
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All NER POS QA SA UDP

Task

Cont. Proportion

Fertility

Pre-Train Size

M
et

ri
c

0.39 0.28 0.30 0.61 0.41 0.48

0.42 0.31 0.34 0.64 0.40 0.52

0.20 0.20 0.13 0.32 0.21 0.23 −1

0

1

(a) We consider all languages and models.

All NER POS QA SA UDP

Task

Cont. Proportion

Fertility

Pre-Train Size

M
et

ri
c

0.34 0.20 0.18 0.67 0.32 0.45

0.35 0.23 0.20 0.65 0.33 0.48

0.23 0.06 0.27 0.34 0.31 0.43 −1

0

1

(b) For the proportion of continued words and the fertility, we
consider fully fine-tuned mBERT, the MONOMODEL-* mod-
els, and the MBERTMODEL-* models. For the pretraining
corpus size, we consider the original monolingual models and
the MONOMODEL-MONOTOK models.

Figure 6: Spearman’s ρ correlation of a relative de-
crease in the proportion of continued words (Cont. Pro-
portion), a relative decrease in fertility, and a rela-
tive increase in pretraining corpus size with a relative
increase in downstream performance over fully fine-
tuned mBERT.

Lg Model
NER SA QA UDP POS

Dev Test Dev Test Dev Dev Test Dev Test
F1 F1 Acc Acc EM / F1 UAS / LAS UAS / LAS Acc Acc

AR
Monolingual 91.5 91.1 96.1 95.9 68.3 / 82.4 89.4 / 85.0 90.1 / 85.6 97.5 96.8
mBERT 90.3 90.0 95.8 95.4 66.1 / 80.6 87.8 / 83.0 88.8 / 83.8 97.2 96.8

EN
Monolingual 95.4 91.5 91.6 91.6 80.5 / 88.0 92.6 / 90.3 92.1 / 89.7 97.1 97.0
mBERT 95.7 91.2 90.1 89.8 80.9 / 88.4 92.1 / 89.6 91.6 / 89.1 97.0 96.9

FI
Monolingual 93.3 92.0 —– —– 69.9 / 81.6 95.7 / 93.9 95.9 / 94.4 98.1 98.4
mBERT 90.9 88.2 —– —– 66.6 / 77.6 91.1 / 88.0 91.9 / 88.7 96.0 96.2

ID
Monolingual 90.9 91.0 94.6 96.0 66.8 / 78.1 84.5 / 77.4 85.3 / 78.1 92.0 92.1
mBERT 93.7 93.5 93.1 91.4 71.2 / 82.1 85.0 / 78.4 85.9 / 79.3 93.3 93.5

JA
Monolingual 72.1 72.4 88.7 88.0 —– / —– 96.0 / 94.7 94.7 / 93.0 98.3 98.1
mBERT 73.4 73.4 88.8 87.8 —– / —– 95.5 / 94.2 94.0 / 92.3 98.1 97.8

KO
Monolingual 88.6 88.8 89.8 89.7 74.2 / 91.1 88.5 / 85.0 90.3 / 87.2 96.4 97.0
mBERT 87.3 86.6 86.7 86.7 69.7 / 89.5 86.9 / 83.2 89.2 / 85.7 95.8 96.0

RU
Monolingual 91.9 91.0 95.2 95.2 64.3 / 83.7 92.4 / 90.1 93.1 / 89.9 98.6 98.4
mBERT 90.2 90.0 95.2 95.0 63.3 / 82.6 91.5 / 88.8 91.9 / 88.5 98.4 98.2

TR
Monolingual 93.1 92.8 89.3 88.8 60.6 / 78.1 78.0 / 70.9 79.8 / 73.2 97.0 96.9
mBERT 93.7 93.8 86.4 86.4 57.9 / 76.4 72.6 / 65.2 74.5 / 67.4 95.5 95.7

ZH
Monolingual 77.0 76.5 94.8 95.3 82.3 / 89.3 88.1 / 84.9 88.6 / 85.6 96.6 97.2
mBERT 76.0 76.1 93.1 93.8 82.0 / 89.3 87.1 / 83.7 88.1 / 85.0 96.1 96.7

AVG
Monolingual 88.2 87.4 92.5 92.4 70.8 / 84.0 89.5 / 85.8 90.0 / 86.3 96.9 96.9
mBERT 87.9 87.0 91.2 91.0 69.7 / 83.3 87.7 / 83.8 88.4 / 84.4 96.4 96.4

Table 8: Full Results - Performance on Named Entity
Recognition (NER), Sentiment Analysis (SA), Ques-
tion Answering (QA), Universal Dependency Parsing
(UDP), and Part-of-Speech Tagging (POS). We use de-
velopment (dev) sets only for QA. Finnish (FI) SA and
Japanese (JA) QA lack respective datasets.

Lg Model
NER SA QA UDP POS

Dev Test Dev Test Dev Dev Test Dev Test
F1 F1 Acc Acc EM / F1 UAS / LAS UAS / LAS Acc Acc

AR

Monolingual 91.5 91.1 96.1 95.9 68.3 / 82.4 89.4 / 85.0 90.1 / 85.6 97.5 96.8

MONOMODEL-MONOTOK 88.6 91.7 96.0 95.6 67.7 / 81.6 88.4 / 83.7 89.2 / 84.4 97.3 96.6
MONOMODEL-MBERTTOK 90.1 90.0 95.9 95.5 64.1 / 79.4 87.8 / 83.2 88.8 / 84.0 97.4 97.0

MBERTMODEL-MONOTOK 91.9 91.2 95.9 95.4 66.9 / 81.8 88.2 / 83.5 89.3 / 84.5 97.2 96.4
MBERTMODEL-MBERTTOK 90.0 89.7 95.8 95.6 66.3 / 80.7 87.8 / 83.0 89.1 / 84.2 97.3 96.8

mBERT 90.3 90.0 95.8 95.4 66.1 / 80.6 87.8 / 83.0 88.8 / 83.8 97.2 96.8

FI

Monolingual 93.3 92.0 —– —– 69.9 / 81.6 95.7 / 93.9 95.9 / 94.4 98.1 98.4

MONOMODEL-MONOTOK 91.9 89.1 —– —– 66.9 / 79.5 93.6 / 91.0 93.7 / 91.5 97.0 97.3
MONOMODEL-MBERTTOK 91.8 90.0 —– —– 65.1 / 77.0 93.1 / 90.6 93.6 / 91.5 96.2 97.0

MBERTMODEL-MONOTOK 91.0 88.1 —– —– 66.4 / 78.3 92.2 / 89.3 92.4 / 89.6 96.3 96.6
MBERTMODEL-MBERTTOK 92.0 88.1 —– —– 65.9 / 77.3 92.1 / 89.2 92.2 / 89.4 96.6 96.7

mBERT 90.9 88.2 —– —– 66.6 / 77.6 91.1 / 88.0 91.9 / 88.7 96.0 96.2

ID

Monolingual 90.9 91.0 94.6 96.0 66.8 / 78.1 84.5 / 77.4 85.3 / 78.1 92.0 92.1

MONOMODEL-MONOTOK 93.0 92.5 93.9 96.0 73.1 / 83.6 83.4 / 76.8 85.0 / 78.5 93.6 93.9
MONOMODEL-MBERTTOK 93.3 93.2 93.9 94.8 67.0 / 79.2 84.0 / 77.4 84.9 / 78.6 93.4 93.6

MBERTMODEL-MONOTOK 93.8 93.9 94.4 94.6 74.1 / 83.8 85.5 / 78.8 86.4 / 80.2 93.5 93.8
MBERTMODEL-MBERTTOK 93.9 93.9 93.7 94.6 71.9 / 82.7 85.3 / 78.6 86.2 / 79.6 93.4 93.7

mBERT 93.7 93.5 93.1 91.4 71.2 / 82.1 85.0 / 78.4 85.9 / 79.3 93.3 93.5

KO

Monolingual 88.6 88.8 89.8 89.7 74.2 / 91.1 88.5 / 85.0 90.3 / 87.2 96.4 97.0

MONOMODEL-MONOTOK 87.9 87.1 89.0 88.8 72.8 / 90.3 87.9 / 84.2 89.8 / 86.6 96.4 96.7
MONOMODEL-MBERTTOK 86.9 85.8 87.3 87.2 68.9 / 88.7 86.9 / 83.2 88.9 / 85.6 96.1 96.4

MBERTMODEL-MONOTOK 87.9 86.6 88.2 88.1 72.9 / 90.2 87.9 / 83.9 90.1 / 87.0 96.2 96.5
MBERTMODEL-MBERTTOK 86.7 86.2 86.6 86.6 69.3 / 89.3 87.2 / 83.3 89.2 / 85.9 95.9 96.2

mBERT 87.3 86.6 86.7 86.7 69.7 / 89.5 86.9 / 83.2 89.2 / 85.7 95.8 96.0

TR

Monolingual 93.1 92.8 89.3 88.8 60.6 / 78.1 78.0 / 70.9 79.8 / 73.2 97.0 96.9

MONOMODEL-MONOTOK 93.5 93.4 87.5 87.0 56.2 / 73.7 74.4 / 67.3 76.1 / 68.9 95.9 96.3
MONOMODEL-MBERTTOK 93.2 93.3 85.8 84.8 55.3 / 72.5 73.2 / 66.0 75.3 / 68.3 96.4 96.5

MBERTMODEL-MONOTOK 93.5 93.7 86.1 85.3 59.4 / 76.7 74.7 / 67.6 77.1 / 70.2 96.1 96.3
MBERTMODEL-MBERTTOK 93.9 93.8 86.0 86.1 58.7 / 76.6 73.2 / 66.1 76.2 / 69.2 95.9 96.3

mBERT 93.7 93.8 86.4 86.4 57.9 / 76.4 72.6 / 65.2 74.5 / 67.4 95.5 95.7

AVG

Monolingual 91.5 91.1 92.5 92.6 68.0 / 82.3 87.2 / 82.4 88.3 / 83.7 96.2 96.2

MONOMODEL-MONOTOK 91.0 90.8 91.6 91.9 67.3 / 81.7 85.5 / 80.6 86.8 / 82.0 96.0 96.2
MONOMODEL-MBERTTOK 91.1 90.5 90.7 90.6 64.1 / 79.4 85.0 / 80.1 86.3 / 81.6 95.9 96.1

MBERTMODEL-MONOTOK 91.6 90.7 91.2 90.9 68.0 / 82.2 85.7 / 80.6 87.1 / 82.3 95.9 95.9
MBERTMODEL-MBERTTOK 91.3 90.3 90.5 90.7 66.4 / 81.3 85.1 / 80.0 86.6 / 81.7 95.8 95.9

mBERT 91.2 90.4 90.5 90.0 66.3 / 81.2 84.7 / 79.6 86.1 / 81.0 95.6 95.6

Table 9: Full Results - Performance of our new
MONOMODEL-* and MBERTMODEL-* models (see
§A.5) fine-tuned for the NER, SA, QA, UDP, and POS
tasks (see §3.1), compared to the monolingual mod-
els from prior work and fully fine-tuned mBERT. We
group model counterparts w.r.t. tokenizer choice to fa-
cilitate a direct comparison between respective counter-
parts. We use development sets only for QA. Bold de-
notes best score across all models for a given language
and task. Underlined denotes best score compared to
its respective counterpart.

Lg Model
NER SA QA UDP POS

Dev Test Dev Test Dev Dev Test Dev Test
F1 F1 Acc Acc EM / F1 UAS / LAS UAS / LAS Acc Acc

AR

mBERT 90.3 90.0 95.8 95.4 66.1 / 80.6 87.8 / 83.0 88.8 / 83.8 97.2 96.8
+ ATask 90.0 89.6 96.1 95.6 66.7 / 81.1 86.7 / 81.6 87.8 / 82.6 97.3 96.8
+ ATask + ALang 90.2 89.7 96.1 95.7 66.9 / 81.0 87.0 / 81.9 88.0 / 82.8 97.3 96.8
+ ATask + ALang + MONOTOK 91.5 91.1 96.0 95.7 67.7 / 82.1 87.7 / 82.8 88.5 / 83.4 97.3 96.5

FI

mBERT 90.9 88.2 —– —– 66.6 / 77.6 91.1 / 88.0 91.9 / 88.7 96.0 96.2
+ ATask 91.2 88.5 —– —– 65.2 / 77.3 90.2 / 86.3 90.8 / 87.0 95.8 95.7
+ ATask + ALang 91.6 88.4 —– —– 65.7 / 77.1 91.1 / 87.7 91.8 / 88.5 96.3 96.6
+ ATask + ALang + MONOTOK 90.8 88.1 —– —– 66.7 / 79.0 92.8 / 89.9 92.8 / 90.1 96.9 97.3

ID

mBERT 93.7 93.5 93.1 91.4 71.2 / 82.1 85.0 / 78.4 85.9 / 79.3 93.3 93.5
+ ATask 93.3 93.5 92.9 90.6 70.6 / 82.5 83.7 / 76.5 84.8 / 77.4 93.5 93.4
+ ATask + ALang 93.6 93.5 93.1 93.6 70.8 / 82.2 84.3 / 77.4 85.4 / 78.1 93.6 93.4
+ ATask + ALang + MONOTOK 93.0 93.4 94.5 93.8 74.4 / 84.4 84.6 / 77.6 85.1 / 78.3 93.7 93.5

KO

mBERT 87.3 86.6 86.7 86.7 69.7 / 89.5 86.9 / 83.2 89.2 / 85.7 95.8 96.0
+ ATask 87.1 86.2 86.7 86.5 69.8 / 89.7 85.5 / 81.1 87.8 / 83.9 95.9 96.2
+ ATask + ALang 87.3 86.2 86.6 86.3 70.0 / 89.8 85.9 / 81.6 88.3 / 84.3 96.0 96.2
+ ATask + ALang + MONOTOK 87.7 86.5 87.9 87.9 73.1 / 90.4 87.0 / 82.7 88.9 / 85.2 96.3 96.5

TR

mBERT 93.7 93.8 86.4 86.4 57.9 / 76.4 72.6 / 65.2 74.5 / 67.4 95.5 95.7
+ ATask 93.0 93.0 86.1 83.9 55.3 / 75.1 70.4 / 62.0 72.4 / 64.1 95.5 95.7
+ ATask + ALang 93.3 93.5 86.2 84.8 56.9 / 75.8 71.1 / 63.0 73.0 / 64.7 96.0 95.9
+ ATask + ALang + MONOTOK 92.7 92.7 86.1 85.3 60.0 / 77.0 73.5 / 65.6 75.7 / 68.1 96.4 96.3

AVG

mBERT 91.2 90.4 90.5 90.0 66.3 / 81.2 84.7 / 79.6 86.0 / 81.0 95.6 95.6
+ ATask 90.9 90.2 90.5 89.2 65.5 / 81.1 83.3 / 77.5 84.7 / 79.0 95.6 95.6
+ ATask + ALang 91.2 90.3 90.5 90.1 66.1 / 81.2 83.9 / 78.3 85.3 / 79.7 95.8 95.8
+ ATask + ALang + MONOTOK 91.1 90.4 91.1 90.7 68.4 / 82.6 85.1 / 79.7 86.2 / 81.0 96.1 96.0

Table 10: Full Results - Performance on the different
tasks leveraging mBERT with different adapter compo-
nents (see §4.4).


