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Abstract

NeurST is an open-source toolkit for neural
speech translation. The toolkit mainly fo-
cuses on end-to-end speech translation, which
is easy to use, modify, and extend to ad-
vanced speech translation research and prod-
ucts. NeurST aims at facilitating the speech
translation research for NLP researchers and
building reliable benchmarks for this field. It
provides step-by-step recipes for feature ex-
traction, data preprocessing, distributed train-
ing, and evaluation. In this paper, we will in-
troduce the framework design of NeurST and
show experimental results for different bench-
mark datasets, which can be regarded as reli-
able baselines for future research. The toolkit
is publicly available at https://github.

com/bytedance/neurst and we will con-
tinuously update the performance of NeurST
with other counterparts and studies at https:
//st-benchmark.github.io/.

1 Introduction

Speech translation (ST), which translates audio sig-
nals of speech in one language into text in a foreign
language, is a hot research subject nowadays and
has widespread applications, like cross-language
videoconferencing or customer support chats.

Traditionally, researchers build a speech transla-
tion system via a cascading manner, including an
automatic speech recognition (ASR) and a machine
translation (MT) subsystem (Ney, 1999; Casacu-
berta et al., 2008; Kumar et al., 2014). Cascade sys-
tems, however, suffer from error propagation prob-
lems, where an inaccurate ASR output would theo-
retically cause translation errors. Owing to recent
progress of sequence-to-sequence modeling for
both neural machine translation (NMT) (Bahdanau
et al., 2015; Luong et al., 2015; Vaswani et al.,
2017) and end-to-end speech recognition (Chan
et al., 2016; Chiu et al., 2018; Dong et al., 2018),

it becomes feasible and efficient to train an end-to-
end direct ST model (Berard et al., 2016; Duong
et al., 2016; Weiss et al., 2017). This end-to-end
fashion attracts much attention due to its appealing
properties: a) modeling without intermediate ASR
transcriptions obviously alleviates the propagation
of errors; b) a single and unified ST model is bene-
ficial to deployment with lower latency in contrast
to cascade systems.

Recent studies show that end-to-end ST models
achieve promising performance and are compara-
ble with cascaded models (Ansari et al., 2020). The
end-to-end solution has great potential to be the
dominant technology for speech translation, how-
ever challenges remain. The first is about bench-
marks. Many ST studies conduct experiments
on different datasets. Liu et al. (2019) evaluate
the method on TED English-Chinese; and Dong
et al. (2021) use libri-trans English-French and
IWSLT2018 English-German dataset; and Wu et al.
(2020) show the results on CoVoST dataset and
the FR/RO portions of MuST-C dataset. Different
datasets make it difficult to compare the perfor-
mance of their approaches. Further, even for the
same dataset, the baseline results are not necessar-
ily kept consistent. Take the libri-trans English-
French dataset as an example. Dong et al. (2021)
report the pre-trained baseline as 15.3 and the result
of Liu et al. (2019) is 14.3 in terms of tokenized
BLEU, while Inaguma et al. (2020) report 15.5
(detokenized BLEU). The mismatching baseline re-
sults in an unfair comparison on the improvements
of their approaches. We think one of the primary
reasons is that the preprocessing of audio data is
complex, and the ST model training involves many
tricks, such as pre-training and data augmentation.

Therefore a reproducible and reliable benchmark
is required. In this work, we present NeurST ,
a toolkit for easily building and training end-to-
end ST models, as well as end-to-end ASR and

https://github.com/bytedance/neurst
https://github.com/bytedance/neurst
https://st-benchmark.github.io/
https://st-benchmark.github.io/
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NMT for cascade systems. We implement state-of-
the-art Transformer-based models (Vaswani et al.,
2017; Karita et al., 2019) and provide step-by-step
recipes for feature extraction, data preprocessing,
model training, and inference for researchers to
reproduce the benchmarks. Though there exist
several counterparts, such as Lingvo (Shen et al.,
2019), fairseq-ST (Wang et al., 2020a) and Kaldi 1

style ESPnet-ST (Inaguma et al., 2020), NeurST
is specially designed for speech translation tasks,
which encapsulates the details of speech processing
and frees the developers from data engineering. It
is easy to use and extend. The contributions of this
work are as follows:

• NeurST is designed specifically for end-to-
end ST, with clean and simple code. It is
lightweight and independent of Kaldi, which
simplifies installation and usage, and is more
compatible for NLP researchers.

• We report strong benchmarks with well-
designed hyper-parameters and show best
practice on several ST corpora. We provide a
series of recipes to reproduce them, which
serves as reliable baselines for the speech
translation field.

2 Design and Features

NeurST is implemented with both TensorFlow2
and PyTorch backends. In this section, we will
introduce the design components and features of
this toolkit.

2.1 Design

NeurST divides one running job into four compo-
nents: Dataset, Model, Task and Executor.

Dataset NeurST abstracts out a common inter-
face Dataset for data input. For example, we
can train a speech translation model from either
a raw dataset tarball or pre-extracted record files.
The Dataset iterates on the data files and stan-
dardizes the read records, e.g., ST tasks only accept
key-value pairs storing audio signals/features and
translations. One can implement their logic to ac-
cept the data of various modalities.

Model NeurST provides an optimal implementa-
tion of Transformer and its adaptation to speech-
to-text tasks, which achieve state-of-the-art per-
formance on standard benchmarks. Moreover,

1https://kaldi-asr.org/

one can customize various models using Tensor-
Flow2/PyTorch APIs or combine the encoders, de-
coders, and layers inside the NeurST .

Task NeurST abstracts out Task interface to
bridge Dataset and Model. In detail, Task de-
fines data pipelines to match the data samples from
Dataset to the input formats of Model. For
examples, ST task does tokenization on the text
translations and transforms each token to index. In
this way, user-defined Dataset and Model can
be efficiently integrated into NeurST , as long as
they share the same Task.

Executor NeurST provides the execution logic
for handling basic workflows of training, valida-
tion, and inference. Researchers can either define
their specific process of training and evaluation,
or pay less attention to API details in Executor
but reuse them by simply customizing Dataset,
Model and Task.

2.2 Features

Computation NeurST has high computation ef-
ficiency and it can be further optimized by en-
abling mixed-precision (Micikevicius et al., 2018)
and XLA (Accelerated Linear Algebra). Further-
more, NeurST supports fast distributed training
using Horovod (Sergeev and Balso, 2018) and
Byteps (Peng et al., 2019; Jiang et al., 2020) on
large-scale scenarios.

Data Preprocessing NeurST supports on-the-fly
data preprocessing via a number of lightweight
python packages, like python speech features2 for
extracting audio features (e.g. mel-frequency cep-
stral coefficients and log-mel filterbank coeffi-
cients). And for text processing, NeurST inte-
grates some effective tokenizers, including moses
tokenizer3, byte pair encoding (BPE) (Sennrich
et al., 2016b) and SentencePiece4. Alternatively,
the training data can be preprocessed and stored in
binary files (e.g., TFRecord) beforehand, which is
guaranteed to improve the I/O performance during
training. Moreover, to simplify such operations,
NeurST provides the command-line tool to create
such record files, which automatically iterates on

2https://github.com/jameslyons/python_
speech_features

3The python version: https://github.com/
alvations/sacremoses

4https://github.com/google/
sentencepiece

https://kaldi-asr.org/
https://github.com/jameslyons/python_speech_features
https://github.com/jameslyons/python_speech_features
https://github.com/alvations/sacremoses
https://github.com/alvations/sacremoses
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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various data formats defined by Dataset, prepro-
cesses data samples according to Task and writes
to the disk.

Transfer Learning NeurST supports initializing
the model variables from well-trained models as
long as they have the same variable names. As
for ST, we can initialize the ST encoder with a
well-trained ASR encoder and initialize the ST
decoder with a well-trained MT decoder, which
facilitates to achieve promising improvements. Be-
sides, NeurST also provides scripts for convert-
ing released models from other repositories, like
wav2vec2.0 (Baevski et al., 2020) and BERT (De-
vlin et al., 2019). Researchers can conveniently
integrate these pre-trained components to the cus-
tomized models.

Simultaneous Translation NeurST keeps up
with the recent progress of simultaneous translation.
The models are extended to train with streaming
audio or text input.

Validation while Training NeurST supports
customizing validation process during training. By
default, NeurST offers evaluation on development
data during training and keeps track of the check-
points with the best evaluation results.

Monitoring NeurST supports TensorBoard for
monitoring metrics during training, such as training
loss, training speed, and evaluation results.

Model Serving There is no gap between the
research models and production models under
NeurST , while they can be easily served with
TensorFlow Serving. Moreover, for higher per-
formance serving of standard transformer models,
NeurST is able to integrate with other optimized in-
ference libraries, like lightseq (Wang et al., 2021).

3 Speech Translation Benchmarks

We conducted experiments on several benchmark
speech translation corpora using NeurST and com-
pared the performance with other open-source
codebases and studies. Though that would be an
unfair comparison due to the different model struc-
tures and hyperparameters, the goal of NeurST is
to provide strong and reproducible benchmarks for
future research.

3.1 Datasets
We choose the following publicly available speech
translation corpora that include speech in a source

task init scale end scale decay at decay steps

MT 1.0 1.0 - -
ASR 3.5 2.0 50k 50k
ST 3.5 1.5 50k 50k

Table 1: Hyperparameters of the learning rate schedule.
Take the case of ST, the learning rate is scaled up by
3.5x for the first 50k steps. Then, we linearly decrease
the scaling factor to 1.5 for 50k steps.

language aligned to text in a target language:
libri-trans (Kocabiyikoglu et al., 2018) 5 is a small
EN→FR dataset which was originally started from
the LibriSpeech corpus, the audiobook recordings
for ASR (Panayotov et al., 2015). The English ut-
terances were automatically aligned to the e-books
in French, and 236 hours of English speech aligned
to French translations at utterance level were fi-
nally extracted. It has been widely used in previous
studies. As such, we use the clean 100-hour por-
tion plus the augmented machine translation from
Google Translate as the training data and follow its
split of dev and test data.
MuST-C (Di Gangi et al., 2019)6 is a multilingual
speech translation corpus from English to 8 lan-
guages: Dutch (NL), French (FR), German (DE),
Italian (IT), Portuguese (PT), Romanian (RO), Rus-
sian (RU) and Spanish (ES). MuST-C comprises
at least 385 hours of audio recordings from En-
glish TED talks with their manual transcriptions
and translations at sentence level for training, and
we use the dev and tst-COMMON as our develop-
ment and test data, respectively. To the best of our
knowledge, MuST-C is currently the largest speech
translation corpus available for each language pair.

3.2 Data Preprocessing

Beyond the officially released version, we per-
formed no other audio to text alignment and data
cleaning on libri-trans and MuST-C datasets.

For speech features, we extracted 80-channel log-
mel filterbank coefficients with windows of 25ms
and steps of 10ms, resulting in 80-dimensional fea-
tures per frame. The audio features of each sample
were then normalized by the mean and the standard
deviation. All texts were segmented into subword
level by first applying Moses tokenizer and then
BPE. In detail, we removed all punctuations and
lowercased the sentences in the source side while

5https://github.com/alicank/
Translation-Augmented-LibriSpeech-Corpus

6https://ict.fbk.eu/must-c/

https://github.com/alicank/Translation-Augmented-LibriSpeech-Corpus
https://github.com/alicank/Translation-Augmented-LibriSpeech-Corpus
https://ict.fbk.eu/must-c/
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Model tok detok

Cascade ESPnet-ST ASR transf-s + CTC → MT (Inaguma et al., 2020)† - 17.0

NeurST ASR transf-s → MT 18.2 16.8

End-to-End

ST BiLSTM (Bahar et al., 2019) 17.0 16.2
ST transf-s (Liu et al., 2019) 14.3 -
ST transf-s + KD (Liu et al., 2019) 17.0 -
ESPnet-ST ST transf-s (Inaguma et al., 2020)† - 16.7
TCEN-LSTM (Wang et al., 2020b)[ - 17.1
ST transf-s (Wang et al., 2020c) 16.0 -
ST transf-s + curriculum pre-training (Wang et al., 2020c) 17.7 -
LUT (Dong et al., 2021) 17.8 -

NeurST ST transf-s 18.7 17.2

Table 2: Case-insensitive BLEU scores on libri-trans test set under constrained setting (without additional ASR
and MT data). †Notably, we refer to the results presented in espnet/egs/libri trans/st1 and consider
them as detokenized BLEU according to the evaluation script in the repository7. [ The result of TCEN-LSTM is
also marked as detokenized BLEU due to its implementation on ESPnet-ST.

Model DE ES FR IT NL PT RO RU avg.

Cascade
ESPnet-ST ASR transf-s + CTC → MT
(Inaguma et al., 2020) 23.7 28.7 33.8 24.0 27.9 29.0 22.7 16.4 25.8

NeurST ASR transf-s → MT 23.4 28.0 33.9 23.8 27.1 28.3 22.2 16.0 25.3

End-to-End

ESPnet-ST ST transf-s (Inaguma et al., 2020) 22.9 28.0 32.8 23.8 27.4 28.0 21.9 15.8 25.1
fairseq-ST ST transf-s (Wang et al., 2020a) 22.7 27.2 32.9 22.7 27.3 28.1 21.9 15.3 24.8
ST transf-base + AFSt,f (Zhang et al., 2020) 22.4 26.9 31.6 23.0 24.9 26.3 21.0 14.7 23.9

NeurST ST transf-s 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9

Table 3: Case-sensitive detokenized BLEU scores on MuST-C tst-COMMON.

the cases and punctuations of target sentences were
reserved. The BPE rules were jointly learned with
8,000 merge operations and shared across ASR,
MT, and ST tasks.

3.3 Benchmark Models

We implemented Transformer (Vaswani et al.,
2017), the state-of-the-art sequence-to-sequence
model, for all our tasks.

In detail, for MT in cascade systems, the model
included 6 layers for both encoder and decoders.
The embedding dimension was 256, and the size of
hidden units in feedforward layer was 2,048. The
attention head for self-attention and cross-attention
was set to 4. We used Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98 and ap-
plied the same schedule algorithm as Vaswani et al.
(2017) for learning rate. We trained the MT models
with a global batch size of 25,000 tokens.

As for ASR/ST, we referred to the recent
progress of Transformer-based end-to-end ASR

7multi-bleu-detok.perl in https:
//github.com/espnet/espnet/blob/master/
utils/score_bleu.sh

models (Dong et al., 2018; Karita et al., 2019) and
extended the basic transformer model to be compat-
ible with audio inputs. The audio frames were first
compressed by two-layer CNN with 256 channels,
3× 3 kernel and stride size 2, each of which was
followed by a layer normalization. Then, we per-
formed a linear transformation on the compressed
audio representations to match the width of the
transformer model. We used the same model struc-
ture as MT, except that we enlarged the number
of encoder layers to 12 to obtain better perfor-
mance. This configuration is labeled as transf-s
(transformer small). For training, we used the same
Adam optimizer as MT but set the warmup steps to
25,000, and we empirically scaled up the learning
rate to accelerate the convergence. The hyperpa-
rameters of the learning rate schedule are listed in
Table 1. Moreover, for GPU memory efficiency,
we truncated the audio frames to 3,000 and re-
moved training samples whose transcription length
exceeded 120 and 150 for ASR and ST, respectively.
The ASR models were trained with 120,000 frames
per batch, while the batch size for ST was 80,000
frames. To further improve the performance of ST,

https://github.com/espnet/espnet/blob/master/utils/score_bleu.sh
https://github.com/espnet/espnet/blob/master/utils/score_bleu.sh
https://github.com/espnet/espnet/blob/master/utils/score_bleu.sh
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Model tok detok

Cascade
NeurST ASR transf-s → MT 17.4 16.0

End-to-End
NeurST ST transf-s 17.8 16.3
ST transf-base + AFSt,f♦

18.6 17.2

Table 4: Case-sensitive BLEU scores on libri-trans
test set under constrained setting. ♦is from Zhang
et al. (2020) with the proposed adaptive feature selec-
tion method, which uses the transformer base setting
(embedding size=512).

we applied SpecAugment technique (Park et al.,
2019) with frequency masking (mF = 2, F = 27)
and time masking (mT = 2, T = 70, p = 0.2).

Additionally, we applied label smoothing of
value 0.1 for training all three tasks. The encoder
of the ST model is initialized by the ASR encoder
by default unless noted.

3.4 Evaluation
For evaluation, we averaged the latest 10 check-
points and used a beam width of 4 with no length
penalty for all the above tasks.

We use word error rate (WER) to evaluate
ASR models and report case-sensitive detok-
enized BLEU8 for MT and ST models. In or-
der to compare with existing works, we also
report case-insensitive tokenized BLEU using
multi-bleu.perl in Moses for libri-trans
dataset.

3.5 Main Results
The overall results and comparisons with other stud-
ies are illustrated in Table 2 and 3. It is worth noting
that all results are from single models rather than
ensemble models.

To make a fair comparison on libri-trans cor-
pus, we list both tokenized and detokenized BLEU
scores in Table 2 and strive to distinguish the met-
ric of existing literature. Our transformer-based ST
model, which only applies ASR pre-training and
SpecAugment, achieves superior results versus re-
cent works about knowledge distillation (Liu et al.,
2019), curriculum pre-training (Wang et al., 2020c),
and LUT (Dong et al., 2021). Compared with the
counterpart ESPnet-ST, we also outperform by 0.5
BLEU, even though Inaguma et al. (2020) apply
additional techniques like speed perturbation, pre-
trained MT decoder, and CTC loss for ASR pre-

8https://github.com/mjpost/sacrebleu

Model NeurST ESPnet-ST

ST + ASR enc init. 16.5 15.5
+ MT dec init. 16.6 16.2

+ SpecAug. 17.2 16.7
ST + ASR enc init. + SpecAug. 17.2 -

Table 5: Case-insensitive detokenized BLEU scores on
libri-trans test set with difference setups.

Model NeurST ESPnet-ST

pure ST 18.6 -
+ ASR enc init. 21.9 21.8
+ MT dec init. 22.1 22.3
+ SpecAug. 23.3 22.9

ST + ASR enc init. + SpecAug. 22.8 -

Table 6: Case-sensitive detokenized BLEU scores on
MuST-C EN-DE tst-COMMON with difference setups.

training. The cascade baseline is slightly worse
than that of ESPnet-ST (-0.2 BLEU) because the
ASR+CTC can achieve lower WER (6.4)9 while
our pure end-to-end ASR obtains 8.8. We surpris-
ingly find that the end-to-end ST model exceeds the
cascade system by 0.4∼0.5 BLEU. We will discuss
this in detail in section 3.7. And as a supplemen-
tary benchmark, we present case-sensitive BLEU
scores in Table 4.

Table 3 illustrates the results on MuST-C tst-
COMMON. The results of our end-to-end ST model
are competitive with both fairseq-ST and ESPnet-
ST.

3.6 Ablation Study

Training a direct ST model is more complicated
than training an ASR or MT model. Our prelim-
inary experiment based on a pure end-to-end ST
model fails to converge on libri-trans corpus, which
can be the result of the data scarcity. To alleviate
this problem, pre-training some parts of the neural
network is the most effective way and has been
validated in all existing end-to-end ST studies. We
show our results in Table 5 and 6 as a reference
for future works. It turns out that we can obtain a
reasonable or even better BLEU score by simply
initializing the ST encoder with a pre-trained ASR
encoder. The improvement by MT decoder initial-
ization is relatively marginal in our setup. Further-
more, the SpecAugment technique can consistently
boost ST models.

9from https://github.com/espnet/espnet/
blob/master/egs/libri_trans/asr1/RESULTS.
md

https://github.com/mjpost/sacrebleu
https://github.com/espnet/espnet/blob/master/egs/libri_trans/asr1/RESULTS.md
https://github.com/espnet/espnet/blob/master/egs/libri_trans/asr1/RESULTS.md
https://github.com/espnet/espnet/blob/master/egs/libri_trans/asr1/RESULTS.md
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Model BLEU

large MT (w/ punc. & cased) 36.2
large MT (w/o punc.& lc) 34.3
large cascade ST 31.4
large end-to-end ST 29.7

Table 7: Case-sensitive detokenized BLEU scores on
MuST-C EN-DE tst-COMMON.

3.7 Cascade versus End-to-End

Previous experiments on libri-trans and MuST-C
NL/PT show that the end-to-end systems have out-
performed the cascade systems. Here we argue that
the performance of the cascade systems above is
hampered by a lack of quantitative data, and they
should take advantage of large amounts of ASR
and MT data separately. Hence, we further ex-
tended NeurST to large-scale scenarios and exper-
imented on the allowed datasets for IWSLT 2021
evaluation campaign10. We followed the practice
of Zhao et al. (2021) to build our large cascade
and end-to-end ST systems, which contains large-
scale back-translation (Sennrich et al., 2016a) and
pseudo labeling (also known as knowledge distil-
lation) technologies. The results are illustrated in
Table 7. As seen, there is a significant loss of
1.7 BLEU between end-to-end ST and cascade ST.
And the cascade system would have the potential
to narrow the gap to the pure MT system by intro-
ducing extra punctuation restoration and true-case
modules.

Though the cascade system is superior under
large data conditions, we believe future researches
on self-supervised learning, knowledge distillation,
and dataset construction would realize the potential
of end-to-end models.

4 Conclusion

We introduce NeurST toolkit for easily building
and training end-to-end speech translation models.
We provide straightforward recipes for audio data
pre-processing, training, and inference, which we
believe is friendly with NLP researchers. Moreover,
we report strong and reproducible benchmarks and
will continuously catch up on advanced progress us-
ing NeurST , which can be regarded as the reliable
baselines for the ST field.

10https://iwslt.org/2021/offline
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Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
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