
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: System Demonstrations, pages 210–217, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

210

Neural Extractive Search

Shauli Ravfogel1,2 Hillel Taub-Tabib2 Yoav Goldberg1,2

1Computer Science Department, Bar Ilan University
2Allen Institute for Artificial Intelligence

{shauli.ravfogel, yoav.goldberg}@gmail.com
hillelt@allenai.org

Abstract

Domain experts often need to extract struc-
tured information from large corpora. We ad-
vocate for a search paradigm called “extrac-
tive search”, in which a search query is en-
riched with capture-slots, to allow for such
rapid extraction. Such an extractive search
system can be built around syntactic struc-
tures, resulting in high-precision, low-recall re-
sults. We show how the recall can be improved
using neural retrieval and alignment. The
goals of this paper are to concisely introduce
the extractive-search paradigm; and to demon-
strate a prototype neural retrieval system for
extractive search and its benefits and potential.
Our prototype is available at https://spike.
neural-sim.apps.allenai.org/ and a
video demonstration is available at https://
vimeo.com/559586687.

1 Introduction

In this paper we demonstrate how to extend a
search paradigm we call “extractive search” with
neural similarity techniques.

The increasing availability of large datasets calls
for search tools which support different types of
information needs. Search engines like Google
Search or Microsoft Bing are optimized for surfac-
ing documents addressing information needs that
can be satisfied by reviewing a handful of top re-
sults. Academic search engines (Semantic Scholar,
Google Scholar, Pubmed Search, etc) address also
information needs targeting more than a handful of
documents, yet still require the user to read through
the returned documents.

However, some information needs require ex-
tracting and aggregating sub-sentence information
(words, phrases, or entities) from multiple docu-
ments (e.g. a list of all the risk factors for a specific
disease and their number of mentions, or a com-
prehensive table of startups and CEOs). These

typically fall outside the scope of search engines
and instead are classified as Information Extraction
(IE), entailing a research project and a dedicated
team per use-case, putting them well beyond the
abilities of the typical information seeker.

In contrast, we advocate for a complementary
search paradigm: extractive search, which com-
bines document selection with information extrac-
tion. The query is extended with capture slots:
these are search terms that act as variables, whose
values should be extracted (“captured”).1 The user
is then presented with the matched documents, each
annotated with the corresponding captured spans,
as well as aggregate information over the captured
spans (e.g., a count-ranked list of the values that
were captured in the different slots). The extrac-
tive search paradigm is currently implemented in
our SPIKE system.2 Aspects of its earlier versions
are presented in Shlain et al. (2020); Taub-Tabib
et al. (2020). One way of specifying which slots
to capture is by their roles with respect to some
predicate, semantic-frame, or a sentence. In par-
ticular, the SPIKE system features syntax-based
symbolic extractive search—described further in
section 2—where the capture slots correspond to
specific positions in a syntactic-configuration (i.e.,
“capture the subject of the predicate founded in the
first capture slot, and the object of the predicate
in the second capture slot”). These are specified
using a “by-example” syntax (Shlain et al., 2020),
in which the user marks the predicate and capture
slots on a provided example sentence, and the syn-
tactic configuration is inferred.

While such parse-based matching can be very
effective, it also suffers from the known limita-
tions of symbolic systems: it excels in precision
and control, but often lacks in recall. In this work,

1Capture-slots can be thought of as being analogous to
captures in regular-expressions.

2https://allenai.github.io/spike/

https://spike.neural-sim.apps.allenai.org/
https://spike.neural-sim.apps.allenai.org/
https://vimeo.com/559586687
https://vimeo.com/559586687
https://allenai.github.io/spike/

211

Figure 1: Results of neural extractive search. The neural results are based on the syntactic query:
SomethingARG1

is a drug extracted from plantsARG2
(underlines denote named capture slots, and bold text de-

notes an exact lexical match). The results show linguistic and lexical diversity w.r.t to the initial query, and highlight
also spans corresponding toARG1 andARG2 (in light blue and yellow). The right box contains an aggregate view
of the captured spans over many results.

we demonstrate how the symbolic system can be
combined with the flexibility of neural semantic
similarity as induced by large pre-trained language
models. Figure 1 presents an overview of the sys-
tem, containing a query with capture slots, the de-
rived syntactic query, the returned (neural) results
with marked spans, and an aggregate summary of
the extracted pairs.

By allowing fuzzy matches based on neural sim-
ilarity search, we substantially improve recall, at
the expense of some of the precision and control.

The incorporation of neural similarity search re-
quires two stages: retrieval of relevant sentences,
and locating the roles corresponding to the capture-
spans on each sentence. We use standard dense
passage retrieval methods for the first part (section
3), and present a neural alignment model for the
second part (section 4). The alignment model is
generic: it is designed to be pre-trained once, and
then applied to every query in real time. This al-
lows to provide an interactive search system which
returns an initial response in near real-time, and
continues to stream additional responses.

The purpose of this paper then is twofold: first,
it serves as a concise introduction of the extractive-
search paradigm. Second, and more importantly, it
demonstrates an incorporation of neural similarity
techniques into this paradigm.

2 Symbolic Extractive Search

We introduce the extractive search paradigm
through usage examples.

Boolean Extractive Search. Consider a re-
searcher who would like to compile a list of
treatments to Bacteremia (bloodstream infection).
Searching Google for “Bacteremia treatment”
might lead to a Healthline article discussing a hand-
ful of treatments.3, which is not a great outcome.
A similar query in PubMed Search leads to over
30,000 matching papers, not all are relevant and
each including only nuggets of relevant informa-
tion. Compare this with the extractive boolean
query:

Bacteremia treatment :entity=CHEMICAL

in SPIKE-PubMed (Taub-Tabib et al., 2020), a
search system over PubMed abstracts. “en-
tity=CHEMICAL” indicates that we are interested
in spans that correspond to chemicals, and the pre-
ceding colon (“:”) designate this term as a capture.
The query retrieves 1822 sentences which include
the word Bactermia, the word treatment (added
to establish a therapeutic context) and a CHEMI-
CAL entity. The user interface also displays the
ranked list of 406 different chemicals captured by
the query variable. The researcher can click each
one to inspect evidence for its association with
Bacteremia, quickly arriving at a clean list of the
common therapeutic compounds.

Syntactic Extractive Search (“by example”).
In the previous example, the capture slot was based
on pre-annotated span level information (“named
entities”). While very effective, it requires the en-
tity type of interest to be pre-annotated, which

3https://www.healthline.com/health/bacteremia

212

will likely not be the case for most entity types.
Additionally, the search is rather loose: it iden-
tifies any chemical in the same sentence of the
terms “Bactermia” and “treatment”, but without
establishing a semantic connection between them.
What can we do when the entity type is not pre-
annotated, or when we want to be more specific
in our extraction target? One option is to define
the capture slots using their syntactic sentential
context. For example, consider a researcher in-
terested in risk factors of stroke. An example of
this relation is given in the syntactic configuration:

We can search for sentences that match this pat-
tern,4 and extract the information which aligns with
the capture node.5 However, such syntactic pat-
terns require expertise to specify and are challeng-
ing to master. To counter this, Shlain et al. (2020)
introduced to SPIKE the notion of query by ex-
ample: the user enters a sentence which demon-
strates the configuration: “something is a risk fac-
tor of stroke”, marks which words are essential
and should match exactly (risk, factor, stroke), and
which correspond to capture slots (something), re-
sulting in the query:6

somethingARG is a risk factor for stroke

The system then derives the corresponding syntac-
tic query (see (Shlain et al., 2020) for the details),
returning results like: “These cases illustrate that
PXE is a rare but significant risk factor for small
vessel disease and stroke in patients of all age
groups.”, with the top aggregate terms being Hyper-
tension, Artial fibrillation, AF, Diabetes, Obesity
while less frequent terms include VZV reactivation
and palmitic acid. By modifying the query such
that stroke is also marked as a capture slot:

somethingARG1 is a risk factor for strokeARG2

one could easily obtain a table of risk factors for
various conditions.

4Potentially with additional restrictions such as the occur-
rence of other words, phrases or patterns in the document

5This mode of operation is facilitated also by, e.g., the
open-source toolkit Odinson (Valenzuela-Escárcega et al.,
2020), and similar workflows are discussed by Akbik et al.
(2013); Hoffmann et al. (2015).

6In this paper, we avoid the exact SPIKE syntax, and use
underlines to indicate named capture slots, and bolded words
to indicate exact matches. The corresponding SPIKE query
would be “〈〉ARG:something is a $risk $factor for $stroke”.

3 Neural Extractive Search

The syntactic search by example lowers the barri-
ers for IE: it easy to specify, accurate and effective.
However, it is also limited in its recall: it consid-
ers only a specific configuration (both in terms of
syntax and lexical items), and will not allow for
alternations unless these are explicitly expressed
by the user. Neural models, and in particular large
pre-trained language models (Devlin et al., 2019;
Beltagy et al., 2019), excel at this kind of fuzzier,
less-rigid similarity matching. We show how to
incorporate them in the extractive search paradigm.
This requires two stages: first, we need to match
relevant sentences for a given query. Second, we
need to identify the relevant capture spans in the
returned sentences. Crucially, this needs to be done
in a reasonable time: we do not have the luxury
of re-training a model for each query, nor can we
afford to run a large neural model on the entire
corpus for every query. We can afford to run a
pre-trained model on the query sentence(s), as well
as over each of the sentences in the result set (simi-
lar to neural-reranking retrieval models (Guo et al.,
2020)). We operate under these constraints.

The final system enables the user to search for
specified information with minimal technical exper-
tise. We demonstrate this approach on the CORD
corpus (Wang et al., 2020), a collection of research
papers concerning the COVID-19 pandemic.

3.1 ‘By-example” neural queries
The core of the system is a “by-example” query,
where the user enters a simple sentence express-
ing the relation of interest, and marks the desired
capture roles on the sentence. To facilitate effec-
tive neural search based on the short example, we
perform symbolic (syntactic) search that retrieves
many real-world sentences following the syntac-
tic pattern. The result is a list of sentences that
all satisfy the same relation, which are then com-
bined and used as query to the neural retrieval sys-
tem. At neural alignment model is then used to
align the role marking on the syntactically-retrieved
sentences, to corresponding roles on the neurally-
retrieved sentences.

3.2 Pipeline
Our system pipeline is summarized in Figure 2. It
includes the following steps.

Index Construction. Given a corpus D =
{s1, s2, . . . , sn} of n sentences, we calculate a vec-

213

Figure 2: The proposed pipeline, presented from top left clockwise. Top: A simple symbolic query with two
argument marks is provided. The query is executed, yielding accurate results that suffer from low recall. Those
are encoded by BERT and used for k-NN query over a large set of pre-indexed vectors. Bottom: The k-NN neural
similarity search results in a diverse set of relevant sentences. An alignment model then predicts and annotates
argument spans over the retrieved sentences, based on the symbolic query results.

tor representation M(si) for each sentence using a
neural model M , and index them to allow efficient
search.7

Symbolic Query Encoding. We use the
syntactic-query capabilities of the SPIKE system
to retrieve examples of natural sentences that
convey the meaning the user aims to capture: we
collect the first 75 results of a simple “by-example”
syntactic query as described in §2—which
often contain lexically-diverse, but semantically
coherent, sentences—and average their BERT
representations in order to get a single dense query
vector ~hq. The averaging helps focus the model on
the desired semantic relation.

Neural retrieval and ranking. We perform
dense retrieval for the query hq, with a k-NN
search over the pre-indexed sentence representa-
tions. These results are substantially more diverse
than the initial set returned by the syntactic query.

Argument Identification. We encode each re-
trieved sentence using (Sci)BERT, and use the
alignment model described in Section 4 to align
spans over the retrieved sentences to the captured
spans in the symbolic result set. The alignment

7Concretely, we encode each sentence in the CORD-19
corpus using the pre-trained SciBERT model (Beltagy et al.,
2019), a BERT-based model (Devlin et al., 2019) trained on
scientific text. We do not finetune the pre-trained model. We
represent each sentence by the [CLS] representation on layer-
12 of the model, and perform PCA to retain 99% of the vari-
ance, resulting in 601-dimensional vectors. To allow efficient
search over the approximately 14M resulting dense vectors,
we index them with FAISS (Johnson et al., 2017).

process operates over contextualized span represen-
tations, hopefully capturing both entity type and
semantic frame information.

The system returns a syntactically and lexically
diverse set of results, with marked capture spans.

4 Argument-identification via Alignment

The dense neural retrieval over the averaged query
vector results in topically-related sentences. To ob-
tain the full benefit of extractive search, we need to
provide span annotations over the sentences. This
is achieved via a span alignment model which is
trained to align semantically corresponding spans
across sentences. At query time, we apply this
model to align the marked spans over the first
syntactic-query result, to spans over the neurally-
retrieved sentences.

The alignment model is pre-trained over a di-
verse set of relation, with the intent of making it
a general-purpose alignment model. We describe
the model architecture, training data, and training
procedure.

The argument-alignment task. The user
marked in the query q a two spans, denoted as
ARG1 and ARG2. Given a sentence (a dense
retrieval result) with n tokens s = w1, ..., wn,
we seek a consecutive sequence of tokens wi:j

corresponding to ARG1, and another consecutive
sequence of tokens wk:` corresponding to ARG2.
For example, consider the query:

virusARG1 infection causes a conditionARG2

214

In which the span ARG1 corresponds to a kind of
infection, and ARG2 corresponds to the outcome
of the infection.
The syntactic query may return a result such as:
The infection of SARS-CoV-2ARG1 causes
feverARG2 .

While a neural result might be:

It has been noted that headaches are one side
effect of Flu infection.

We would like to align Flu to ARG1 (SARS-COV-
2) and headaches to ARG2 (fever).

Training and evaluation data creation. To
train an alignment model in a supervised setting,
we need a training set that consists of pairs of
sentences, both corresponding to the same rela-
tion, with arguments marked only on the first sen-
tence. We use SPIKE for the generation of this
dataset. We introduce a resource that contains 440
manually-curated SPIKE queries in the biomedical
domain, divided into 67 unique relations, s.t. each
relation is expressed via at least 2 syntactically-
distinct queries. For instance, for the relation
molecules and their chemical derivatives, we in-
clude the following patterns, among others:

- SomethingARG1 , a PurineARG2 derivative.
- SomethingARG1 , a derivative of PurineARG2 .
- PurineARG1 derivative such as somethingARG2 .

We ran each SPIKE query, collect the results, and
then construct a dataset that consists of randomly-
sampled pair of results (sR1 , sR2) for each relation
R of the 62 relations. This process resulted in a
training set of 95,000 pairs of sentences, and a de-
velopment set of 15,000 pairs of sentences, where
each sentence has marked argument spans.8

Model architecture and training. We adopt a
contrastive finetuning approach for the argument
alignment task (Figure 3). In training, the model is
fed with two sentences s1 and s2, belonging to the
same relation. On one of the sentences, we mark
the argument spans using special ARG tokens. We
derive contextualized representations of all consec-
utive spans of tokens, and contrastively train the
matching spans to be more similar to each other
than to any other span.

8We focused our efforts on maintaining high syntactic di-
versity alongside high topical relevance for each relation, and
aimed for the patterns to cover a large set of biomedical re-
lations. The relations in the development set are randomly
chosen subset of all relations, and are disjoint from the rela-
tions included in the training set.

Figure 3: Illustration of the argument-alignment model.
We choose corresponding arguments (“many disorders”
and “cytokine storm”) from the two sentences. We rep-
resent all possible spans of words, and choose the neg-
ative example to be the closest wrong span under eu-
clidean distance (here, “heart damage”). The triplet ob-
jective encourages the corresponding argument to be
closer to each other than to the wrong span.

We begin with the pretrained SciBERT model,
with an additional linear layer that maps the repre-
sentations to dimensionality of 64. On each train-
ing iteration we feed to the model the two sentences
with arguments marked on one of them, and collect
the last-hidden-layer-representations of all tokens.

Then, we construct the representations of the two
arguments in the first sentence, ~hs1arg1 and ~hs1arg2 , by
averaging the BERT representations of the tokens
included in those spans. We similarly construct
representations of all possible consecutive spans of
tokens up to length 9 in the second sentence. The
“hardest” negative spans are identified: those are

the two representations ~hs2,−arg1 and ~hs2,−arg2 , which do
not correspond to the captures in the first sentence,
yet are most similar to them by euclidean distance.
Those are pushed away using a triplet loss objective
(Schultz and Joachims, 2003; Chechik et al., 2010):

L = max(0, ||~hs1arg1−~h
s2
arg1||−||~h

s1
arg1−

~hs2,−arg1||+α)

And similarly for arg2. This objective encourages
the gold span in s1 to be closer to the gold span
s2 than to any other span, with a margin of at least
α; we take α = 1 and train for 50 epochs with the
Adam optimizer (Kingma and Ba, 2015).

In inference time, we take s1 to be an arbitrary
(single) result of the syntactic query, and take s2
to be any of the neural search results. For each s2,
we collect the spans having the least distance to the
spans in s1 (as provided by the SPIKE system).

5 Evaluation

Retrieval quality. To simulate a real-world ex-
traction scenarios, we randomly chose 11 types

215

Relation % Relevant
Disease-duration 25.000
Lacunas in knowledge 100.000
Conditions without risk 77.273
Isolation place 100.000
Percentage asymptomatic 9.091
Symptoms 85.000
Potential treatment 95.455
Immunutherapies and diseases 86.364
Persistence-place 82.609
Pretreatments 54.545
Involved organs 77.273

Table 1: Relevance scores (manual) by relation type.

of relation not included in the training set, with
one randomly-selected syntactic pattern per rela-
tion. We augmented those patterns, and collected
the 10 top-ranked augmented results, as well the 10
results ranked in places 90-100. We manually eval-
uated the relevancy of the 20 results per relation,
resulting in 240 test sentences in total. In case they
were relevant, we also marked the capture spans.

Results. Overall, 72.2% of the results were rel-
evant to the relation, with 75.0% relevant in the
top-10 group and 69.5% relevancy in the sentences
ranked 90-100. In Table 1 with provide the re-
sults per relation. Relevancy is not uniform across
relations: certain relations focusing on numerical
information – such as duration of a disease and
percentage of asympotatmic cases in a disease had
very low accuracy: the results often focused on
similar but different numerical information such as

“The median time to the onset of the infection was
95 days” for duration of a disease, and “Between
10 % and 20 % of the world population is infected
each year by the influenza virus” for percentage
of asympotatmic cases. In contrast, for the others
relations, many of the results are relevant, and are
characterized by high syntactic diversity, general-
izing beyond the syntactic structure of the original
symbolic query.

Alignment quality. To evaluate the quality of
the alignment, we generate a test set from the 240
manually-annotated sentences mentioned above,
by randomly sampling 1,240 pairs of sentences
that belong to the same relation, and are both rele-
vant. We keep the gold argument marking on the
first sentence, omit it from the second, and have
the model predict the corresponding captures. As
evaluation measure, we calculate the percentage of
cases where the gold argument are a subset of the
predicted arguments, or vice verca.

SPIKE Neural Extractive Search
#Caputres %Accuracy #Caputres %Accuracy

spreads by 5 83% 40 96%
potential treatment 14 80% 55 67.6%
risk factor 57 89% 44 83%

Table 2: Comparing result count and accuracy between
symbolic and neural extractive search

Results. In total, 73.8% of the arguments are
aligned correctly. When considering only cases
where both arguments were correctly aligned as a
success, accuracy drops to 58%. Note, however,
that the captures are often multi-word expressions,
and the choice of span boundaries is somewhat
arbitrary, and does not take into account conjunc-
tions or cases where possible distinct spans can
be regarded as corresponding to a capture in the
first sentence, and multiple valid captures that often
exist within a single sentence.

Comparison with symbolic extractive search.
How do the results of the neural extractive search
differ from the results of directly applying a sym-
bolic rule based solution? To compare the systems
we choose another 3 development relations, “is a
risk factor for COVID-19”, “COVID-19 spreading
mechanisms” and “potential treatment for COVID-
19”. For each of these relations we try out 2-3
syntactic SPIKE queries and choose the best one
as a representative query. We then use the query as
input for both SPIKE and for neural search .

As shown in Table 2, for two of the three re-
lations, spread by and potential treatment, neural
search has been effective in significantly improving
recall while maintaining relatively high precision.
For the third relation, risk-factor, neural search did
not show benefit but did not lag far behind. We
hypothesize that this is due to this relation appear-
ing many times in the data and in less diverse ways
compared to the other relations, allowing a sym-
bolic pattern to accurately extract it. Importantly,
these data suggest that the neural search system is
less sensitive to the exact relation and query used
and that in some cases it also significantly improves
performance.

6 Example Search

We demonstrate the system via an example where
one aims to find sentences containing information
on compounds and their origin (e.g. plant-derived,
isolated from soil, etc.). We start with the query:

SomethingA1 is a drug extracted from plantsA2 .

216

The syntactic yields only few results, all of them
are relevant. Among the results:
-Colchicine is a drug extracted from Colchicum
autumnale.

-Berbamine is an experimental drug extracted from
a shrub native to Japan, Korea, and parts of China

-Taxol, isolated from Taxomyces andreanae , is the
most effective and successful anticancer drug ex-
tracted from endophytic fungi to date . Figure 1
shows the output (top results) of the neural sys-
tem. The neural results are notably more diverse.
While the syntactic results follow the pattern “X
extracted from Y”, the neural results are both lexi-
cally and syntactically diverse: the explicit descrip-
tor “a drug” is absent at times; the verbal phrase
“extracted from [a plant]” is sometimes replaced
with the paraphrases “found in [a plant]” and “[is
a] botanical extract”; and the third result contains
an unreduced relative clause structure.

Several additional results are presented below:
- Allicin is the major biologically active component
of garlic.
- Berberine is an isoquinoline alkaloid that has
been isolated from Berberis aquifolium.
- Phillyrin (Phil) , the main pharmacological com-
ponent of Forsythia suspensa, possesses a wide
range of pharmacological activities .
- Dimethyl cardamonin (DMC) is the active
compound isolated from the leaves of Syzygium
samarangense.
- Triostin is a well-known natural product with an-
tibiotic , antiviral, and antitumor activities .

Note that the last two examples demonstrate fail-
ure modes: in the the fourth example, the model
failed to identify Dimethyl cardamonin as an ar-
gument; and in the last sentence there is no clear
capture corresponding to the second argument.

Finally, we perform an aggregation over the pre-
dicted captures (Fig 1, right-pane), allowing the
user to quickly get a high-level overview of the
interactions. From our experience, users are mostly
interested in this table, and turn to the text as sup-
port for validating interesting findings.

7 Limitations of the neural approach

While we find the neural approach to be very effec-
tive, we would also like to discuss some of its limi-
tations. First, speed and scalability are still lagging
behind that of symbolic search systems: dense re-
trieval systems do not yet scale as well as symbolic
ones, and running the (Sci)BERT-base argument-

aligner for each candidate sentence is significantly
slower than performing the corresponding similar-
ity search. While the user can see the first results
almost immediately, getting extractions from thou-
sands of sentences may take several minutes. We
hope to improve this speed in future work.

In terms of accuracy, we find the system to be
hit-or-miss. For many symbolic queries we get fan-
tastic resutls, while for others we observe failures
of the dense retrieval model, or frequent failures of
the alignment model, or both. For effective incorpo-
ration in a user-facing system, we should—beyond
improvements in retrieval and alignment accuracy—
be able to predict which queries are likely to yield
poor results, and not extend them with fuzzy neural
matches.

8 Conclusions

We presented a system for neural extractive search.
While we found our system to be useful for scien-
tific search, it also has clear limitations and areas
for improvement, both in terms of accuracy (only
72.2% of the returned results are relevant, both the
alignment and similarity models generalize well to
some relations but not to others), and in terms of
scale. We see this paper as a beginning rather than
an end: we hope that this demonstration will in-
spire others to consider the usefulness of the neural
extractive search paradigm, and develop it further.

Acknowledgements

This project received funding from the Europoean
Research Council (ERC) under the Europoean
Union’s Horizon 2020 research and innovation
programme, grant agreement No. 802774 (iEX-
TRACT).

References
Alan Akbik, Oresti Konomi, and Michail Melnikov.

2013. Propminer: A workflow for interactive infor-
mation extraction and exploration using dependency
trees. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 157–162.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3613–
3618. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371

217

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Ben-
gio. 2010. Large scale online learning of image
similarity through ranking. J. Mach. Learn. Res.,
11:1109–1135.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang,
Qingyao Ai, Hamed Zamani, Chen Wu, W Bruce
Croft, and Xueqi Cheng. 2020. A deep look
into neural ranking models for information re-
trieval. Information Processing & Management,
57(6):102067.

R. Hoffmann, Luke Zettlemoyer, and Daniel S. Weld.
2015. Extreme extraction: Only one hour per rela-
tion. ArXiv, abs/1506.06418.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. CoRR,
abs/1702.08734.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Matthew Schultz and Thorsten Joachims. 2003. Learn-
ing a distance metric from relative comparisons.
In Advances in Neural Information Processing Sys-
tems 16 [Neural Information Processing Systems,
NIPS 2003, December 8-13, 2003, Vancouver and
Whistler, British Columbia, Canada], pages 41–48.
MIT Press.

Micah Shlain, Hillel Taub-Tabib, Shoval Sadde, and
Yoav Goldberg. 2020. Syntactic search by exam-
ple. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Sys-
tem Demonstrations, ACL 2020, Online, July 5-10,
2020, pages 17–23. Association for Computational
Linguistics.

Hillel Taub-Tabib, Micah Shlain, Shoval Sadde, Dan
Lahav, Matan Eyal, Yaara Cohen, and Yoav Gold-
berg. 2020. Interactive extractive search over
biomedical corpora. In Proceedings of the 19th
SIGBioMed Workshop on Biomedical Language Pro-
cessing, BioNLP 2020, Online, July 9, 2020, pages
28–37. Association for Computational Linguistics.

Marco A Valenzuela-Escárcega, Gus Hahn-Powell, and
Dane Bell. 2020. Odinson: A fast rule-based in-
formation extraction framework. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 2183–2191.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn
Funk, Rodney Kinney, Ziyang Liu, William Mer-
rill, Paul Mooney, Dewey Murdick, Devvret Rishi,
Jerry Sheehan, Zhihong Shen, Brandon Stilson,
Alex D. Wade, Kuansan Wang, Chris Wilhelm, Boya
Xie, Douglas Raymond, Daniel S. Weld, Oren Et-
zioni, and Sebastian Kohlmeier. 2020. CORD-
19: the covid-19 open research dataset. CoRR,
abs/2004.10706.

https://dl.acm.org/citation.cfm?id=1756042
https://dl.acm.org/citation.cfm?id=1756042
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2003/hash/d3b1fb02964aa64e257f9f26a31f72cf-Abstract.html
https://proceedings.neurips.cc/paper/2003/hash/d3b1fb02964aa64e257f9f26a31f72cf-Abstract.html
https://doi.org/10.18653/v1/2020.acl-demos.3
https://doi.org/10.18653/v1/2020.acl-demos.3
https://doi.org/10.18653/v1/2020.bionlp-1.3
https://doi.org/10.18653/v1/2020.bionlp-1.3
http://arxiv.org/abs/2004.10706
http://arxiv.org/abs/2004.10706

