
Text-to-Text Pre-Training Model with Plan Selection
for RDF-to-Text Generation

Natthawut Kertkeidkachorn Hiroya Takamura
Artificial Intelligence Research Center (AIRC)

National Institute of Advanced Industrial Science and Technology (AIST),
2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan

{n.kertkeidkachorn, takamura.hiroya}@aist.go.jp

Abstract

We report our system description for the RDF-
to-Text task in English on the WebNLG 2020
Challenge. Our approach consists of two
parts: 1) RDF-to-Text Generation Pipeline and
2) Plan Selection. RDF-to-Text Generation
Pipeline is built on the state-of-the-art pre-
training model, while Plan Selection helps de-
cide the proper plan into the pipeline.

1 Introduction

Natural language generation from data, or data-to-
text, aims to generate natural language text that
describes the input data such as tables and graphs.
WebNLG (Gardent et al., 2017; Ferreira et al.,
2018) is one of the data-to-text tasks, where the
given input data is a set of triples (a tree or a graph).
A triple consists of entities and a relationship be-
tween them in the form of (subject, predicate, ob-
ject) describing one fact. For example, (Donald
Trump, birthplace, New York) describes the facts
“Donald Trump was born in New York.” In the
WebNLG task, up to 7 triples are given as the input
data. Figure 1 presents an instance of the WebNLG
dataset1, where 3 triples are given as the RDF input
graph and the output text is the natural language de-
scription describing the fact from triples. Generat-
ing text from triples is useful for many applications
such as question and answering (He et al., 2017),
where a set of triples retrieved as an answer can be
organized and translated into natural language text.

Many approaches have been proposed to deal
with the WebNLG task. Neural Machine Transla-
tion (NMT) approach is one of the popular methods
for this task (Gardent et al., 2017). In WebNLG
2017, a neural machine translation-based approach,
achieved the highest score in the automatic eval-
uation (Gardent et al., 2017). In this approach,

1An example is from https://webnlg-challenge.
loria.fr

Figure 1: Illustration of the WebNLG 2020 task on
RDF-to-text (English).

the delexicalization, where entities are replaced
by placeholders, with N-gram search and the lin-
earization using DBpedia type enrichment are used
together with the standard encoder-decoder with
attention model. Due to the simple linearization,
the relationship between entities as the graph in
triples might lessen. To preserve such information,
a graph-based triple encoder (GTR-LSTM) (Disti-
awan et al., 2018), is introduced. Later, Moryossef
et al. (2019) argued that splitting the generation pro-
cess into plan selection and text realization could
help generate the description text that is faithful
to the triples. PlanEnc uses a graph convolution
network-based model to predict the order of the
triples and then an LSTM with attention and the
copy mechanism is employed to generate the text
corresponding to the order of triples (Zhao et al.,
2020). Recently, Kale (2020) investigated Text-
to-Text Transfer Transformer (T5) model for the
data-to-text task. With transfer learning ability, the
T5 model is the current state-of-the-art for RDF-to-
text generation.

To further investigate the T5 model from the
study (Kale, 2020), we conduct experiments with
the T5 model on WebNLG 2020 challenge 2. Based

2https://webnlg-challenge.loria.fr/
challenge_2020/

3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+),
Dublin, Ireland (Virtual), 18 December 2020, pages 159–166, c©2020 Association for Computational Linguistics

Attribution 4.0 International.

https://webnlg-challenge.loria.fr
https://webnlg-challenge.loria.fr
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
http://creativecommons.org/licenses/by/4.0/

Figure 2: An Overview Pipeline of RDF-to-Text Gen-
eration. (a) RDF graph as input, (b) Linearization form
of RDF graph and (c) Generated Text.

on our preliminary results, we found that chang-
ing the order of the triples before the linearization
affected the BLEU score. In this paper, we there-
fore present a Text-to-text pre-training model for
the data-to-text generation with plan selection. In
our approach, we follow the study (Kale, 2020), to
build the RDF-to-Text Generation pipeline. Then,
we develop the graph neural network (GNN) based
model to score the plan associating with the triple
order. The triple order with the highest plan score
is linearized and feed to Generator in the RDF-to-
Text Generation pipeline.

2 Approach

In our approach, there are two steps: 1) RDF-to-
Text Generation and 2) Plan Selection. RDF-to-
Text generation aims to transform input triples into
natural language text describing them, while Plan
Selection is the pre-processing process to select the
order of the triples for the RDF-to-Text Generation
pipeline. Note that Plan Selection is performed be-
fore RDF-to-Text Generation in the testing phase.

2.1 RDF-to-Text Generation

In the RDF-to-text generation step, we follow a
similar approach with the study (Kale, 2020) to
build the pipeline. As illustrated in 2, there are two
steps in the pipeline of RDF-to-Text Generation: 1)
Linearization and 2) Generator.

2.1.1 Linearization
Linearization is to convert RDF graph into the se-
quence so that the conventional seq-2-seq model
can be applied. Specifically, given a set of triples

T = {(s1, p1, o1), (s2, p2, o2), ..., (sn, pn, on)},
the linearization maps the triples into the word
sequence as follows: < s > s1 < p > p1 < o >
o1 < s > s2... < s > sn < p > pn < o > on. An
example of the linearization is shown in Figure 2 (a)
and (b). In Figure 2 (a), the input triples are given
as the RDF graph and the linearization form of the
graph is converted as in Figure 2 (b). Note that
usually in an RDF graph ’Donald Trump’ is con-
catenated into one single token ’Donald Trump’.
In the conversion process, we therefore remove
underscore () in the entity name to recover the
original words denoting the entity.

2.1.2 Generator
Generator is to generate natural language text cor-
responding to the given word sequence from the
linearization step as shown in Figure 2 (b) and
(c). In our study, we employ Text-To-Text Trans-
fer Transformer (T5) pre-trained models released
by the study (Raffel et al., 2020) as the generator
model. The T5 model is built on a transformer-
based encoder-decoder architecture. The model
was trained through an unsupervised multi-tasking
(span masking) in the Colossal Clean Crawled Cor-
pus (C4) dataset as well as through supervised
learning tasks including translation, summariza-
tion, classification, and question answering. In the
training phase, we fine-tune the T5 model by using
the linearization form of the RDF graph as the input
to target the text description as the output. During
the fine-tuning, all parameters in the models are
updated.

2.2 Plan Selection

The objective of Plan Selection is to compute
scores of linearization forms of triples with dif-
ferent orders of triple and then find the order of
triples providing the highest score as the selected
plan.

The intuition behind this idea is that permuting
the order of triples during the linearization may
yield different texts. To concretely elaborate this
sensitivity of Generator in the pipeline, we illus-
trate the example of the permutation of the order of
triples in Figure 3 and discuss the intuition using
this example. Since there are 3 triples in the exam-
ple, we can linearize RDF triples into 6 patterns
owing to the order of triples. When we input these
6 linearization forms of triples into Generator in
the pipeline, Generator returns the different gener-
ated texts. For example, with the linearization 1, it

160

Figure 3: The example of the permuting the triple or-
ders and their Linearization forms.

may generate “John E Blaha (1942-08-26), born in
San Antonio, worked as a fighter pilot”, while with
the linearization 3, it may generate ”John E Blaha,
born in San Antonio on 1942-08-26, worked as a
fighter pilot.”. We then evaluate generated texts
and found out that the BLEU score of generated
texts on the same RDF graph may differ. When we
manually select the order of triples providing the
highest BLEU score to examine the upperbound,
the BLEU score improved by around 10 points on
the development set of WebNLG 2020. Based on
this preliminary experiment, we therefore aim to
build Plan Selection, which helps select the order of
triples for Generator in the RDF-to-Text pipeline.

In Plan Selection, there are 2 steps: 1) Plan Gen-
eration and 2) Plan Evaluation.

2.2.1 Plan Generation
Plan Generation is to generate all possible orders
of triples given the input triples as plans. In the
Plan Generation step, we create all combinations
of the triple orders. The concrete example is shown
in Figure 3. In the example, we can create 6 orders
of triples. Since RDF graphs in WenNLG 2020
Challange are small, exhaustive plan generation is
feasible.

2.2.2 Plan Evaluation
Plan Evaluation is to estimate the score of a plan,
i.e., an order of triples. We design the Plan Eval-
uation architecture into three components: 1) Lin-
earization Representation, 2) RDF Graph Repre-
sentation, and 3) Plan Score as shown in Figure
4. Linearization Representation aims to learn the
representation of the Linearization form of triples
by the given order. RDF Graph representation is
to learn the representation of the RDF graph in the
low dimensional vector space. Plan Score is to
compute the score for the given triple order corre-

Figure 4: The overview design of Plan Selection.

sponding to the RDF graph by using Linearization
Representation and RDF Graph Representation.

Linearization Representation is to project the
word sequence that linearizes from one order of
triples into a low dimensional vector space. In Lin-
ear Representation, we learn the representation by
feeding the word sequence into the contextualized
language representation. Recently, contextualized
language representations (Devlin et al., 2019; Pe-
ters et al., 2018; Radford et al., 2019; Lewis et al.,
2019) gain wide attention from the NLP commu-
nity. Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) is one
of popular pre-trained models based on the trans-
former architecture (Vaswani et al., 2017). Due
to its performance, it has been used in many NLP
tasks. We, therefore, utilize BERT to learn Lin-
earization representations. Given the RDF graph
G and the plan p, we can generate the lineariza-
tion form as the sequence L = w1w2w3...wn by
mapping the plan to sequence as demonstrated in
the example of Figure 3. After obtained the se-
quence L, we always add a special classification
token [CLS] as the beginning of the sequence L.
Then, the sequence L with [CLS] token is fed to the
pre-trained BERT model. After feeding the input
sequence to the pre-train model, the final vector
representation C corresponding to [CLS] token is
used as the Linearization Representation.

RDF Graph Representation is to embed the
entire graph into the low dimensional vector space.
In RDF Graph Representation, we first employ
Node2Vec (Grover and Leskovec, 2016) to gen-
erate the node attributes. We do not represent the
node attributes with one-hot vector encoding due

161

to the sparseness of the RDF graph. Then, we use
GraphConv (Morris et al., 2019) with the global
average pool to compute the representation of the
RDF graph. We formally define the computation in
this component as follows. Given the RDF Graph
G = (X,A), where X is the matrix representing
the node attributes and A is the adjacency matrix
of RDF graph, we learn the RDF Graph Represen-
tation by the following equation:

x
′
i = W1xi +

∑

j∈N(i)

W2xj , (1)

where x
′
i is the representation of the i-th node, xi

is the attribute vector of the i-th node, xj is the
attribute vector of the j-th node, which is the neigh-
bor node of the i-th node, N(i) is a set of nodes
connecting to the i-th node, W1 and W2 are the
learnable weight matrix trained by propagating the
loss in Eq 4. We then use the calculated representa-
tions to obtain the RDF representation of graph G:

XG =
1

|V |
∑

v∈V
x′v (2)

where x
′
i is the representation of the i-th node and

V is the set of the nodes in G.
Plan Score computes the score by using Lin-

earization Representation and RDF Graph Repre-
sentation. We concatenate Linearization Represen-
tation C and RDF Graph Representation XG into
a single vector representation and feed it to the
feed-forward neural network (FFNN) as shown in
Equation (3). The output of FFNN is the score of
the plan subjected to the RDF graph:

ŷ = [C;XG]W
T
FFNN + b, (3)

where WFFNN and b are trainable parameters for
FFNN.

In the training phase, we need to build the score
for each plan as the target for Plan Selection to
learn. To obtain the score, we feed all possible
linearization of triple orders into the RDF-to-Text
generation pipeline. Then, we compute the BLEU
score for each order of triples from the corpus.
With this strategy, we can get the plan associated
with the BLEU score based on the model of the
pipeline. We then use the following objective func-
tion to optimize all trainable parameters in Plan
Selection:

L =
∑

s∈S

∑

p∈P (s)

|ys − ŷs,p|, (4)

where S is a WebNLG 2020 corpus, P (s) is a set
of plans for sample s in the corpus.

In the testing phase, we compute the scores of
all plans for the given RDF graph and then select
the plan with the highest score. The triple order
associating with that plan is linearized as the word
sequence and input to Generator in the pipeline to
generate text description.

3 Experiments and Results

3.1 Experimental Setup
The experimental setup is as follows:

Datasets: The dataset used in the experiment
is WebNLG 2020 Challenge on the RDF-to-Text
(English) task. In the task, there are 35,426, 4,464
and 1,779 RDF Graph-Text pairs for training, val-
idating and testing respectively. RDF Graph-text
pairs are generated from 16 distinct DBpedia (Auer
et al., 2007) categories: Athlete, Artist, Celestial-
Body, MeanOfTransportation, Politician, Airport,
Astronaut, Building, City, ComicsCharacter, Food,
Monument, SportsTeam, University, WrittenWork
and Company.

Settings: In our pipeline, we use the pre-trained
model t5-base from the huggingface repository3.
We set the hyperparameters in the fine-tuning pro-
cess as follows: batch: 8, learning rate: 2.0×10−5,
epochs: 20, maximum tokens: 512, and optimizer:
Adam (Kingma and Ba, 2014). The default values
are used for the other hyperparameters.

For Plan Selection, we set the following hyperpa-
rameters: batch: 8, learning rate: 0.001, epoch: 10,
and optimizer: Adam. In each component of Plan
Selection, we set the hyperparameters as follows.
In Linearization representation, we select the bert-
base-uncased model as the BERT model with the
default setting. In RDF Graph Representation, we
set the following hyperparameters for Node2Vec4:
vector dimension: 128, window size: 10, batch: 32,
walk length: 80, walk step: 10 and min count: 1 to
create node attributes. We stack GraphConv5 into 3
layers and use Global Average Pool as the pooling
method. In FF Neural Network, we use 2 hidden
layers with 410 neurons and the ReLU activation.

Baseline: The baseline in the experiment is
provided by WebNLG 2020 Challenge6.

3https://huggingface.co/models
4https://github.com/eliorc/node2vec
5https://pytorch-geometric.readthedocs.

io/en/latest/modules/nn.html#torch_
geometric.nn.conv.GraphConv

6https://webnlg-challenge.loria.fr/

162

https://huggingface.co/models
https://github.com/eliorc/node2vec
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html##torch_geometric.nn.conv.GraphConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html##torch_geometric.nn.conv.GraphConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html##torch_geometric.nn.conv.GraphConv
https://webnlg-challenge.loria.fr/challenge_2020/

Table 1: Overall Results of Our Approach on RDF-to-
Text of WebNLG 2020 (English)

Metrics
Our Approach

Baseline
Select

No
Select

BLEU 50.93 50.43 40.57
BLEU NLTK 0.482 0.476 0.396
METEOR 0.384 0.382 0.373
CHRF++ 0.636 0.637 0.621
TER 0.454 0.439 0.517
BERT P 0.952 0.955 0.946
BERT R 0.947 0.949 0.941
BERT F1 0.949 0.951 0.943
BLEURT 0.54 0.57 0.47

Table 2: Results on Seen Category of Our Approach on
RDF-to-Text of WebNLG 2020 (English)

Metrics
Our Approach

Baseline
Select

No
Select

BLEU 60.53 60.99 42.95
BLEU NLTK 0.522 0.518 0.415
METEOR 0.380 0.381 0.387
CHRF++ 0.638 0.641 0.650
TER 0.458 0.432 0.563
BERT P 0.955 0.961 0.945
BERT R 0.946 0.948 0.942
BERT F1 0.950 0.954 0.943
BLEURT 0.51 0.55 0.41

Evaluation Settings: There are two evaluation
settings: 1) Automatic Evaluation and 2) Human
Evaluation.

In Automatic Evaluation, the evaluation
metrics are BLEU (Papineni et al., 2002),
BLEU NLTK7, METEOR (Banerjee and Lavie,
2005), CHRF++ (Popović, 2017), TER (Snover
et al., 2006), BERT Precision (BERT P) (Zhang
et al., 2019) , BERT Recall (BERT R) (Zhang
et al., 2019), BERT F1 (Zhang et al., 2019) and
BLEURT (Sellam et al., 2020).

In Human Evaluation, the evaluation metrics are:

• Data Coverage: this metric assesses how
much information from the data has been cov-
ered in the text.

challenge_2020/
7https://www.nltk.org/_modules/nltk/

translate/bleu_score.html

Table 3: Results on Unseen Category of Our Approach
on RDF-to-Text of WebNLG 2020 (English)

Metrics
Our Approach

Baseline
Select

No
Select

BLEU 43.82 43.07 37.56
BLEU NLTK 0.436 0.430 0.370
METEOR 0.379 0.376 0.357
CHRF++ 0.618 0.618 0.584
TER 0.472 0.456 0.510
BERT P 0.947 0.949 0.944
BERT R 0.944 0.945 0.936
BERT F1 0.945 0.946 0.940
BLEURT 0.50 0.54 0.44

Table 4: Results on Unseen Entity of Our Approach on
RDF-to-Text of WebNLG 2020 (English)

Metrics
Our Approach

Baseline
Select

No
Select

BLEU 50.74 49.40 40.22
BLEU NLTK 0.504 0.490 0.393
METEOR 0.405 0.398 0.384
CHRF++ 0.672 0.669 0.648
TER 0.410 0.410 0.476
BERT P 0.958 0.961 0.949
BERT R 0.956 0.958 0.950
BERT F1 0.957 0.959 0.949
BLEURT 0.61 0.64 0.55

• Relevance: this metric assesses whether the
text contains any non-presented predicates.

• Correctness: this metric assesses whether the
text describes predicates with correct objects.

• Text Structure: this metric assesses whether
the text is grammatical and well-structured,
written in good English.

• Fluency: this metric assesses the naturalness
of generated texts.

3.2 Results
3.2.1 Automatic Evaluation
In Automatic Evaluation, the results are listed in
Tables 1-4. These results are provided by WebNLG
2020 (Castro-Ferreira et al., 2020; Moussalem
et al., 2020).

163

https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://webnlg-challenge.loria.fr/challenge_2020/
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Figure 5: Overall Results of Human Evaluation on
RDF-to-Text of WebNLG 2020 (English).

Figure 6: Seen Category Results of Human Evaluation
on RDF-to-Text of WebNLG 2020 (English).

In our approaches, the pipeline with Plan Selec-
tion slightly outperforms the pipeline without Plan
Selection on both BLEU score metrics (BLEU and
BLEU NLTK) as shown in Table 1. In the seen
category as presented in Table 2, it turns out that
our approach with Plan Selection slightly yields
better performance than the approach without Plan
Selection on only BLEU NLTK. With this obser-
vation, the Plan Selection model therefore does
not contribute much to the seen category and even
degrades the performance in some cases. Neverthe-
less, on the unseen category and unseen entity eval-
uation in Tables3-4, we found our approach with
Plan Selection improves both BLEU score metrics
when comparing with our approach without Plan
Selection.

Based on these results in Tables 2-4, the ap-
proach building on the T5 model works well on
the seen category and it may not require the plan
selection process. Still, on the unseen category
and unseen entity, there is a room, where the plan
selection could play a role in improving the perfor-
mances.

So far, we are interested in the BLEU metric be-
cause we optimize the Plan Selection model using

Figure 7: Unseen Category Results of Human Evalua-
tion on RDF-to-Text of WebNLG 2020 (English).

Figure 8: Unseen Entity Results of Human Evaluation
on RDF-to-Text of WebNLG 2020 (English).

the BLEU metric. To further investigate the plan
selection in this approach, we might optimize the
plan selection using other metrics

Overall, our approach with and without the plan
selection outperforms the baseline in most metrics
except for CHRF++ as shown in Table 1. Although
our approach with Plan Selection could slightly
improve some metrics, the results do not explic-
itly surpass our approach without Plan Selection.
Therefore, the current contribution of Plan Selec-
tion is very limited.

3.2.2 Human Evaluation
In Human Evaluation, the results are illustrated
in Figure 5-8. These results are also provided by
WebNLG 2020 (Castro-Ferreira et al., 2020; Mous-
salem et al., 2020). Due to the limitation of the
WebNLG 2020 submission, only our approach with
Plan Selection is evaluated in the Human Evalua-
tion setting. Note that the reference texts used in
the automatic evaluation are also evaluated in this
setting.

Overall results in Figure 5 show our approach
outperforms the baseline in the relevance metric,
the text structure metric, and the fluency metric;

164

however, the baseline provides the better results in
the data coverage metric and the correctness metric.
According to the statistical testing, we found statis-
tically significant differences in the data coverage
result, the correctness result, and the fluency re-
sult. This indicates our approach provides fluency
text, while it lacks the coverage and the correctness
corresponding to RDF inputs.

To further investigate the results, we analyze the
results based on the seen category, the unseen cat-
egory, and the unseen entity. As shown in Figure
6-8, the data coverage result, the text structure, and
the fluency follow the overall result’s trend. Nev-
ertheless, the relevance result and the correctness
result are varied. It turns out that on the unseen
entity our approach could not outperform the base-
line in the relevance result; however, our approach
achieves even better relevance result than the ref-
erence texts in the unseen category. In the seen
category, our approach yields higher correctness re-
sult than the baseline, while in the unseen category
and unseen entity the correctness results follow the
overall trend.

In Human Evaluation, we notice that our ap-
proach severely suffers from the data coverage as
shown in Figure 6-8. The gap between our ap-
proach and the reference (even the baseline) is large.
This is the limitation of our approach, where we do
not force the model to use all inputs.

4 Conclusion

In this paper, we introduce RDF-to-Text Generation
with Plan Selection for WebNLG 2020 challenge.
The approach comprises two parts: 1) the pipeline
for RDF-to-Text Generation and 2) Plan Selection.
In the pipeline, we follow the state-of-the-art model
for RDF-to-Text Generation (Kale, 2020), while in
Plan Selection we propose a method for selecting
the order of triples for the pipeline. Overall, we
observed a slight improvement in the BLEU score
when applying Plan Selection. Nevertheless, Plan
Selection only optimized the BLEU score in this
study. In the future, we aim to investigate optimize
Plan Selection in other metrics.

Acknowledgments

This paper is based on results obtained from a
project commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO) JPNP20006.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Thiago Castro-Ferreira, Claire Gardent, Nikolai
Ilinykh, Chris van der Lee, Simon Mille, Diego
Moussalem, and Anastasia Shimorina. 2020. The
2020 bilingual, bi-directional webnlg+ shared task:
Overview and evaluation results (webnlg+ 2020). In
Proceedings of the 3rd WebNLG Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+ 2020), Dublin, Ireland (Virtual). Associ-
ation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
NAACL-HLT, pages 4171–4186.

Bayu Distiawan, Jianzhong Qi, Rui Zhang, and Wei
Wang. 2018. Gtr-lstm: A triple encoder for sentence
generation from rdf data. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1627–1637.

Thiago Castro Ferreira, Diego Moussallem, Emiel
Krahmer, and Sander Wubben. 2018. Enriching the
webnlg corpus. In Proceedings of the 11th Interna-
tional Conference on Natural Language Generation,
pages 171–176.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg
challenge: Generating text from rdf data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864.

Shizhu He, Cao Liu, Kang Liu, and Jun Zhao.
2017. Generating natural answers by incorporating
copying and retrieving mechanisms in sequence-to-
sequence learning. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 199–
208.

Mihir Kale. 2020. Text-to-text pre-training for data-to-
text tasks. arXiv preprint arXiv:2005.10433.

165

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Christopher Morris, Martin Ritzert, Matthias Fey,
William L Hamilton, Jan Eric Lenssen, Gaurav Rat-
tan, and Martin Grohe. 2019. Weisfeiler and leman
go neural: Higher-order graph neural networks. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 4602–4609.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277.

Diego Moussalem, Paramjot Kaur, Thiago Castro-
Ferreira, Chris van der Lee, Conrads Felix Shimo-
rina, Anastasia, Michael Röder, René Speck, Claire
Gardent, Simon Mille, Nikolai Ilinykh, and Axel-
Cyrille Ngonga Ngomo. 2020. A general bench-
marking framework for text generation. In Pro-
ceedings of the 3rd WebNLG Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+ 2020), Dublin, Ireland (Virtual). Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Maja Popović. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference
on machine translation, pages 612–618.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. arXiv preprint arXiv:2004.04696.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200. Cambridge, MA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encod-
ing and decoding for data-to-text generation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, volume 1.

166

