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Abstract

Strong regional variation, together with the lack of standard orthography, makes Swiss German
automatic speech recognition (ASR) particularly difficult in a multi-dialectal setting. This pa-
per focuses on one of the many challenges, namely, the choice of the output text to represent
non-standardised Swiss German. We investigate two potential options: a) dialectal writing – ap-
proximate phonemic transcriptions that provide close correspondence between grapheme labels
and the acoustic signal but are highly inconsistent and b) normalised writing – transcriptions
resembling standard German that are relatively consistent but distant from the acoustic signal.
To find out which writing facilitates Swiss German ASR, we build several systems using the
Kaldi toolkit and a dataset covering 14 regional varieties. A formal comparison shows that the
system trained on the normalised transcriptions achieves better results in word error rate (WER)
(29.39%) but underperforms at the character level, suggesting dialectal transcriptions offer a
viable solution for downstream applications where dialectal differences are important. To bet-
ter assess word-level performance for dialectal transcriptions, we use a flexible WER measure
(FlexWER). When evaluated with this metric, the system trained on dialectal transcriptions out-
performs that trained on the normalised writing. Besides establishing a benchmark for Swiss
German multi-dialectal ASR, our findings can be helpful in designing ASR systems for other
languages without standard orthography.

Index Terms: speech recognition, human-computer interaction, Swiss German dialects

1 Introduction

Over the last few years, advancements in speech technology (word error rates (WER) less than 5%, (Chiu
et al., 2018; Xiong et al., 2018; Wang et al., 2019)) have lead to an increased demand for automatic speech
recognition (ASR) systems outside of a small set of standardised, high resource languages. However,
developing ASR systems for non-standard languages and dialects is difficult since, in addition to the
lack of a writing standard, one has to deal with a high degree of regional variation coupled with limited
training resources. Thus, in such settings, WERs of more than 40% are common (Ali et al., 2017).

Swiss German is a typical case of a non-standard language for which there is a growing interest in
ASR technology. The term Swiss German describes a family of mutually intelligible Allemanic dialects
spoken in the northern two-thirds of Switzerland. Despite carrying the official status of a dialect, Swiss
German is spoken in all spheres of oral communication and has long enjoyed a high degree of cultural
value and prestige, unlike many other dialects (Hogg et al., 1984). In the past, the linguistic situation in
the region has been described as a case of ‘medial diglossia’ (Kolde, 1981), in which standard German
is used for written communication and spoken in formal settings, while Swiss German is primarily used
for everyday spoken communication. Being the primary language for approximately five million people
in the region, Swiss German has a growing demand for automatic processing and in particular ASR.
However, without a single orthography it is difficult to determine not only how to convert speech to text,
but also which text to convert it to.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: Two potential approaches to Swiss German ASR for the phrase ‘viele Leute’ (‘many people’).

In this paper, we propose the first multi-dialect speech-to-text (STT) framework for Swiss German
dialects1 and explore the efficacy of two potential target textual representations. The first uses dialectal
transcriptions (option 1 in Figure 1), a writing system proposed by (Dieth, 1986) intended to accommo-
date all dialects of Swiss German in a manner which closely reflects the sound of the spoken language,
while still being easily readable. This is a loosely phonemic spelling system that draws on familiar
spelling norms from standard German, restricting the space of possible writings for a given word. It
is, however, often subject to transcribers’ interpretation leading to considerable intra- and inter-dialectal
inconsistency. The second option is to use normalised transcriptions (option 2 in Figure 1), a word-
level many-to-one mapping between Swiss variants and a single canonical writing resembling standard
German whenever possible. Using a normalised transcription should aid ASR by reducing the effect of
lexical variability on the target side. On the other hand, it might be harder to establish alignments be-
tween the dialectal sound and the standard writing which does not represent the original pronunciation.
There is currently no conclusive evidence as to which of the two options yields better results.

The experiments presented in this paper are intended to identify an optimal approach to dealing with
Swiss German and non-standard languages in general. The resulting ASR systems, featuring a single
unified acoustic model (AM) trained with the time-delay neural network (TDNN) architecture (Waibel
et al., 1989) following Kaldi’s2 WSJ chain recipe (Peddinti et al., 2015), are the first multi-dialectal
solutions for Swiss German and constitute a baseline for future improvements.

2 Related Work

In addressing the topic of multi-dialectal ASR for non-standard languages, our work draws on previous
studies carried out in the context of Arabic dialects (e.g. Ali et al. (2014; 2016)). In particular, Khurana
et al. (2016) successfully trained a multi-dialect ASR system with a single acoustic model (AM) using
approximately 1,200 hours of dialectal Arabic speech data. Leveraging a combination of TDNNs and
(bidirectional) long-short term memory networks (bi-LSTMs), trained on speed and volume perturbed
data, they reported a WER of 14.7% on held-out test data sampled from different dialects.

In the context of Swiss German, previous studies on ASR have typically focused on one particular
regional variety. For example, Imseng et al. (2012) trained an ASR system on the MediaParl corpus,
containing Swiss German speech data from the canton of Valais with text transcriptions in standard Ger-
man. The authors used a triphone-based AM trained with Gaussian mixture models and Hidden Markoc
Models (GMM-HMM) and a bigram language model (LM), reporting WER scores of 68.4%. Follow-
ing this, more advanced AMs have been applied to the same dataset, namely a three-layer ANN-HMM
(Razavi et al., 2014), a three-layer CNN-HMM (Palaz, 2016), and a three-layer sMBR discriminative
ANN-HMM optimised towards the state-level error rate (Dubagunta and Doss, 2019), with WERs of

1https://github.com/yunigma/Kaldi-for-ASR-of-Swiss-German (10.10.20).
2http://kaldi-asr.org/doc/index.html (13.08.20).
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25.5%, 23.5% and 18.7%, respectively. In another study, Garner et al. (2014) trained an ASR system on
a corpus of radio news broadcasts in Valais German annotated with approximate dialectal transcriptions,
achieving 19.4% WER. Note though that the language model used (LM) was trained on the training
and evaluation data together and thus failed to provide an accurate estimation of performance on un-
seen data. Finally, Stadtschnitzer and Schmidt (2018) adapted a standard German ASR system to better
handle Swiss German varieties given a small corpus of weather reports, reporting WERs of 23.8% on a
challenge corpus of dialectal and standard German speech developed by Baum et al. (2010).

An important aspect of non-standardised-language speech recognition is its evaluation. Usual metrics
such as WER and character error rate (CER) assume that only one word or character is correct for each
particular position in a sequence. For languages without a standardised orthography, there can be multiple
permissible spelling variants for the same word. Therefore, neither WER nor CER are flexible enough
to provide an accurate picture of system performance. Ali et al. (2017) proposed WERd (word error rate
for dialects) for evaluating dialectal Arabic ASR. They gathered a large collection of potential spelling
variants from social media, using a small context window for a given target word or phrase. Valid variants
were then found according to occurrence frequencies and normalised with edit distance scores. Then,
when comparing the system hypothesis to the reference transcription, a word was considered correct if
deemed a valid spelling variant of the corresponding word in the reference. In line with this approach,
we exploit the many-to-one mappings provided by the normalised transcriptions in our corpus to better
evaluate performance on the dialectal transcriptions.

3 Data

For our experiments, we used the second release of the ArchiMob corpus of Swiss German (Samardžić
et al., 2016; Scherrer et al., 2019). The corpus consists of 43 interview recordings with native speakers
in 14 different Swiss German dialects, totaling approximately 70 hours of raw speech data.3 These inter-
views have been manually transcribed by five native-speaker annotators, with the audio signals aligned
to utterance segments typically of around 4-8 seconds in length.

3.1 Transcription Types

The ArchiMob corpus provides two types of transcriptions. Firstly, the Dieth orthography, which con-
stitutes the dialectal transcriptions, is intended to convey the true sound of spoken Swiss German using
spelling conventions from standard German (Dieth, 1986). This spelling ‘system’ essentially guides the
writer towards producing relatively consistent spellings, making it easier for anyone familiar with Ger-
man to read, while still representing the variety and pronunciations of all Swiss German dialects. Thus,
this orthography can be considered a loosely phonemic textual representation, albeit with considerable
variation. Despite the fact that it has not been adopted for use by native speakers, it is commonly used
by trained annotators for the purpose of manually transcribing Swiss German speech material according
to their intuition of correct pronunciation.

The second type of transcription is a semi-automatically normalised version of the original Dieth tran-
scriptions, where all surface form spelling variants of the same word are mapped to a single normalised
form that more closely resembles standard German. This normalisation layer was attained by applying
character-level machine translation trained on a small amount of manually normalised transcriptions from
the corpus (see Samardžić et al. (2015) , Scherrer et al. (2019)). While this layer by no means constitutes
a translation into standard German, it provides a word-level annotation layer that is intended to facilitate
automatic processing. Comparing the distinct word types of these two transcriptions shows a consider-
able effect, reducing the number of distinct word forms (types) from 73,899 to 31,755. Table 1 provides
some example instances where multiple Swiss German surface forms in the dialectal transcriptions are
mapped to a single standard German form.

3Note, dialects are not equally represented in the ArchiMob dataset. The approximate amount of speech data per regional va-
riety is given as follows: Zurich (20hrs), Aargau (10hrs), Bern (8hrs), Lucerne (8hrs), Basel-Stadt (6.5hrs), Glarus (3.3hrs), Uri
(1.6hrs), Schwyz (1.6hrs), Valais (1.6hrs), Nidwalden (1.6hrs), Graubünden (1.6hrs), Basel-Landschaft (1.6hrs), Schaffhausen
(1.6hrs), St. Gallen (1.6hrs).
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Normalised Dialectal

abbauen abbaue, abboue, abbuue
abend aabe, aabed, aaben, aabet, aabid, aabig, abed, abend, abet, abig,

abud, obet, obig, oobig, zabig, äbig, òòbed, òòbig
mitbekommen mitbecho, mitbechoo, mitbichoo, mitbikho

Table 1: Examples of normalisation on dialectal surface variants in the Dieth orthography.

3.2 Data Preparation
For the purpose of our experiments, we split the corpus into training, development and evaluation sets
so that they all have a balanced distribution of dialects and speakers. After preprocessing and removing
utterances containing overlapping speech signals and anonymised personal names, the sets were reduced
to 67,693, 1,710, 1,486 speech utterances, respectively, totalling slightly more than 60 hours of speech
data. The small size of the development and evaluation sets was motivated in order to leverage as much
data as possible for AM training.

4 Methods

In this section, we describe our approach to building a multi-dialectal ASR system for Swiss German
which follows the classical pipeline approach depicted in Figure 2. In particular, we discuss the steps
taken to establish a suitable pronunciation lexicon, our choices in training AMs and LMs and the evalu-
ation set up.

Feature
Extraction Decoding

Acoustic
Model

Pronunciation
Model

Language
Model

Output
transcription

Input speech
signal

Signal
processing Hypothesis search

das isch öppis gsi

OR

das ist etwas gewesen

Figure 2: Standard ASR pipeline for Swiss German with potential target textual representations. Note,
the output transcription of an input utterance is intended to be either dialectal (top) or normalised (bot-
tom) depending on the system, not both.

4.1 Pronunciation Lexicon
We took different approaches in establishing pronunciation lexicons for each of the two target textual
representations. First, in the case of dialectal writing, we relied on the loosely phonemic representation
and derived a pronunciation string for each written word in the training set by segmenting its constituent
graphemes with simple heuristics. For example, Swiss German schwiirigkait (German Schwierigkeit,
English ‘difficulty’) is mapped to the pronunciation string ‘sch w i r i g k ai t’.

Second, in the case of normalised writing, we exploited an 11,000-word pronunciation dictionary,
mapping standard German words to their Swiss German pronunciations (Schmidt et al., 2020). This
dictionary contains manually annotated pronunciation strings (in the SAMPA alphabet (Wells and others,
1997)) for six major regional varieties, namely Zurich, St. Gallen, Bern, Basel, Visp and Nidwalden. To
complete the coverage of our data set, we trained a transformer-based a grapheme-to-phoneme (g2p)
model4 on the available pairs (standard German, Swiss SAMPA) and applied it on the words for which

4https://github.com/cmusphinx/g2p-seq2seq (12.08.20).

https://github.com/cmusphinx/g2p-seq2seq
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manual Swiss SAMPA annotation is missing. We trained the g2p model with the default settings5 using
the pronunciations given for only one of the regional varieties, namely Zurich.

While the overall word-level accuracy of the g2p model, estimated on a held out test set, was only
51.6%, the output still proved useful for the ASR pipeline since it provided good coverage with plausible
g2p mappings confirmed by manual inspection of the output. Table 2 shows the percentage of lexical
coverage in the train, validation and test sets for each transcription type after these steps.

Split Dialectal Normalised

Train 100% 99.9%
Dev 80.2% 82.7%
Test 79.9% 84.8%

Table 2: Pronunciation lexicon coverage on dataset splits. Note, while coverage of the normalised train-
ing set is almost complete, a small number of words were missed due to a mismatch in graphemes
between the g2p training data and the ArchiMob training set.

4.2 Language Model
The language modeling component in all systems is a statistical N-gram LM. An intrinsic evaluation of
several techniques, using test set perplexity (PPL) as a metric, revealed that 3-gram LMs with interpolated
modified Kneser-Ney smoothing (Chen and Goodman, 1999), as implemented with MITLM (Hsu and
Glass, 2008)6, consistently yielded the best performance for the dialectal transcriptions. Meanwhile,
5-gram LMs provided additional improvement for the normalised transcriptions. We used these settings
for our experiments with varied size of the training data.

The ArchiMob corpus training set provides a total of 76K text utterances which we used for training
our base LMs. To test the impact of a larger LM, we created an additional LM trained on the ArchiMob
corpus plus some out-of-domain (OOD) data. In order to derive the optimum LM, we gradually concate-
nated utterances from additional corpora selected for each transcription type individually and trained a
series of 3-gram LMs, each time increasing the number of training utterances by 10,000. We first added
Swiss corpora and then proceeded with standard German. In order to ensure comparability between
LMs, the vocabulary must be consistent (Buck et al., 2014). Therefore, we restricted it to match that of
the ArchiMob corpus.

Figure 3 depicts the resulting test set PPL scores with the variable increase in training utterances.
As expected, dialectal spelling LMs have considerably higher PPLs than their normalised counterparts.
This indicates the challenge of handling a high degree of lexical variety. For both transcription types,
however, slight improvements in test set PPL are attained by including a small amount of OOD data from
the additional corpora. For dialectal spelling, the minimum PPL is achieved with up to 90,000 utterances,
while for normalised text, PPL starts to increase slowly after 80,000 utterances. Following these tests,
we selected larger LMs for our ASR experiments, namely the 90k-utterance LM for dialectal writing and
the 80k-utterance LM for normalised writing.

4.3 Flexible Evaluation: FlexWER
To score the performance of the systems, besides using the standard metrics of WER and CER, we
introduce a soft evaluation measure called FlexWER. The general idea follows Ali et al. (2017), however,
we rely on the word-level mapping between the dialectal and the normalised transcriptions provided in
the ArchiMob corpus rather than using external sources. Since in our test set we dealt with a closed
vocabulary from the corpus, we do not introduce any further metrics, such as an edit distance threshold.
Using this measure, a word in the system output hypothesis transcription is considered correct if it shares
the same normalised word as the corresponding word in the ground-truth transcription.

5Default settings for g2p-seq2seq are as follows: size of each hidden layer = 256, number of layers = 3, size of the filter
layer in a convolutional layer = 512, number of heads in multi-attention mechanism = 4.

6https://github.com/mitlm/mitlm (10.08.20).

https://github.com/mitlm/mitlm
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Figure 3: Test set PPL scores for LMs trained on the dialectal transcriptions and normalised transcriptions
with additional OOD data. The grey dotted line indicates the upper limit of in-domain utterances (76K).

4.4 Experimental Setup

As a baseline, we built an ASR system based on the WSJ recipe7 provided in the Kaldi toolkit. We
used 13-dimensional Mel-Frequency Cepstral Coefficients (MFCC) features with cepstral mean-variance
normalisation (CMVN), the first and second derivatives, and Linear Discriminative Analysis (LDA) and
Maximum Likelihood Linear Transform (MLLT) transformations. The AM was discriminatively trained
using a DNN with state-level minimum bayes risk (sMBR) criterion. The alignment between acoustic
signal segments and transcriptions was attained with the GMM-HMM discriminative model with 4,000
senones and 40,000 Gaussians. Since no multi-dialectal ASR baseline exists for Swiss German, we
decided to use this simple Kaldi setup as a starting point for our experiments as it allows for comparison
between the contributions made by both the AM and LM components. We trained one AM on the
dialectal transcriptions and a second AM on the normalised transcriptions and combined these with the
pronunciation lexicons and LMs described above to derive our final systems.

For the main models, the TDNN architecture from the WSJ chain recipe was adapted (Peddinti et al.,
2015) based on the GMM-HMM alignment from Kaldi pipeline. To increase the amount of training data
and improve its robustness, we performed audio speed perturbation with speed factors of 0.9, 1.0, 1.1,
followed by volume perturbation. In addition to the features used in the baseline model, we also included
100-dimensional iVectors extracted from each speech frame in order to normalise the variation between
speakers and dialectal varieties.

In total, we trained six different systems (three for each transcription type): (i) NNET-DISC-baseLM
(baseline) — discriminatively trained NN AM with the base LM trained on the ArchiMob data only;
(ii) TDNN-iVector-baseLM — TDNN AM with the base LM; (iii) TDNN-iVector-dial90k — TDNN
AM with the LM trained on the ArchiMob and OOD data; (iv) NNET-DISC-baseLM normalised —
similar to the baseline set up but trained with the normalised transcriptions; (v) TDNN-iVector-baseLM
normalised — similar to the TDNN-iVector-baseLM set up but trained with the normalised transcrip-
tions; (vi) TDNN-iVector-norm80k — TDNN AM with the LM trained on the normalised ArchiMob
transcriptions and OOD data.

All the systems are evaluated with the standard WER measure on both development and test sets.
The systems trained on the dialectal transcription were additionally evaluated with FlexWER measure
to account for permissible spelling variation. Finally, we report CER scores too. While this measure

7https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj (01.05.20).

https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj
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Transcription AM LM Dev Test

WER FlexWER CER WER FlexWER CER

dialectal NNET-DISC (baseline) dial-baseLM 54.85 32.87 22.7 54.39 32.09 22.19
dialectal TDNN-iVector dial-baseLM 43.18 23.3 15.23 42.38 21.53 14.81
dialectal TDNN-iVector dial90k 41.88 21.94 14.97 42.16 21.27 14.64

normalised NNET-DISC norm-baseLM 43.30 – 24.82 40.81 – 23.19
normalised TDNN-iVector norm-baseLM 31.96 – 16.97 29.91 – 15.20
normalised TDNN-iVector norm80k 31.65 – 16.48 29.39 – 14.77

Table 3: WER/FlexWER (where applicable) and CER evaluation of the models.

is typically used when the word boundaries are unclear, we use CER as an indicator of subword-level
matches, which are potentially interesting for capturing dialectal variation.

Note that the main goal of our experimental setup is not to establish the advantage of one model over
another (e.g. TDNN over NNET-DISC), but to investigate the effect of the writing choice on the target
side. To observe this effect, one should compare each dialectal setting with its corresponding normalised
setting in Table 3.

5 Results & Discussion

The evaluation results presented in Table 3 indicate that according to the standard WER metric, the best
system for multi-dialectal ASR for Swiss German is the one trained on the normalised transcriptions,
with a test set WER of 29.39% (see the Appendix for examples of model predictions). Normalised
transcriptions effectively reduce the high degree of noise in the transcriptions, allowing for more reliable
and robust LMs and also reducing the amount of OOV words in our automatically extended lexicon. The
better performance of these models on the test set compared to the development set may be explained by
a slightly higher lexicon coverage for the test set: 84.8% vs. 82.7% (see Table 2).

If we consider the FlexWER evaluation measure, which accounts for permissible spelling variants,
the best scores are achieved by the dialectal system TDNN-iVector-dial90k (21.27%). The major dis-
advantage of systems trained on dialectal transcriptions is that the higher degree of lexical variability
hinders the contribution of the LM and, for getting more reliable performance estimation, additional
normalisation of the results, or even manual evaluation, should be performed. At the same time, the nor-
malised models trained on transcriptions that poorly reflect the pronunciation and thus rely on a simple
g2p-based pronunciation lexicon generally miss more subword-level information. According to CER,
which is more sensitive to more precise correspondence between the acoustic signal and the annotation
than WER, the systems trained on the dialectal transcriptions perform slightly better than their nor-
malised counterparts. This is most noticeable on the development set, where TDNN-iVector-dial90k and
TDNN-iVector-norm80k systems score 14.97% and 16.48%, respectively. Therefore, these models may
be preferable when dialectal variability is desirable in the output transcriptions.

For the normalised transcriptions, leveraging a slightly larger LM results in only minor improvements
in WER over the baseline. We hypothesise that this is a consequence of the restricted domain of the
ArchiMob dataset, which limits the effectiveness of any additional information provided by extending
LM training data. Further evaluation on OOD data is still needed to answer the question of how well the
system is able to adapt to new domains given improved LMs.

The evaluation results can differ between dialects depending on how well a dialect is represented in
training data and the degree to which certain dialects differ from the majority of the training data. To
attain an impression of these effects, we report WER scores as a distribution over individual dialects (see
Figure 4).

Firstly, the effect of the proportion of a corresponding dialect in the training data does not seem to
be borne out. The Graubünden dialect has the lowest WER but is represented in the ArchiMob corpus
with only a single interview. Similarly, Basel-Landschaft and Schaffhausen varieties, which also have
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Figure 4: WER of the dialectal TDNN-iVector system evaluated on different dialects.

only one interview each in the corpus, show lower error rates than regional varieties which are well-
represented in the corpus (e.g. Aargau, Bern and Lucerne).

Secondly, the degree of similarity between different dialects demands further investigation and is out
of the scope of the current paper. Some tendencies, however, can be noticed from the plot: the system
performs considerably worse when evaluated on the Valais dialect compared to other dialects. This
observation reflects the fact that Swiss German from the canton of Valais is further removed from the
other varieties.

Most notably, evaluation on the Graubünden dialect is consistently good, outperforming the results on
the Zurich dialect which comprises the largest part of the training data (12 interviews). This peculiarity
may be due to the fact that recognition of a dialect, in our case, is very speaker specific. In the ArchiMob
corpus, many dialects have only one interview. This means that they are also represented by only a single
speaker. Therefore, in order to attain a more reliable picture of dialect-specific speech recognition with
a unified ASR system, more speakers are needed for under-represented dialects.

A general limitation of our work is that it uses a relatively closed domain covered by the ArchiMob
corpus (personal narratives on a similar topic). To get an idea of how our models perform outside of
this domain, we perform an additional OOD evaluation for our dialectal systems using a small data set
with appropriate Dieth orthography transcriptions. The results of this evaluation are predictably worse:
59.81% WER and 37.83% FlexWER for the TDNN-iVector-baseLM system. We suspect that poten-
tial improvements can be gained by (a) applying advanced training architectures including end-to-end
systems; and, of course, (b) increasing the amount of training data to cover more domains and speak-
ers. Since this paper focuses on the efficacy of the target textual representation and the corresponding
pronunciation lexicons, we leave further investigations of these factors for future work.

6 Conclusion

In this paper, we have introduced the first multi-dialect ASR framework for Swiss German that exploits
a single unified acoustic model. We have tested currently popular techniques for dealing with noisy data
and established a solid baseline for future studies in ASR for Swiss German. We have shown a clear
benefit of working with normalised transcriptions (provided a suitable pronunciation lexicon is at hand),
but also that loosely phonemic dialectal writing yields output potentially interesting for downstream
applications specifically targeting regional variation in non-standard languages.
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Voraussetzungen Und Formen Sprachlicher Interaktion Verschiedensprachiger Jugendlicher in Den Schweitzer
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Appendix

Dialectal TDNN-iVector + dial90k

reference glòüb ı̀ch echli organisiert uf al fäl am aabig wo de vatter hai cho isch isch aifach niit me daa gsii
prediction glòüb ı̀ch echli organisiert uf al fäl am aabig *** oder vatter *** *** haichoo isch aifach *** nimi daa gsii
operation C C C C C C C C C D S C D D S C C D S C C

reference han ich den min maa isch drı̀ı̀ssgi gsii und ı̀ı̀ch äbe *** zwaijezwänzgi guet
prediction han ich de mim ja esch driissgi gsii und ich äbe zwai zwänzgi guet
operation C C S S S S S C C S C I S C

Normalised TDNN-iVector + norm80k

reference glaube ich ein klein organisiert auf alle fälle am abend wo der vater heim gekommen ist ist einfach nicht mehr da gewesen
prediction glaube ich ein klein organisiert auf alle fälle am abend *** oder vater *** *** *** ist einfach nichts mehr da gewesen
operation C C C C C C C C C D S C D D D C C S C C C

reference habe ich dann *** mein mann ist dreissig gewesen und ich eben zweiundzwanzig gut
prediction habe ich dann meine man ja ist dreissig gewesen und ich eben zweiundzwanzig gut
operation C C C I S S C C C C C C C C

Table 4: Examples of predictions on test data by models trained on 1) dialectal and 2) normalised
transcriptions. Asterisk symbols are used in cases of model deletions and insertions instead of absent
words.
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