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Çağrı Çöltekin
University of Tübingen

Department of Linguistics
ccoltekin@sfs.uni-tuebingen.de

Abstract

This paper describes a set of experiments for discriminating between two closely related language
varieties, Moldavian and Romanian, under a substantial domain shift. The experiments were
conducted as part of the Romanian dialect identification task in the VarDial 2020 evaluation
campaign. Our best system based on linear SVM classifier obtained the first position in the
shared task with an F1 score of 0.79, supporting the earlier results showing (unexpected) success
of machine learning systems in this task. The additional experiments reported in this paper
also show that adapting to the test set is useful when the training set is from another domain.
However, the benefit of adaptation becomes doubtful even when using a small amount of data
from the target domain.

1 Introduction

Language identification can be performed with near-perfect accuracy from a short text in many settings
(Jauhiainen et al., 2019, for a recent survey of the solutions). However, automatic discrimination of texts
from closely related languages or dialects remains to be a challenging task. The successful discrimination
of texts between closely related language varieties may improve language identification for practical
applications, as well as providing further insights into the differences between these linguistic varieties.
Recent VarDial evaluation campaigns have featured discrimination challenges between related languages
(Zampieri et al., 2017; Zampieri et al., 2018; Zampieri et al., 2019). The present study is conducted
within the scope of the VarDial 2020 (Găman et al., 2020) Romanian Dialect Identification (RDI) task.

Romanian and Moldavian are two closely related language varieties spoken in Romania and the Re-
public of Moldavia respectively. The languages, particularly in written form, are very similar – to the
extent that discrimination by human annotators is barely above chance levels (Găman and Ionescu, 2020).
However, as evidenced by the last year’s evaluation campaign (Zampieri et al., 2019), the machine learn-
ing methods applied to the task seem to be more successful (Chifu, 2019; Onose et al., 2019; Tudoreanu,
2019; Wu et al., 2019). The MOROCO corpus (Butnaru and Ionescu, 2019) used in last year’s RDI
shared task consists of texts from online news. Although the data is fairly balanced with respect to the
topics, and some of the obvious non-linguistic cues (e.g., named entities) are removed from the data, the
data may still contain some unintended non-dialectal cues (e.g., style differences between the newspapers
in two countries). A natural question that arises is whether the machine learning methods tap into such
non-obvious cues not relevant to linguistic differences, or the data contains a strong signal for identify-
ing the linguistic variation. To this end, the present shared task includes data from two different domains
(or genres). The source domain is the MOROCO corpus of newspaper text, and the target domain texts
consist of a newly collected data set gathered from Twitter.

The systems used in the current study are based on ensembles of linear SVM models with a simple
adaptation mechanism that retrains the model(s) with the data augmented by the test instances that are
classified by a base classifier with high confidence. Besides the adaptation to the test set at prediction
time, we also experiment with a training set selection method based on reverse-prediction. This method is
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based on training a classifier on a small target data (development set) and selecting the training instances
which the classifier predicts with high confidence.

In the remainder of this paper, we describe the system, present the results, and provide a discussion
with brief conclusions.

2 System Description

The main task at hand is predicting the language variety (Romanian or Moldavian) under domain shift.
The participants were provided with a large annotated corpus from the source domain (newspaper text)
and a small annotated development set from the target domain. The evaluation is based on the perfor-
mance of the systems on the target domain.

All experiments reported in this study are performed using linear SVM classifiers with sparse character
and word n-gram features. Overlapping character and word n-gram features (for all ‘n’ from 1 to a
maximum value, determined during tuning) are combined into a single feature set, and weighted using
BM25 (Robertson et al., 2009). The input is tokenized using a simple regular expression tokenizer that
treats any contiguous alphabetic or non-space character sequence as a token. Except for (optional) case
normalization (treated as a hyperparameter), and filtering based on low document frequency (also another
hyperparameter), no preprocessing or filtering is performed. The same system has been used with minor
differences for discriminating similar languages in the earlier VarDial evaluation campaigns (Çöltekin
and Rama, 2016; Çöltekin and Rama, 2017; Çöltekin et al., 2018), and obtained top or near-top results.
The detailed description of the approach can be found in these papers.

For some of the experiments, we use an ensemble of linear SVM classifiers described above trained
on different, non-overlapping parts of the data. The predictions of the individual classifiers are combined
using weighted majority voting where the distances from the decision boundary are used as weights.

Another interesting aspect of the system is an adaptation technique used during prediction. The adap-
tation method is similar to the adaptation method used in a few systems in earlier VarDial shared tasks
(Jauhiainen et al., 2018a; Jauhiainen et al., 2018b; Wu et al., 2019). The method relies on a base classifier
trained on the training data. During testing, the test instances for which the base classifier is confident in
its decisions are added to the training set and the classifier is retrained with this augmented training set.

One of the differences between the source and the target domain is the average length of the documents.
On average, the source domain newspaper texts are naturally longer than the tweets (target domain).
Although the feature weighting method we use (BM25) counteracts the sensitivity to document size to
some extent, we split the source domain documents to sentences. In all of the shared task submissions,
the source domain documents were split before training the models.

Another aspect of some of our systems is filtering large source domain data based on what we call
‘reverse-prediction’. With the assumption that the features relevant for the target domain can be captured
well by a classifier trained on the small target domain development set, we first tune and train a classifier
on the development set. We use this classifier to predict the labels of the large training set. We select
the predictions with high confidence that match the gold-standard labels. In this paper, we consider the
test instances with a distance of more that 1.0 from the decision boundary as confident predictions. The
intuition is that, despite reduced data size, the selected training instances may include features better
tuned to the target domain.

3 Experiments and Results

3.1 Data
The data for this task comes from two different sources. The first data set, the MOROCO (Butnaru
and Ionescu, 2019) corpus, is used as the source domain (or genre) in this task. The target corpus is
collected from Twitter by Găman and Ionescu (2020). The source corpus is provided with a training–
development set division. In most of our experiments we combine training and development sets, and
split the documents into sentences,1 labeling each sentence with the label of the document. During the

1Version 1.4 of the Python sentence-splitter library was used with defaults for splitting the documents into sen-
tences (https://pypi.org/project/sentence-splitter/).

https://pypi.org/project/sentence-splitter/
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Data set instances µchar σchar µtoken σtoken RO/MD

Source
Development 5923 1718.55 1746.34 391.88 393.94 1.18
Training 33 564 1714.99 1847.48 390.11 410.18 1.18
Train+dev sentences 424 383 158.81 141.72 36.34 36.04 1.45
Selection (documents) 21 376 1853.36 2122.72 420.26 469.18 0.95
Selection (sentences) 243 904 161.40 144.75 36.83 36.19 1.30

Target
Development 215 91.43 20.01 24.09 6.39 0.90
Test 5022 92.09 18.86 23.66 6.04 1.01

Table 1: Summary of the data. The columns µchar and µtoken indicate average number of characters and
tokens, σchar and σtoken indicate standard deviations of respective measures. ‘RO/MD’ is the ratio of
Romanian instances to Moldavian instances, provided as a measure of class imbalance.

competition, only a small development set from the target domain was released, and the test data with
labels were provided after the competition. The statistics on the data sets are provided in Table 1.

The source domain contains a slight class imbalance. Also because of the fact that the Romanian
documents are longer on average, sentence splitting amplifies this imbalance. The target domain is much
more balanced, and contains shorter documents on average, even compared to sentence-split version. The
document lengths of the target domain are less varied. The Twitter data set is also more balanced. We
apply training instance selection with reverse-prediction to the whole documents, then use the sentence
split version in the experiments reported below. The resulting data contains approximately half of the
training and development instances. One notable aspect is that the resulting data sets have longer texts,
likely because the classifier is more confident on longer texts. Furthermore, the selection process reverses
the class imbalance on documents. However, since Romanian documents are longer on average, the
balance is again in favor of Romanian in the sentence-split data.

3.2 Experimental setup
All classifiers we use were tuned on the respective data sets. We tune the following hyperparameters:
SVM margin/regularization constant ‘C’ in range [0.01, 4.0]; maximum character n-gram order in range
[0, 7]; maximum token n-gram order in range [0, 4]; document frequency cutoff in range [1, 5]; and
whether to apply case normalization to tokens or not. The BM25 parameters were kept at their de-
fault values suggested by Robertson et al. (2009). For each classifier trained, we draw 1000 random
hyperparameter combinations, train and test it using 10-fold cross validation and record the average
macro-averaged F1 score over the cross validation folds.

For large data sets (of the source domain), during prediction, we combine the output of 20 classifiers
trained on non-overlapping equal parts of the training set, and the use the majority vote weighted by
the distance from the decision boundary as the final decision. For small data sets, we also employ a
less-effective form of ensembling. We train 5 separate models on the same data set using the top-five
hyperparameter settings, and combine their decisions the same way. The implementation is based on
Python scikit-learn library (Pedregosa et al., 2011).

3.3 Shared Task Results
We submitted three runs to the competition. The first run used only the target development set as training
data. We tune a model with random search over the hyperparameters listed above using 10-fold cross
validation on the target development set, we re-train 5 classifiers with the best hyperparameter settings
on the complete target development data, and use their combined (with weighted voting) decisions on
the test set as final predictions.

For the second run, we used the complete source data (after sentence segmentation). We first tune
the classifier on a random 1/20th sample of the whole data. Then, re-train 20 classifiers on the non-
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Data set Precision Recall F1 Score

Target dev 84.04 (8.50) 84.77 (8.28) 84.01 (8.52)
Target dev+test 89.29 (0.92) 89.31 (0.91) 89.29 (0.92)
Source sentences 86.36 (0.19) 85.73 (0.18) 86.01 (0.18)
Source documents 96.37 (0.27) 96.51 (0.26) 96.26 (0.28)

Table 2: In-domain results. All scores are macro-averaged, and presented as percentages. The values
in the parentheses are the standard deviations of the scores over the folds of in 10-fold cross validation
experiments.

overlapping parts of the complete source data set (development and training sets), and use the weighted
vote as final predictions.

The third run is based on selection of the sentences from the source data which were predicted confi-
dently by a classifier trained on the target development set. In particular, for run 3, we select the sentences
from the source data whose distance to the decision boundary is 1.00 or larger. The tuning and prediction
follows the same procedure as the second run.

All systems used the test set adaptation method, where all test instances with distances 0.50 or higher
from the decision boundary of the base classifier were added to the training set, and the predictions are
obtained from a classifier trained on this augmented data set.

Our first two runs obtained the first two ranks among 19 submissions in the competition with macro-
averaged F1 scores of 0.788 and 0.784 respectively. The final run, with training data selection, obtained
the fifth rank with an macro-averaged F1 score of 0.756.

The results indicate that, given a large test set to adapt to, even a small amount of target training data
is effective. When shifting the domains, it seems crucial to have more data. Even a carefully selected
subset of out-of-domain data leads to inferior performance in comparison to small in-domain data.

3.4 In-domain Experiments
Besides the experiments with the systems for the shared task participation, we present a set of in-domain
experiments without adaptation. For the source domain, we present both results with and without sen-
tence splitting. For the target domain, we present results obtained on the small development set (215
tweets), and combination of both development and test sets. All performance scores are average scores
on 10-fold cross validation on the indicated data sets. For each setting, the SVM classifier was trained
with 1000 random draws from the hyperparameter space indicated above, and the highest scores were
reported.

Table 2 presents the results of the in-domain experiments. The in-domain performance of the system
on the source data is in-line with the last year’s competition. The scores on source documents are almost
the same as the post-competition result reported by Wu et al. (2019), which was 6.70 percentage points
higher than the official winner. Training and testing the system on source sentences causes a performance
drop of approximately 10%. Presumably, the decrease of performance is due to increased ambiguity as
a result of decreased length of the documents. In fact, tuning and training the classifier on sentences
(of the official training set), and testing it on the documents (of the official development set) results in
comparable scores (macro-averaged F1 score is 95.04) – despite the mismatch of text length between
development splits and the test set.

The results on the target domain are also impressive. Using only 215 tweets in a cross-validation
setup, the average F1 score over cross-validation folds is 84.01. And more data definitely helps, both
for increasing the performance, and reducing the variance. Once we have about 5000 instances, the
average F1-score on 10-fold cross validation is close to the scores obtained on the news domain. And,
interestingly, despite the smaller data set and shorter texts (even in comparison to news sentences), the
model is more successful on tweets than the news sentences. In fact, running the same experiments on
the source domain with the 5000 instances reduces the F1 score of the classifier to 93.80 and 73.96 for
source documents and sentences respectively.



190

Precision Recall F1 Score

Training set -adapt +adapt -adapt +adapt -adapt +adapt

Target dev 78.20 78.83 78.20 78.76 78.20 78.76
Source all 76.63 78.44 76.57 78.43 76.57 78.43
Source select 74.54 75.66 74.54 75.65 74.53 75.65

Table 3: Comparison of systems with (+adapt) and without (-adapt) adaptation to the test set. All scores
are macro-averaged, and presented as percentages.

3.5 Adaptation to the Test Data
All of our official submissions included the test set adaptation method described in Section 2. To show
the effects of the adaptation method, we present the scores both with and without adaptation in this
section. Table 3 presents the scores on the test set with and without domain adaptation. The results with
domain adaptation are the scores of the official submissions. The results without domain adaptation is
calculated on the test set released by the organizers after the competition.

The adaptation has little effect when training data is in-domain. This is perhaps not surprising as train-
ing and test domains are identical. However, considering the small amount of training data (target dev
set), one hopes to get additional benefits from increased training set because of domain adaptation. When
training data comes from a different text type, domain adaptation seem to be more effective, increasing
the scores close to two percentage points. The increase is less helpful for the training set selected through
reverse-prediction. This may be because of the fact that the reverse-prediction already does the part of
the job of the test set adaptation. Nevertheless, the most successful method is the one trained on small
in-domain data with a small margin in comparison to full source data with adaptation. When trained with
out-of-domain data, domain adaptation is clearly useful. Selecting training instances based on reverse-
prediction does not seem to be helpful. This may be due to decrease in training data size, but the selection
procedure may have also resulted in over-tuning to the development set. Indeed, the training documents
selected with reverse-prediction has a ‘RO/MD’ ratio of 0.95, closer to the development set distribution
(0.90) than the training set distribution (1.18).

4 General Discussion

This paper presented results from (ensembles of) linear SVM classifiers on the task of cross-domain dis-
crimination of Moldavian and Romanian. Our systems obtained top positions on the official competition.
The results indicate that linear SVMs are (still) one of the best solutions in certain settings. Furthermore,
the cross-domain success of the system supports findings of Găman and Ionescu (2020), that better-than-
human achievement of the machine learning models is based on dialect differences, and not due to some
correlated hidden variable in the data set.

The in-domain experiments indicate that if the training sizes are similar, the discrimination is better on
the Twitter data in comparison to the newspaper text. The in-domain experiment on Twitter corpus yield
better discrimination than the in-domain experiment with with news sentences despite smaller training
set size. This probably indicates that non-standard texts contain more cues to dialectal differences, since
they do not necessarily follow common literary and stylistic traditions expected from more formal texts.

The adaptation method based on test set augmentation was found to be useful when training and test
domains are different. The benefit of the test set adaptation method is not clear when the training and
tests are from the same domain, even when the training set is very small.

The training data selection experiments resulted in worse results than expected. A potential reason
for the failure is the fact that most training instances selected by the procedure contain the features that
already occur in the target development set, hence, not providing additional information expected from
a large data set. Although the training set selection method as used in this study seems to have failed,
methods involving relevant, yet diverse instance may be helpful in adapting to a new domain.
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Mihaela Găman and Radu Tudor Ionescu. 2020. The unreasonable effectiveness of machine learning in Moldavian
versus Romanian dialect identification. arXiv preprint arXiv:2007.15700.
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and transfer learning for similar languages: Experiments with feature combinations and adaptation. In Proceed-
ings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects, pages 54–63, Ann Arbor,
Michigan, June. Association for Computational Linguistics.



192
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