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ccoltekin@sfs.uni-tuebingen.de

Abstract

As in any field of inquiry that depends on experiments, the verifiability of experimental studies
is important in computational linguistics. Despite increased attention to verification of empirical
results, the practices in the field are unclear. Furthermore, we argue, certain traditions and prac-
tices that are seemingly useful for verification may in fact be counterproductive. We demonstrate
this through a set of multi-lingual experiments on parsing Universal Dependencies treebanks. In
particular, we show that emphasis on exact replication leads to practices (some of which are now
well established) that hide the variation in experimental results, effectively hindering verifiability
with a false sense of certainty. The purpose of the present paper is to highlight the magnitude of
the issues resulting from these common practices with the hope of instigating further discussion.
Once we, as a community, are convinced about the importance of the problems, the solutions are
rather obvious, although not necessarily easy to implement.

1 Introduction

The practice of independent verification of empirical findings has been at the core of the modern science.
There have been, however, recent failures of reproduction in many fields (Open Science Collaboration,
2015; Freedman et al., 2015), which also instilled public interest with the popular name reproducibility
crisis (Fidler and Wilcox, 2018). In computational linguistics and natural language processing (NLP),
worries about reproducibility have been voiced for over a decade with a notable increase in recent years
(Pedersen, 2008; Fokkens et al., 2013; Mieskes, 2017; Branco et al., 2017; Cohen et al., 2017; Reimers
and Gurevych, 2017; Branco et al., 2020; Huber and Çöltekin, 2020, just to name a few).

As some of these studies point out, it is often unclear what is meant by the terms replication and
reproduction. The definitions of these terms are often blurred, and they may even be used in opposite
meanings in different studies (Cohen et al., 2018). In this paper, we use the term (exact) replication
to refer to the activity of running the same code on the same data set with the aim of producing the
same measurements reported in the original publication. We use the term reproduction to refer to the
activity of verifying the claims or findings by varying the experimental settings in meaningful ways. As
argued earlier (Drummond, 2009), the scientifically interesting and useful activity is reproduction, while
replication has rather little or no use for the purpose of scientific verification.

The confusion, however, is not only limited to the usage of these terms. In many studies, the aim of the
activity is also unclear, or often understood as obtaining the same numbers reported in an original study
(in our terms exact replication). The emphasis on state-of-the-art scores (even with small increase over
the previous state of the art) also motivates the exact, ‘fair’, comparisons based on a single-best score.

On the other hand, many of the statistical data-driven methods involve a number of inevitable sources
of variation. For example, any machine learning method will produce varied results when trained and
tested on different parts of the data, and many others are also sensitive to other stochastic processes, such
as random initialization of their parameters or the order of training instances. Even though this variation
is important for evaluating and comparing statistical models, there has been an increasing emphasis on
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exact replication of the published scores. For example, the SemEval 2020 reviewer form includes the
following scoring instructions for reviewers (emphasis ours):

4 = could mostly reproduce the results described here, although there may be some variation because of sample
variance or minor variations in their interpretation of the protocol or method.
5 = could easily reproduce the results and verify the correctness of the results described here.

Hence, although lightly, not being exactly replicable due to sample variation is penalized, encouraging
participants to eliminate, or hide, all sources of variation. The same or similar reviewing criteria have
recently become standard for major publication venues for computational linguistics.

In this paper, we show that the emphasis on exact replication, in fact, hinders the idea of verification
of the results. We support this claim through parsing experiments on Universal Dependencies treebanks
(Nivre et al., 2016, UD), investigating the effects of two common or well-established practices that aim
to facilitate replication. Namely, fixing random seed of the pseudo random number generator used during
experiments, and standard training, development and test set splits.

2 Experimental Setting

Our experiments consist of replicating and reproducing parsing scores reported with version 1.2 of UD-
Pipe (Straka and Straková, 2017; Straka and Straková, 2019) on UD version 2.5 treebanks (Zeman et al.,
2019). UDPipe is an open-source pipeline for tokenization, tagging, and dependency parsing designed
particularly for the UD annotation scheme. The system obtained near-top results in the recent CoNLL
shared tasks on dependency parsing from raw text (Zeman et al., 2017; Zeman et al., 2018). Besides its
performance and the ease of use, another interesting aspect of UDPipe for the current study is the fact
that maintainers provide pre-trained models for the majority of the UD treebanks, where each model is
trained and tested on the standard UD splits. The authors also publish common performance metrics,
and provide scripts for replication.1

Our experiments consist of (1) exact replication of the reported results using the same code and the
standard splits, (2) reproducing the results by varying the random seed, and (3) reproducing the results
on random treebank splits. To facilitate exact replication of the published scores, the UDPipe model
distribution fixes the random seed used for initializing the model parameters and other sources of varia-
tion (e.g., shuffling of training instances). For our main experiments, the UDPipe is modified to set the
random seed based on the time stamp (a reasonably random quantity for our purposes). We use the same
embeddings distributed with the UDPipe models, and the same hyperparameter settings as the original
models. The experiments are run using the scripts provided in the UDPipe 2.5 models package, with
slight modifications for parametrizing the input, and parallelizing it with GNU parallel (Tange, 2011).
We report results for all treebanks for which a UDPipe 2.5 model was published, except for the largest
five treebanks.2

For the experiments with different data splits, we simply combine all the sentences from the standard
splits, and create 10 versions of each treebank by randomly splitting the sentences into train, dev, and test
sets of the same size as the original split. In all cases, since the parser does not use any extra-sentential
information, we sample the sentences randomly, without paying attention to document boundaries even
if they are marked. In the main text, we only present and compare labeled attachment scores (LAS).
Other metrics, including tokenization and tagging scores, are presented in Appendix A.

3 Results

We first verify the exact replication of the published scores. Besides the fixed treebank splits, since
original study eliminates all sources of random variation, our results exactly match theirs.

To establish the expected variation of the parser on the same treebank splits, we perform multiple
experiments with standard splits after allowing random variation in model initialization. The black bars

1http://ufal.mff.cuni.cz/udpipe/models. The (modified) scripts used in this study are accessible at
https://github.com/coltekin/udpipe-reproduction.

2For the sake of the impact on the environment as well as on the patience of the author. The experiments reported here
require over 10 CPU-months on a relatively recent architecture, and 5 additional data points provide little additional support
for present discussion, while extending the computational cost considerably.

http://ufal.mff.cuni.cz/udpipe/models
https://github.com/coltekin/udpipe-reproduction
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Figure 1: Percent LAS difference from published results and 10 experiments on standard splits (black
bars) and 10 experiments with random train/dev/test splits (thick light blue bars). A positive value indi-
cates a score higher than the published score. The bars indicate the complete range of scores.

in Figure 1 present the range of LAS obtained in 10 experiments on the standard splits (all LAS figures
presented in this paper are percentages).3 All scores in Figure 1 are relative to the scores published by the
original study, a positive value indicating a score higher than the published score on a particular treebank.
The scores do not diverge from the original study substantially. Nevertheless, there is considerable
variation. The range of scores are between 0.40 and 7.89 LAS points with an average of 1.30 LAS. The
range of LAS scores from 10 experiments with different random seeds do not contain the published result
in 21 of the 90 experiments. It is also worth noting that in cases the reported value is within the range, it
is not necessarily at the center of the range.

As expected, the range of scores obtained on random treebank splits (shown as light blue bars in Fig-
ure 1) indicate an even wider spread. The ranges vary between 0.65 and 9.68 LAS points, with an average
of 2.25. The scores of random-split experiments also differ from the published results considerably. The
LAS on random splits and the published results differ 2.72 points on average, with a maximum of 12.30.
In the majority of the cases, the published results are not within the range of scores obtained on random-
split experiments, only 33 out of 90 differences falling within this range. Most differences however, are
positive. Minimum LAS obtained in random-split experiments are higher than the published results for
53 treebanks, indicating that standard splits underestimate the success of the parser. This is expected,
since most treebanks do not sample test sets randomly, conflicting with the i.i.d. assumption of many
machine learning models. The published results are above the random-split range only for 4 treebanks,
probably due to the official splits with easier to parse test sets.

4 Discussion

The experiments presented above demonstrate the effects of two sources of variation on parsing scores.
The variation displayed in Figure 1 is rarely reported in the literature. Furthermore, common practices
promoted for enabling exact replication leads researchers to eliminate this variation from their experi-
ments, reporting single-figure scores without an indication of the expected variation. Such single-figure
scores, as demonstrated above, are often biased in an arbitrary direction.

3The reason for presenting the range is not to amplify the readers’ perception of the variation. As an anonymous reviewer
pointed out, the standard deviation or the standard error are better, more robust measures of variation from the mean. A study
reporting a mean score with its variation over multiple experiments should report such a robust measure of variation. However,
since the point in question here is the practice of reporting a single score from a single model instance, the demonstration of
the range is more interesting for our purposes.



49

The first type of variation we discuss is due to model training and evaluation, e.g., because of random
initialization of the model parameters, or random ordering of the data before online or batch training.
Any non-trivial statistical model produces different results when trained and tested on the same data.
This is typically negligible for convex optimization procedures.4 The variation is naturally higher for
models trained with non-convex optimization, such as neural networks which are the dominant approach
to parsing as well as many other NLP tasks. The variation stemming from these two sources is rarely
reported in the literature. On the contrary, due to heavy emphasis on replicability in the field (Pedersen,
2008; Wieling et al., 2018, for example), when researchers release their software, they often fix the
variation in an arbitrary way, e.g., by fixing the initial random seed used by pseudo random number
generators as in our case study above. The point here is not to promote systems with large variation. We
want to reduce the variation when possible. For example, ensembling or model averaging are useful for
reducing the variation. However, there will still be some variation based on initialization differences and
sampling, and reporting this variation is useful for understanding the success of the model, as well as for
meaningful model comparison.

Our experiments indicate the range of LAS obtained by UDPipe on UD treebanks over 10 random
initializations is 1.30 on average, and goes up to 7.89 on individual treebanks. To facilitate a rough
comparison, the LAS (averaged over all treebanks) differences between UDPipe and the systems above
and below UDPipe in CoNLL 2018 shared task are less than 0.20, indicating that the arbitrary choice of
random seed could have made the difference in this ranking.

The solution to this problem is clear. Rather than ‘hiding’ the variation by settling on a fixed model
instance, we should report the variation caused by the inevitable sources of variability. As the quote from
the review form in Section 1 demonstrate, reporting results with sampling variation is perceived as a
negative property of a paper submitted to many computational linguistics conferences. Hence, to be able
to increase chances of acceptance of a paper, the authors are encouraged to fix all sources of (natural)
variation of models in an arbitrary manner. The present paper, hopefully, makes it clear that this is wrong.
However, since the incorrect behavior is currently being promoted by the community at large. The real
solution lies in further discussion of what should really be expected from individual experimental studies.

The second issue we discuss is the adverse effects of standard training, development and test set
splits, which has also been brought up by others before (Gorman and Bedrick, 2019). The standard
splits are common among all NLP data sets, but tradition is probably older for treebanks, going back
to early parsing research.5 The recent treebanking efforts, e.g., UD treebanks, continued this tradition
with official splits of training, development, and test sets. The standard test sets are often justified by
replicability of the results obtained on these data sets, and fair comparisons between different systems.
Another motivation for test split is to avoid ‘peeking into test data’ (Jurafsky and Martin, 2009, p.189).
However, the latter goal is difficult to entertain for a standard test that remains fixed for decades.

Independent of the motivation of the standard splits, the experiments reported above show that the
use of standard treebank splits hides a large amount of variation, and it often biases the parsing results
arbitrarily. When the scores are calculated over multiple random splits, the variation can be as large
as 9.68 LAS and the average scores obtained can differ from the reported results up to 12.30 LAS.
Furthermore, for the majority of the treebanks, scores reported in the original study are not in the range
of scores obtained in random-split experiments. Clearly, these differences blur model comparisons.
More importantly, in any practical use of these tools, the user should be aware of the expected variation.
Fortunately, in our experiments, most of the results would come as a pleasant surprise, since we obtained
ranges of scores better than the original report. This also means the standard test set splits are biased in
certain ways, and, hence, model comparison on these sets may arbitrarily favor certain types of parsers.

The solution is, again, obvious: reporting results (with their variation) on different data splits. In other
words, abandoning standard splits. However, this goes against the well-established traditions. Again,
true solution require more discussion of the issues in the research community. Many data sets include

4The most common reason for a potential variance is the convergence criterion based on a fixed threshold. Different
initializations may result in stopping at (slightly) different points on the error surface close to the minimum.

5As of this writing, a search on ACL anthology for keywords “Penn Treebank” and “section 23” returns over 1000 hits.
Many models, most of them parsers, have been compared on this de facto standard test set.

https://www.aclweb.org/anthology/
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a standard training, development and test set split. As a result, for fair comparison, researchers are
encouraged, or sometimes required to report results on a single standard test set. For example, it is
unlikely for a paper on parsing to be accepted if it reports results using non-standard splits. Hence,
similar to reporting sampling variation, individual authors are forced to follow current practices. The
real solution requires community-wide changes to acceptable practices.

The issues discussed above are orthogonal to the issue addressed by statistical significance testing. Al-
though statistical assurances for significant differences have their merits, it is important to note that they
indicate statistically significant differences on a single test set. Hence, in their typical application, they
may even contribute to a false sense of significant difference that disappears when the systems are tested
on different test sets, or even the same model trained with different initializations. Interestingly enough,
the differences between the minimum and the maximum LAS scores in our experiments conducted on
the standard test sets with varying random seeds are statistically significant for all treebanks.6 Hence,
a statistically significant finding reported, e.g., for two alternative training settings, may very well be
due to the random initialization at least with a 10% chance according to our experiments. The use of
above-chance statistical differences are only helpful when the systems are tested on multiple data sets
(Dror et al., 2017). However, in most tasks, multiple data sets are not a luxury we enjoy, especially when
the research or application at hand is in a particular domain. Using multiple random splits of available
data or use of cross-validation is often the closest we can get to a general solution.

Hidden in the issues related to variation with different data splits is the size and quality of the data sets.
For many languages or tasks, the data sets are small and sometimes low quality, which eventually affect
the models trained and tested on them. Creating, annotating and curating data sets is a labor-intensive,
expensive, yet error-prone task. On the other hand, creating more data sets for which there are already
existing resources, and improving the existing data sets are not rewarding tasks. Again, to be able to test
our models on multiple and better data sets, we, as a community, need ways to encourage and reward
creation and maintenance of more and high-quality data sets.

Although our case study is based on parsing results with UDPipe, the problems outlined are neither
specific to UDPipe nor parsing. In any statistical, data-driven NLP experiment, some amount of variation
is inevitable in experimental results, and the standard test set splits and avoiding variation due to other
factors in model training hides this variation.

5 Concluding remarks

This paper presented a demonstration of adverse effects of avoiding variation in the results of NLP ex-
periments. We demonstrate the effects of two sources of variation in NLP experiments: the variation
due to sampling and initialization. For sampling variation, a well-established practice in the literature
is to use a fixed standard training–test split across different studies. The only clear advantage of using
a single standard test set is allowing fair comparisons between different studies. A fair comparison is
definitely desirable in a competition, but for research we should perhaps emphasize meaningful compar-
isons more. The results presented above demonstrate that comparisons on a single (standard) tests set
are not necessarily meaningful. Another, less-established but still common practice is to fix the random
seed of the pseudo random number generator used during the experiments. We show that both practices
hide the inherent variation in parsing scores, and bias the published results in arbitrary ways. As a result,
these practices also defeat their very own purpose, making it difficult to interpret the comparison between
different models outside this fixed setting.

The purpose of this paper is to point out the problem and promote further discussion of the topic.
Our outcomes indicate that for insightful evaluations, we should acknowledge and report the variation
in experimental results, rather than fixing the variation in arbitrary ways. This includes, (1) letting the
model initializations vary, and (2) running the experiments on multiple data splits rather than a single
training/development/test split. For both cases, reporting the variation based on multiple experiments.
However, the implementation of the solutions is not easy. It requires community-wide changes beyond
the power of individual researchers.

6At p < 0.05 calculated based on 10 000 bootstrap samples.
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dito, Bernard Caron, Gauthier Caron, Tatiana Cavalcanti, Gülşen Cebiroğlu Eryiğit, Flavio Massimiliano Cec-
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A Further comparisons

This section presents additional scores obtained in our experiments in all stages of the parsing pipeline.
Unlike Figure 1 in the main text, the figures presented in this section present absolute values. The
scores reported by the original study are indicated by a triangle or diamond on the figures. For ease
of interpretation, a blue triangle pointing up indicates that the random-split experiments yielding larger
scores than the original report, a orange triangle pointing down indicates random-split experiments that
yield results lower than the original report, and a black diamond shape indicates that the original scores
fall within the range of scores in random-sample experiments. Similar to Figure 1, the black bars indicate
the experiments with standard splits, while the light blue bars represent experiments with random splits.
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Figure 2: Absolute LAS scores. This figure present the same data in Figure 1, but in an absolute scale
rather than relative to the scores published in the original study.
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Figure 3: UAS scores.



55

af
af

ri
bo

om
s

ar
pa

dt
be

hs
e

bg
bt

b
ca

an
co

ra
co

p
sc

ri
pt

or
iu

m
cs

ca
c

cs
cl

tt
cs

fic
tr

ee
cu

pr
oi

el
da

dd
t

de
gs

d
el

gd
t

en
ew

t
en

gu
m

en
lin

es
en

pa
rt

ut
es

an
co

ra
es

gs
d

et
ew

t
eu

bd
t

fa
se

ra
ji

fi
ft

b
fi

td
t

fr
gs

d
fr

pa
rt

ut
fr

se
qu

oi
a

fr
sp

ok
en

fr
o

sr
cm

f
ga

id
t

gd
ar

co
sg

gl
ct

g
gl

tr
ee

ga
l

go
t

pr
oi

el
gr

c
pe

rs
eu

s
gr

c
pr

oi
el

he
ht

b
hi

hd
tb

hr
se

t
hu

sz
eg

ed
hy

ar
m

td
p

id
gs

d
it

is
dt

it
pa

rt
ut

it
po

st
w

ita
it

tw
itt

ir
o

it
vi

t
ja

gs
d

ko
gs

d
ko

ka
is

t
la

itt
b

la
pe

rs
eu

s
la

pr
oi

el
lt

al
ks

ni
s

lt
hs

e
lv

lv
tb

lz
h

ky
ot

o
m

r
uf

al
m

t
m

ud
t

nl
al

pi
no

nl
la

ss
ys

m
al

l
no

bo
km

aa
l

no
ny

no
rs

k
no

ny
no

rs
kl

ia
or

v
to

ro
t

pl
lf

g
pl

pd
b

pt
bo

sq
ue

pt
gs

d
ro

no
ns

ta
nd

ar
d

ro
rr

t
ru

gs
d

ru
ta

ig
a

sk
sn

k
sl

ss
j

sl
ss

t
sm

e
gi

el
la

sr
se

t
sv

lin
es

sv
ta

lb
an

ke
n

ta
ttb

te
m

tg
tr

im
st

ug
ud

t
uk

iu
ur

ud
tb

vi
vt

b
w

o
w

tb
zh

gs
d

zh
gs

ds
im

p

67

70

75

80

85

90

95

99

PO
S

ta
g

ac
cu

ra
cy

Figure 4: POS tagging accuracy.
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Figure 5: Full morphological tagging accuracy (including POS tags).
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Figure 6: Tokenization F1 score.
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Figure 7: Sentence splitting F1 score.
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