
Syntax-Guided Controlled Generation of Paraphrases

Ashutosh Kumar1 Kabir Ahuja2∗ Raghuram Vadapalli3∗ Partha Talukdar1

1Indian Institute of Science, Bangalore
2Microsoft Research, Bangalore

3Google, London

ashutosh@iisc.ac.in, kabirahuja2431@gmail.com

raghuram.4350@gmail.com, ppt@iisc.ac.in

Abstract

Given a sentence (e.g., ‘‘I like mangoes’’) and

a constraint (e.g., sentiment flip), the goal of

controlled text generation is to produce a

sentence that adapts the input sentence to meet

the requirements of the constraint (e.g., ‘‘I

hate mangoes’’). Going beyond such simple

constraints, recent work has started explor-

ing the incorporation of complex syntactic-

guidance as constraints in the task of controlled

paraphrase generation. In these methods,

syntactic-guidance is sourced from a separate

exemplar sentence. However, this prior work

has only utilized limited syntactic information

available in the parse tree of the exemplar

sentence. We address this limitation in the

paper and propose Syntax Guided Controlled

Paraphraser (SGCP), an end-to-end frame-

work for syntactic paraphrase generation. We

find that SGCP can generate syntax-conforming

sentences while not compromising on rele-

vance. We perform extensive automated and

human evaluations over multiple real-world

English language datasets to demonstrate the

efficacy of SGCP over state-of-the-art base-

lines. To drive future research, we have made

SGCP’s source code available.1

1 Introduction

Controlled text generation is the task of producing

a sequence of coherent words based on given

constraints. These constraints can range from

simple attributes like tense, sentiment polarity,

and word-reordering (Hu et al., 2017; Shen et al.,

2017; Yang et al., 2018) to more complex syntactic

information. For example, given a sentence ‘‘The

movie is awful!’’ and a simple constraint like flip

∗ This research was conducted during the authors

internship at Indian Institute of Science.
1https://github.com/malllabiisc/SGCP.

sentiment to positive, a controlled text generator

is expected to produce the sentence ‘‘The movie is

fantastic!’’.
These constraints are important in not only

providing information about what to say but

also how to say it. Without any constraint, the

ubiquitous sequence-to-sequence neural models

often tend to produce degenerate outputs and

favor generic utterances (Vinyals and Le, 2015; Li

et al., 2016). Although simple attributes are helpful

in addressing what to say, they provide very

little information about how to say it. Syntactic

control over generation helps in filling this gap by

providing that missing information.

Incorporating complex syntactic information

has shown promising results in neural machine

translation (Stahlberg et al., 2016; Aharoni and

Goldberg, 2017; Yang et al., 2019), data-to-text

generation (Peng et al., 2019), abstractive text-

summarization (Cao et al., 2018), and adversarial

text generation (Iyyer et al., 2018). Additionally,

recent work (Iyyer et al., 2018; Kumar et al., 2019)

has shown that augmenting lexical and syntactical

variations in the training set can help in building

better performing and more robust models.

In this paper, we focus on the task of syn-

tactically controlled paraphrase generation, that

is, given an input sentence and a syntactic

exemplar, produce a sentence that conforms to

the syntax of the exemplar while retaining the

meaning of the original input sentence. While

syntactically controlled generation of paraphrases

finds applications in multiple domains like data-

augmentation and text passivization, we highlight

its importance in the particular task of text

simplification. As pointed out in Siddharthan

(2014), depending on the literacy skill of an

individual, certain syntactical forms of English

330

Transactions of the Association for Computational Linguistics, vol. 8, pp. 330–345, 2020. https://doi.org/10.1162/tacl a 00318
Action Editor: Asli Celikyilmaz. Submission batch: 12/2019; Revision batch: 2/2020; Published 6/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://github.com/malllabiisc/SGCP
https://doi.org/10.1162/tacl_a_00318

sentences are easier to comprehend than others. As

an example, consider the following two sentences:

S1 Because it is raining today, you should carry

an umbrella.

S2 You should carry an umbrella today, because

it is raining.

Connectives that permit pre-posed adverbial

clauses have been found to be difficult for third

to fifth grade readers, even when the order of

mention coincides with the causal (and temporal)

order (Anderson and Davison, 1986; Levy, 2003).

Hence, they prefer sentence S2. However, various

other studies (Clark and Clark, 1968; Katz and

Brent, 1968; Irwin, 1980) have suggested that

for older school children, college students, and

adults, comprehension is better for the cause-effect

presentation, hence sentence S1. Thus, modifying

a sentence, syntactically, would help in better

comprehension based on literacy skills.

Prior work in syntactically controlled para-

phrase generation addressed this task by con-

ditioning the semantic input on either the features

learned from a linearized constituency-based parse

tree (Iyyer et al., 2018), or the latent syntactic

information (Chen et al., 2019a) learned from

exemplars through variational auto-encoders.

Linearizing parse trees typically results in loss of

essential dependency information. On the other

hand, as noted in Shi et al. (2016), an autoencoder-

based approach might not offer rich enough

syntactic information as guaranteed by actual

constituency parse trees. Moreover, as noted

in Chen et al. (2019a), SCPN (Iyyer et al.,

2018), and CGEN (Chen et al., 2019a) tend to

generate sentences of the same length as the

exemplar. This is an undesirable characteristic

because it often results in producing sentences that

end abruptly, thereby compromising on gramma-

ticality and semantics. Please see Table 1 for

sample generations using each of the models.

To address these gaps, we propose Syntax

Guided Controlled Paraphraser (SGCP) which

uses full exemplar syntactic tree information.

Additionally, our model provides an easy

mechanism to incorporate different levels of

syntactic control (granularity) based on the height

of the tree being considered. The decoder in

our framework is augmented with rich enough

syntactical information to be able to produce

SOURCE – how do i predict the stock market ?

EXEMPLAR – can a brain transplant be done ?

SCPN – how can the stock and start ?

CGEN – can the stock market actually happen ?

SGCP

(Ours)
– can i predict the stock market ?

SOURCE
– what are some of the mobile apps you ca n’t live

without and why ?

EXEMPLAR – which is the best resume you have come across ?

SCPN – what are the best ways to lose weight ?

CGEN – which is the best mobile app you ca n’t ?

SGCP

(Ours)

– which is the best app you ca n’t live without and

why ?

Table 1: Sample syntactic paraphrases generated

by SCPN (Iyyer et al., 2018), CGEN (Chen et al.,

2019a), SGCP (Ours). We observe that SGCP is able

to generate syntax conforming paraphrases without

compromising much on relevance.

syntax conforming sentences while not losing out

on semantics and grammaticality.

The main contributions of this work are as

follows:

1. We propose SGCP, an end-to-end model to

generate syntactically controlled paraphrases

at different levels of granularity using a

parsed exemplar.

2. We provide a new decoding mechanism to

incorporate syntactic information from the

exemplar sentence’s syntactic parse.

3. We provide a dataset formed from Quora

Question Pairs2 for evaluating the models.

We also perform extensive experiments to

demonstrate the efficacy of our model using

multiple automated metrics as well as human

evaluations.

2 Related Work

Controllable Text Generation. is an important

problem in NLP that has received significant atten-

tion in recent times. Prior work include generating

text using models conditioned on attributes like

formality, sentiment, or tense (Hu et al., 2017;

Shen et al., 2017; Yang et al., 2018) as well as

on syntactical templates (Iyyer et al., 2018; Chen

et al., 2019a). These systems find applications in

adversarial sample generation (Iyyer et al., 2018),

2https://www.kaggle.com/c/quora-

question-pairs.

331

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs

text summarization, and table-to-text generation

(Peng et al., 2019). While achieving state-of-the-

art in their respective domains, these systems

typically rely on a known finite set of attributes

thereby making them quite restrictive in terms of

the styles they can offer.

Paraphrase Generation. While generation of

paraphrases has been addressed in the past using

traditional methods (McKeown, 1983; Barzilay

and Lee, 2003; Quirk et al., 2004; Hassan et al.,

2007; Zhao et al., 2008; Madnani and Dorr, 2010;

Wubben et al., 2010), they have recently been

superseded by deep learning-based approaches

(Prakash et al., 2016; Gupta et al., 2018; Li

et al., 2019, 2018; Kumar et al., 2019). The

primary task of all these methods (Prakash et al.,

2016; Gupta et al., 2018; Li et al., 2018) is to

generate the most semantically similar sentence

and they typically rely on beam search to obtain

any kind of lexical diversity. Kumar et al. (2019)

try to tackle the problem of achieving lexical,

and limited syntactical diversity using submodular

optimization but do not provide any syntactic

control over the type of utterance that might be

desired. These methods are therefore restrictive

in terms of the syntactical diversity that they can

offer.

Controlled Paraphrase Generation. Our task

is similar in spirit to Iyyer et al. (2018) and

Chen et al. (2019a), which also deals with the

task of syntactic paraphrase generation. However,

the approach taken by them is different from

ours in at least two aspects. Firstly, SCPN (Iyyer

et al., 2018) uses an attention-based (Bahdanau

et al., 2014) pointer-generator network (See et al.,

2017) to encode input sentences and a linearized

constituency tree to produce paraphrases. Because

of the linearization of syntactic tree, considerable

dependency-based information is generally lost.

Our model, instead, directly encodes the tree

structure to produce a paraphrase. Secondly,

the inference (or generation) process in SCPN

is computationally very expensive, because it

involves a two-stage generation process. In the

first stage, they generate full parse trees from

incomplete templates, and then from full parse

trees to final generations. In contrast, the inference

in our method involves a single-stage process,

wherein our model takes as input a semantic

source, a syntactic tree and the level of syntactic

style that needs to be transferred, to obtain the

generations. Additionally, we also observed that

the model does not perform well in low resource

settings. This, again, can be attributed to the

compounding implicit noise in the training due

to linearized trees and generation of full linearized

trees before obtaining the final paraphrases.

Chen et al. (2019a) propose a syntactic

exemplar-based method for controlled paraphrase

generation using an approach based on latent

variable probabilistic modeling, neural variational

inference, and multi-task learning. This, in

principle, is very similar to Chen et al. (2019b). As

opposed to our model, which provides different

levels of syntactic control of the exemplar-

based generation, this approach is restrictive in

terms of the flexibility it can offer. Also, as

noted in Shi et al. (2016), an autoencoder-based

approach might not offer rich enough syntactic

information as offered by actual constituency

parse trees. Additionally, VAEs (Kingma and

Welling, 2014) are generally unstable and harder

to train (Bowman et al., 2016; Gupta et al., 2018)

than seq2seq-based approaches.

3 SGCP: Proposed Method

In this section, we describe the inputs and various

architectural components essential for building

SGCP, an end-to-end trainable model. Our model,

as shown in Figure 1, comprises a sentence

encoder (3.2), syntactic tree encoder (3.3), and

a syntactic-paraphrase-decoder (3.4).

3.1 Inputs

Given an input sentence X and a syntactic

exemplar Y , our goal is to generate a sentence

Z that conforms to the syntax of Y while retaining

the meaning of X.

The semantic encoder (Section 3.2) works

on sequence of input tokens, and the syntactic

encoder (Section 3.3) operates on constituency-

based parse trees. We parse the syntactic exemplar

Y 3 to obtain its constituency-based parse tree. The

leaf nodes of the constituency-based parse tree

consists of token for the sentence Y. These tokens,

in some sense, carry the semantic information of

sentence Y, which we do not need for generating

paraphrases. In order to prevent any meaning

3Obtained using the Stanford CoreNLP toolkit (Manning

et al., 2014).

332

Figure 1: Architecture of SGCP (proposed method). SGCP aims to paraphrase an input sentence, while conforming

to the syntax of an exemplar sentence (provided along with the input). The input sentence is encoded using

the Sentence Encoder (Section 3.2) to obtain a semantic signal ct. The Syntactic Encoder (Section 3.3) takes a

constituency parse tree (pruned at height H) of the exemplar sentence as an input, and produces representations for

all the nodes in the pruned tree. Once both of these are encoded, the Syntactic Paraphrase Decoder (Section 3.4)

uses pointer-generator network, and at each time step takes the semantic signal ct, the decoder recurrent state st,

embedding of the previous token and syntactic signal hY

t
to generate a new token. Note that the syntactic signal

remains the same for each token in a span (shown in figure above curly braces; please see Figure 2 for more

details). The gray shaded region (not part of the model) illustrates a qualitative comparison of the exemplar syntax

tree and the syntax tree obtained from the generated paraphrase. Please refer to Section 3 for details.

propagation from exemplar sentence Y into the

generation, we remove these leaf/terminal nodes

from its constituency parse. The tree thus obtained

is denoted as CY.

The syntactic encoder, additionally, takes as

input H , which governs the level of syntactic

control needed to be induced. The utility of H will

be described in Section 3.3.

3.2 Semantic Encoder

The semantic encoder, a multilayered Gated

Recurrent Unit (GRU), receives tokenized sen-

tence X = {x1, . . . , xTX
} as input and computes

the contextualized hidden state representation

hXt for each token using:

hXt = GRU(hXt−1, e(xt)), (1)

where e(xt) represents the learnable embedding

of the token xt and t ∈ {1, . . . , TX}. Note that

we use byte-pair encoding (Sennrich et al., 2016)

for word/token segmentation.

3.3 Syntactic Encoder

This encoder provides the necessary syntactic

guidance for the generation of paraphrases.

Formally, let constituency tree CY = {V , E ,Y},

where V is the set of nodes, E the set of edges,

and Y the labels associated with each node.

We calculate the hidden-state representation

hYv of each node v ∈ V using the hidden-state

representation of its parent node pa(v) and the

embedding associated with its label yv as follows:

hYv = GeLU(Wpah
Y
pa(v) +Wve(yv) + bv), (2)

where e(yv) is the embedding of the node label

yv, andWpa,Wv, bv are learnable parameters. This

approach can be considered similar to TreeLSTM

(Tai et al., 2015). We use GeLU activation func-

tion (Hendrycks and Gimpel, 2016) rather than

the standard tanh or relu, because of superior

empirical performance.

As indicated in Section 3.1, syntactic encoder

takes as input the height H , which governs the

level of syntactic control. We randomly prune the

333

Figure 2: The constituency parse tree serves as an input to the syntactic encoder (Section 3.3). The first step is

to remove the leaf nodes which contain meaning representative tokens (Here: What is the best language . . .).

H denotes the height to which the tree can be pruned and is an input to the model. Figure 2(a) shows the full

constituency parse tree annotated with vector a for different heights. Figure 2(b) shows the same tree pruned at

height H = 3 with its corresponding a vector. The vector a serves as an signalling vector (Section 3.4.2) which

helps in deciding the syntactic signal to be passed on to the decoder. Please refer Section 3 for details.

tree CY to height H ∈ {3, . . . , Hmax}, whereHmax

is the height of the full constituency tree CY . As an

example, in Figure 2b, we prune the constituency-

based parse tree of the exemplar sentence, to

height H = 3. The leaf nodes for this tree have the

labels WP, VBZ, NP, and <DOT>. Although we

calculate the hidden-state representation of all the

nodes, only the terminal nodes are responsible

for providing the syntactic signal to the decoder

(Section 3.4).

We maintain a queue LY
H of such terminal node

representations where elements are inserted from

left to right for a given H. Specifically, for the

particular example given in Figure 2b,

L
Y
H = [hYWP, h

Y
VBZ, h

Y
NP, h

Y
<DOT>]

We emphasize the fact that the length of the queue

|LY
H | is a function of height H .

3.4 Syntactic Paraphrase Decoder

Having obtained the semantic and syntactic

representations, the decoder is tasked with the

generation of syntactic paraphrases. This can

be modeled as finding the best Z = Z∗ that

maximizes the probability P(Z|X, Y), which can

further be factorized as:

Z∗ = argmax
z

TZ
∏

t=1

(zt|z1, . . . , zt−1,X, Y), (3)

where TZ is the maximum length up to which

decoding is required.

In the subsequent sections, we use t to denote

the decoder time step.

3.4.1 Using Semantic Information

At each decoder time step t, the attention

distribution αt is calculated over the encoder

hidden states hXi , obtained using Equation 1, as:

eti = v⊺tanh(Whh
X
i +Wsst + battn)

αt = softmax(et),
(4)

where st is the decoder cell-state and v,Wh,Ws,

battn are learnable parameters.

The attention distribution provides a way to

jointly align and train sequence to sequence

models by producing a weighted sum of the se-

mantic encoder hidden states, known as context-

vector ct, given by:

ct =
∑

i

αt
ih

X
i (5)

ct serves as the semantic signal which is essential

for generating meaning preserving sentences.

3.4.2 Using Syntactic Information

During training, each terminal node in the tree CY,

pruned at H, is equipped with information about

the span of words it needs to generate. At each

334

time step t, only one terminal node representation

hYv ∈ L
Y
H is responsible for providing the

syntactic signal which we call hYt . This hidden-

state representation to be used is governed

through an signalling vector a = (a1, . . . , aTz
),

where each ai ∈ {0, 1}. 0 indicates that the

decoder should keep on using the same hidden-

representation hYv ∈ LY
H that is currently being

used, and 1 indicates that the next element (hidden-

representation) in the queue LY
H should be used

for decoding.

The utility of a can be best understood through

Figure 2b. Consider the syntactic tree pruned at

height H = 3. For this example,

L
Y
H = [hYWP, h

Y
VBZ, h

Y
NP, h

Y
<DOT>]

and

a = (1, 1, 1, 0, 0, 0, 0, 0, 1)

ai = 1 provides a signal to pop an element

from the queue LY
H while ai = 0 provides a

signal to keep on using the last popped element.

This element is then used to guide the decoder

syntactically by providing a signal in the form of

hidden-state representation (Equation 8).

Specifically, in this example, the a1 = 1 signals

LY
H to pop hYWP to provide syntactic guidance

to the decoder for generating the first token.

a2 = 1 signals L
Y
H to pop hYVBZ to provide

syntactic guidance to the decoder for generating

the second token. a3 = 1 helps in obtaining hYNP
from LY

H to provide guidance to generate the

third token. As described earlier, a4, . . . , a8 = 0
indicates, that the same representation hYNP should

be used for syntactically guiding tokens z4, . . . , z8.

Finally a9 = 1 helps in retrieving hY<DOT> for

guiding decoder to generate token z9. Note that

|LY
H | =

∑Tz

i=1 ai
Although a is provided to the model during

training, this information might not be available

during inference. Providing a during generation

makes the model restrictive and might result

in producing ungrammatical sentences. SGCP is

tasked to learn a proxy for the signalling vector a,

using transition probability vector p.

At each time step t, we calculate pt ∈ (0, 1),
which determines the probability of changing the

syntactic signal using:

pt = σ(Wbop([ct;h
Y
t ; st; e(z

′
t)]) + bbop), (6)

hYt+1 =

{

hYt pt < 0.5

pop(LY
H) otherwise

(7)

where pop removes and returns the next element

in the queue, st is the decoder state, and e(z′t) is

the embedding of the input token at time t during

decoding.

3.4.3 Overall

The semantic signal ct, together with decoder

state st, embedding of the input token e(z′t) and

the syntactic signal hYt is fed through a GRU

followed by softmax of the output to produce a

vocabulary distribution as:

Pvocab = softmax(W ([ct;h
Y
t ; st; e(z

′
t)]) + b),

(8)

where [;] represents concatenation of constituent

elements, and W, b are trainable parameters.

We augment this with the copying mechanism

(Vinyals et al., 2015) as in the pointer-generator

network (See et al., 2017). Usage of such a

mechanism offers a probability distribution over

the extended vocabulary (the union of vocabulary

words and words present in the source sentence)

as follows:

P(z) = pgenPvocab(z) + (1− pgen)
∑

i:zi=z

αt
i

pgen = σ(w⊺

c ct + w⊺

s st + w⊺

xe(z
′
t) + bgen)

(9)

where wc, ws, wx and bgen are learnable parame-

ters, e(z′t) is the input token embedding to the

decoder at time step t, and αt
i is the element cor-

responding to the ith co-ordinate in the attention

distribution as defined in Equation 4.

The overall objective can be obtained by

taking negative log-likelihood of the distributions

obtained in Equation 6 and Equation 9.

L =−
1

T

T
∑

t=0

[log P(z∗t)

+ at log(pt)

+ (1− at) log(1− pt)]

(10)

where at is the tth element of the vector a.

4 Experiments

Our experiments are geared towards answering

the following questions:

Q1. Is SGCP able to generate syntax conforming

sentences without losing out on meaning?

(Section 5.1, 5.4)

335

Q2. What level of syntactic control does SGCP

offer? (Section 5.2, 5.3, 5.2)

Q3. How does SGCP compare against prior

models, qualitatively? (Section 5.4)

Q4. Are the improvements achieved by SGCP

statistically significant? (Section 5.1)

Based on these questions, we outline the methods

compared (Section 4.1), along with the datasets

(Section 4.2) used, evaluation criteria (Section 4.3)

and the experimental setup (Section 4.4).

4.1 Methods Compared

As in Chen et al. (2019a), we first highlight the

results of the two direct return-input baselines.

1. Source-as-Output: Baseline where the

output is the semantic input.

2. Exemplar-as-Output: Baseline where the

output is the syntactic exemplar.

We compare the following competitive methods:

3. SGCP (Iyyer et al., 2018) is a sequence-to-

sequence based model comprising two

encoders built with LSTM (Hochreiter and

Schmidhuber, 1997) to encode semantics

and syntax respectively. Once the encoding

is obtained, it serves as an input to the

LSTM-based decoder, which is augmented

with soft-attention (Bahdanau et al., 2014)

over encoded states as well as a copying

mechanism (See et al., 2017) to deal with

out-of-vocabulary tokens.4

4. CGEN (Chen et al., 2019a) is a VAE

(Kingma and Welling, 2014) model with

two encoders to project semantic input and

syntactic input to a latent space. They obtain

a syntactic embedding from one encoder,

using a standard Gaussian prior. To obtain the

semantic representation, they use von Mises-

Fisher prior, which can be thought of as a

Gaussian distribution on a hypersphere. They

train the model using a multi-task paradigm,

incorporating paraphrase generation loss and

word position loss. We considered their best

model, VGVAE + LC + WN + WPL, which

incorporates the above objectives.

4Note that the results for SCPN differ from the ones shown

in Iyyer et al. (2018). This is because the dataset used in Iyyer

et al. (2018) is at least 50 times larger than the largest dataset

(ParaNMT-small) in this work.

5. SGCP (Section 3) is a sequence-and-tree-to-

sequence based model that encodes semantics

and tree-level syntax to produce paraphrases.

It uses a GRU-based (Chung et al., 2014)

decoder with soft-attention on semantic

encodings and a begin of phrase (bop) gate

to select a leaf node in the exemplar syntax

tree. We compare the following two variants

of SGCP:

(a) SGCP-F: Uses full constituency parse tree

information of the exemplar for generating

paraphrases.

(a) SGCP-R: SGCP can produce multiple

paraphrases by pruning the exemplar tree at

various heights. This variant first generates

five candidate generations, corresponding

to five different heights of the exemplar

tree, namely, {Hmax, Hmax − 1,Hmax − 2,
Hmax − 3, Hmax − 4}, for each (source,

exemplar) pair. From these candidates, the

one with the highest ROUGE-1 score with

the source sentence is selected as the final

generation.

Note that, except for the return-input baselines,

all methods use beam search during inference.

4.2 Datasets

We train the models and evaluate them on the

following datasets:

(1) ParaNMT-small (Chen et al., 2019a)

contains 500K sentence-paraphrase pairs for

training, and 1,300 manually labeled sentence-

exemplar-reference, which is further split into

800 test data points and 500 dev. data points,

respectively.

As in Chen et al. (2019a), our model uses

only (sentence, paraphrase) during training. The

paraphrase itself serves as the exemplar input

during training.

This dataset is a subset of the original

ParaNMT-50M dataset (Wieting and Gimpel,

2018). ParaNMT-50M is a data set generated

automatically through backtranslation of original

English sentences. It is inherently noisy because of

imperfect neural machine translation quality, with

many sentences being non-grammatical and some

even being non-English sentences. Because of

such noisy data points, it is optimistic to assume

that the corresponding constituency parse tree

would be well aligned. To that end, we propose to

336

use the following additional dataset, which is more

well-formed and has more human intervention

than the ParaNMT-50M dataset.

(2) QQP-Pos: The original Quora Question

Pairs (QQP) dataset contains about 400K sentence

pairs labeled positive if they are duplicates of

each other and negative otherwise. The dataset

is composed of about 150K positive and 250K

negative pairs. We select those positive pairs that

contain both sentences with a maximum token

length of 30, leaving us with ∼146K pairs. We

call this dataset QQP-Pos.

Similar to ParaNMT-small, we use only the

sentence-paraphrase pairs as training set and

sentence-exemplar-reference triples for testing

and validation. We randomly choose 140K

sentence-paraphrase pairs as the training set

Ttrain, and the remaining 6K pairs Teval are used

to form the evaluation set E. Additionally, let

Teset =
⋃

{{X,Z} : (X,Z) ∈ Teval}. Note that

Teset is a set of sentences while Teval is a set of

sentence-paraphrase pairs.

Let E = φ be the initial evaluation set.

For selecting exemplar for each each sentence-

paraphrase pair (X,Z) ∈ Teval, we adopt the

following procedure:

Step 1: For a given (X,Z) ∈ Teval, construct an

exemplar candidate set C = Teset−{X,Z}.

|C| ≈ 12, 000.

Step 2: Retain only those sentences C ∈ C

whose sentence length (= number of tokens)

differ by at most two when compared to the

paraphrase Z . This is done since sentences

with similar constituency-based parse tree

structures tend to have similar token lengths.

Step 3: Remove those candidates C ∈ C, which

are very similar to the source sentence X,

that is, BLEU(X,C) > 0.6.

Step 4: From the remaining instances in C,

choose that sentence C as the exemplar Y

which has the least Tree-Edit distance with

the paraphraseZ of the selected pair, namely,

Y = argmin
C∈C

TED(Z,C). This ensures that

the constituency-based parse tree of the

exemplar Y is quite similar to that of Z ,

in terms of Tree-Edit distance.

Step 5: E := E ∪ (X,Y, Z).

Step 6: Repeat procedure for all other pairs in

Teval .

From the obtained evaluation set E, we

randomly choose 3K triplets for the test set Ttest,

and remaining 3K for the validation set V.

4.3 Evaluation

It should be noted that there is no single fully

reliable metric for evaluating syntactic paraphrase

generation. Therefore, we evaluate on the follow-

ing metrics to showcase the efficacy of syntactic

paraphrasing models.

1. Automated Evaluation.

(i) Alignment based metrics: We compute

BLEU (Papineni et al., 2002), METEOR

(Banerjee and Lavie, 2005), ROUGE-1,

ROUGE-2, and ROUGE-L (Lin, 2004)

scores between the generated and the refer-

ence paraphrases in the test set.

(ii) Syntactic Transfer: We evaluate the

syntactic transfer using Tree-edit distance

(Zhang and Shasha, 1989) between the parse

trees of:

(a) the generated and the syntactic exemplar

in the test set - TED-E

(b) the generated and the reference

paraphrase in the test set - TED-R

(iii) Model-based evaluation: Because our

goal is to generate paraphrases of the input

sentences, we need some measure to deter-

mine if the generations indeed convey the

same meaning as the original text. To achieve

this, we adopt a model-based evaluation

metric as used by Shen et al. (2017) for

Text Style Transfer and Isola et al. (2017) for

Image Transfer. Specifically, classifiers are

trained on the task of Paraphrase Detection

and then used as Oracles to evaluate the

generations of our model and the baselines.

We fine-tune two RoBERTa (Liu et al., 2019)

based sentence pair classifiers, one on Quora

Question Pairs (Classifier-1) and other on

ParaNMT + PAWS5 datasets (Classifier-2),

5Because the ParaNMT dataset only contains paraphrase

pairs, we augment it with the PAWS (Zhang et al., 2019)

dataset to acquire negative samples.

337

QQP-Pos

Model BLEU↑ METEOR↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ TED-R↓ TED-E↓ PDS↑

Source-as-Output 17.2 31.1 51.9 26.2 52.9 16.2 16.6 99.8

Exemplar-as-Output 16.8 17.6 38.2 20.5 43.2 4.8 0.0 10.7

SGCP (Iyyer et al., 2018) 15.6 19.6 40.6 20.5 44.6 9.1 8.0 27.0

CGEN (Chen et al., 2019a) 34.9 37.4 62.6 42.7 65.4 6.7 6.0 65.4

SGCP-F 36.7 39.8 66.9 45.0 69.6 4.8 1.8 75.0

SGCP-R 38.0 41.3 68.1 45.7 70.2 6.8 5.9 87.7

ParaNMT-small

Source-as-Output 18.5 28.8 50.6 23.1 47.7 12.0 13.0 99.0

Exemplar-as-Output 3.3 12.1 24.4 7.5 29.1 5.9 0.0 14.0

SGCP (Iyyer et al., 2018) 6.4 14.6 30.3 11.2 34.6 6.2 1.4 15.4

CGEN (Chen et al., 2019a) 13.6 24.8 44.8 21.0 48.3 6.7 3.3 70.2

SGCP-F 15.3 25.9 46.6 21.8 49.7 6.1 1.4 76.6

SGCP-R 16.4 27.2 49.6 22.9 50.5 8.7 7.0 83.5

Table 2: Results on QQP and ParaNMT-small dataset. Higher↑ BLEU, METEOR, ROUGE, and PDS

is better whereas lower↓ TED score is better. SCPN-R selects the best candidate out of many, resulting

in performance boost for semantic preservation (shown in box). We bold the statistically significant

results of SCPN-F, only, for a fair comparison with the baselines. Note that Source-as-Output, and

Exemplar-as-Output are only dataset quality indicators and not the competitive baselines. Please see

Section 5 for details.

which achieve accuracies of 90.2% and

94.0% on their respective test sets.6

Once trained, we use Classifier-1 to evaluate

generations on QQP-Pos and Classifier-2 on

ParaNMT-small.

We first generate syntactic paraphrases using

all the models (Section 4.1) on the test splits

of QQP-Pos and ParaNMT-small datasets.

We then pair the source sentence with

their corresponding generated paraphrases

and send them as input to the classifiers.

The Paraphrase Detection score, denoted as

PDS in Table 2, is defined as, the ratio

of the number of generations predicted as

paraphrases of their corresponding source

sentences by the classifier to the total number

of generations.

2. Human Evaluation.

Although TED is sufficient to highlight

syntactic transfer, there has been some

scepticism regarding automated metrics for

paraphrase quality (Reiter, 2018). To address

this issue, we perform human evaluation

on 100 randomly selected data points from

the test set. In the evaluation, three judges

6Because the test set of QQP is not public, the 90.2%

number was computed on the available dev set (not used for

model selection).

(non-researchers proficient in the English

language) were asked to assign scores to

generated sentences based on the semantic

similarity with the given source sentence.

The annotators were shown a source sentence

and the corresponding outputs of the systems

in random order. The scores ranged from

1 (doesn’t capture meaning at all) to 4

(perfectly captures the meaning of the source

sentence).

4.4 Setup

(a) Pre-processing. Because our model needs

access to constituency parse trees, we tokenize

and parse all our data points using the fully

parallelizable Stanford CoreNLP Parser (Manning

et al., 2014) to obtain their respective parse trees.

This is done prior to training in order to prevent

any additional computational costs that might be

incurred because of repeated parsing of the same

data points during different epochs.

(b) Implementation Details. We train both our

models using the Adam Optimizer (Kingma and

Ba, 2014) with an initial learning rate of 7e-

5. We use a bidirectional three-layered GRU

for encoding the tokenized semantic input and a

standard pointer-generator network with GRU for

decoding. The token embedding is learnable with

dimension 300. To reduce the training complexity

338

Source what should be done to get rid of laziness ?

Template Exemplar how can i manage my anger ?

SGCP (Iyyer et al., 2018) how can i get rid ?

CGEN (Chen et al., 2019a) how can i get rid of ?

SGCP-F (Ours) how can i stop my laziness ?

SGCP-R (Ours) how do i get rid of laziness ?

Source what books should entrepreneurs read on entrepreneurship ?

Template Exemplar what is the best programming language for beginners to learn ?

SGCP (Iyyer et al., 2018) what are the best books books to read to read ?

CGEN (Chen et al., 2019a) what ’s the best book for entrepreneurs read to entrepreneurs ?

SGCP-F (Ours) what is a best book idea that entrepreneurs to read ?

SGCP-R (Ours) what is a good book that entrepreneurs should read ?

Source how do i get on the board of directors of a non profit or a for profit organisation ?

Template Exemplar what is the best way to travel around the world for free ?

SGCP (Iyyer et al., 2018) what is the best way to prepare for a girl of a ?

CGEN (Chen et al., 2019a) what is the best way to get a non profit on directors ?

SGCP-F (Ours) what is the best way to get on the board of directors ?

SGCP-R (Ours) what is the best way to get on the board of directors of a non profit or a for profit organisation ?

Table 3: Sample generations of the competitive models. Please refer to Section 5.5 for details.

of the model, the maximum sequence length is

kept at 60. The vocabulary size is kept at 24K for

QQP and 50K for ParaNMT-small.

SGCP needs access to the level of syntactic

granularity for decoding, depicted as H in

Figure 2. During training, we keep on varying

it randomly from 3 to Hmax, changing it with each

training epoch. This ensures that our model is able

to generalize because of an implicit regularization

attained using this procedure. At each time-step of

the decoding process, we keep a teacher forcing

ratio of 0.9.

5 Results

5.1 Semantic Preservation and

Syntactic Transfer

1. Automated Metrics: As can be observed in

Table 2, our method(s) (SGCP-F/R (Section 4.1))

are able to outperform the existing baselines on

both the datasets. Source-as-Output is independent

of the exemplar sentence being used and since a

sentence is a paraphrase of itself, the paraphrastic

scores are generally high while the syntactic

scores are below par. An opposite is true

for Exemplar-as-Output. These baselines also

serve as dataset quality indicators. It can be

seen that source is semantically similar while

being syntactically different from target sentence

whereas the opposite is true when exemplar is

compared to target sentences. Additionally, source

sentences are syntactically and semantically

different from exemplar sentences as can be

observed from TED-E and PDS scores. This

helps in showing that the dataset has rich enough

syntactic diversity to learn from.

Through TED-E scores it can be seen that

SGCP-F is able to adhere to the syntax of the

exemplar template to a much larger degree than

the baseline models. This verifies that our model

is able to generate meaning preserving sentences

while conforming to the syntax of the exemplars

when measured using standard metrics.

It can also be seen that SGCP-R tends to perform

better than SGCP-F in terms of paraphrastic scores

while taking a hit on the syntactic scores. This

makes sense, intuitively, because in some cases

SGCP-R tends to select lowerH values for syntactic

granularity. This can also be observed from the

example given in Table 6 where H = 6 is more

favorable than H = 7, because of better meaning

retention.

Although CGEN performs close to our model in

terms of BLEU, ROUGE, and METEOR scores

on ParaNMT-small dataset, its PDS is still much

lower than that of our model, suggesting that our

model is better at capturing the original meaning

of the source sentence. In order to show that the

results are not coincidental, we test the statistical

significance of our model. We follow the non-

parametric Pitman’s permutation test (Dror et al.,

2018) and observe that our model is statistically

significant when the significance level (α) is

taken to be 0.05. Note that this holds true for

all metric on both the datasets except ROUGE-2

on ParaNMT-small.

339

SCPN CGEN SGCP-F SGCP-R

QQP-Pos 1.63 2.47 2.70 2.99

ParaNMT-small 1.24 1.89 2.07 2.26

Table 4: A comparison of human evaluation

scores for comparing quality of paraphrases

generated using all models. Higher score is better.

Please refer to Section 5.1 for details.

2. Human Evaluation: Table 4 shows the

results of human assessment. It can be seen that

annotators, generally tend to rate SGCP-F and SGCP-

R (Section 4.1) higher than the baseline models,

thereby highlighting the efficacy of our models.

This evaluation additionally shows that automated

metrics are somewhat consistent with the human

evaluation scores.

5.2 Syntactic Control

1. Syntactical Granularity: Our model can

work with different levels of granularity for the

exemplar syntax, namely, different tree heights of

the exemplar tree can be used for decoding the

output.

As can been seen in Table 6, at height 4 the

syntax tree provided to the model is not enough

to generate the full sentence that captures the

meaning of the original sentence. As we increase

the height to 5, it is able to capture the semantics

better by predicting some of in the sentence.

We see that at heights 6 and 7 SGCP is able

to capture both semantics and syntax of the

source and exemplar, respectively. However, as

we provide the complete height of the tree (i.e.,

7), it further tries to follow the syntactic input

more closely leading to sacrifice in the overall

relevance since the original sentence is about pure

substances and not a pure substance. It can be

inferred from this example that because a source

sentence and exemplar’s syntax might not be fully

compatible with each other, using the complete

syntax tree can potentially lead to loss of relevance

and grammaticality. Hence by choosing different

levels of syntactic granularity, one can address the

issue of compatibility to a certain extent.

2. Syntactic Variety: Table 5 shows sample

generations of our model on multiple exemplars

for a given source sentence. It can be observed

that SGCP can generate high-quality outputs for a

variety of different template exemplars even the

ones which differ a lot from the original sentence

in terms of their syntax. A particularly interesting

exemplar is what is chromosomal mutation ?

what are some examples ?. Here, SGCP is able to

generate a sentence with two question marks while

preserving the essence of the source sentence. It

should also be noted that the exemplars used in

Table 5 were selected manually from the test sets,

considering only their qualitative compatibility

with the source sentence. Unlike the procedure

used for the creation of QQP-Pos dataset, the final

paraphrases were not kept in hand while selecting

the exemplars. In real-world settings, where a

gold paraphrase won’t be present, these results

are indicative of the qualitative efficacy of our

method.

5.3 SGCP-R Analysis

ROUGE-based selection from the candidates

favors paraphrases that have higher n-gram

overlap with their respective source sentences,

hence may capture source’s meaning better.

This hypothesis can be directly observed from

the results in Tables 2 and 4, where we see

higher values on automated semantic and human

evaluation scores. Although this helps in obtaining

better semantic generation, it tends to result

in higher TED values. One possible reason is

that, when provided with the complete tree, fine-

grained information is available to the model for

decoding and it forces the generations to adhere

to the syntactic structure. In contrast, at lower

heights, the model is provided with lesser syntactic

information but equivalent semantic information.

5.4 Qualitative Analysis

As can be seen from Table 7, SGCP not only

incorporates the best aspects of both the prior

models, namely SCPN and CGEN, but also utilizes

the complete syntactic information obtained using

the constituency-based parse trees of the exemplar.

From the generations in Table 3, we can see that

our model is able to capture both the semantics of

the source text as well as the syntax of template.

SCPN, evidently, can produce outputs with the

template syntax, but it does so at the cost of

semantics of the source sentence. This can also be

verified from the results in Table 2, where SCPN

performs poorly on PDS as compared with other

models. In contrast, CGEN and SGCP retain much

better semantic information, as is desirable. While

generating sentences, CGEN often abruptly ends the

340

SOURCE: how do i develop my career in software ?

SYNTACTIC EXEMPLAR SGCP GENERATIONS

how can i get a domain for free ? how can i develop a career in software ?

what is the best way to register a company ? what is the best way to develop career in software ?

what are good places to visit in new york ? what are good ways to develop my career in software ?

can i make 800,000 a month betting on horses ? can i develop my career in software ?

what is chromosomal mutation ? what are some examples ?
what is good career ? what are some of the ways to develop my career in

software ?

is delivery free on quikr ? is career useful in software ?

is it possible to mute a question on quora ? is it possible to develop my career in software ?

Table 5: Sample SGCP-R generations with a single source sentence and multiple syntactic exemplars.

Please refer to Section 5.4 for details.

S what are pure substances ? what are some examples ?

E what are the characteristics of the elizabethan theater ?

H = 4 what are pure substances ?

H = 5 what are some of pure substances ?

H = 6 what are some examples of pure substances ?

H = 7 what are some examples of a pure substance ?

Table 6: Sample generations with different levels

of syntactic control. S and E stand for source and

exemplar, respectively. Please refer to Section 5.2

for details.

Single-Pass Syntactic Signal Granularity

SCPN ✗ Linearized Tree ✓

CGEN ✓ POS Tags (During

training)

✗

SGCP ✓ Constituency Parse

Tree

✓

Table 7: Comparison of different syntactically

controlled paraphrasing methods. Please refer to

Section 5.4 for details.

sentence, as in example 1 in Table 3, truncating

the penultimate token with of. The problem of

abrupt ending due to insufficient syntactic input

length was highlighted in Chen et al. (2019a)

and we observe similar trends. SGCP, on the other

hand, generates more relevant and grammatical

sentences.

Based on empirical evidence, SGCP alleviates

this shortcoming, possibly due to dynamic

syntactic control and decoding. This can be

seen in, for example, example 3 in Table 3

where CGEN truncates the sentence abruptly

(penultimate token = directors) but SGCP is able to

generate relevant sentence without compromising

on grammaticality.

5.5 Limitations and Future Directions

All natural language English sentences cannot

necessarily be converted to any desirable syntax.

We note that SGCP does not take into account the

compatibility of source sentence and template

exemplars and can freely generate syntax

conforming paraphrases. This, at times, leads to

imperfect paraphrase conversion and nonsensical

sentences like example 6 in Table 5 (is career

useful in software ?). Identifying compatible

exemplars is an important but separate task in

itself, which we defer to future work.

Another important aspect is that the task

of paraphrase generation is inherently domain

agnostic. It is easy for humans to adapt to new

domains for paraphrasing. However, because of

the nature of the formulation of the problem in

NLP, all the baselines, as well as our model(s),

suffer from dataset bias and are not directly

applicable to new domains. A prospective future

direction can be to explore it from the lens of

domain independence.

Analyzing the utility of controlled paraphrase

generations for the task of data augmentation is

another interesting possible direction.

6 Conclusion

In this paper we proposed SGCP, an end-to-

end framework for the task of syntactically

controlled paraphrase generation. SGCP generates

paraphrase of an input sentence while conforming

to the syntax of an exemplar sentence provided

along with the input. SGCP comprises a GRU-

based sentence encoder, a modified RNN-based

tree encoder, and a pointer-generator–based

novel decoder. In contrast to previous work

341

that focuses on a limited amount of syntactic

control, our model can generate paraphrases at

different levels of granularity of syntactic control

without compromising on relevance. Through

extensive evaluations on real-world datasets, we

demonstrate SGCP’s efficacy over state-of-the-art

baselines.

We believe that the above approach can be

useful for a variety of text generation tasks

including syntactic exemplar-based abstractive

summarization, text simplification and data-to-

text generation.

Acknowledgments

This research is supported in part by the Ministry

of Human Resource Development (Government

of India). We thank the action editor Asli

Celikyilmaz and the three anonymous reviewers

for their helpful suggestions in preparing the

manuscript. We also thank Chandrahas for his

indispensable comments on earlier drafts of this

paper.

References

Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In

Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics

(Volume 2: Short Papers), pages 132–140. Van-

couver, Canada. Association for Computational

Linguistics.

Richard Chase Anderson and Alice Davison. 1986.

Conceptual and empirical bases of readability

formulas. Center for the Study of Reading

Technical Report; no. 392.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by

jointly learning to align and translate. arXiv

preprint arXiv:1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005.

METEOR: An automatic metric for MT evalua-

tion with improved correlation with human

judgments. In Proceedings of the ACL Work-

shop on Intrinsic and Extrinsic Evaluation

Measures for Machine Translation and/or

Summarization, pages 65–72.

Regina Barzilay and Lillian Lee. 2003. Learning

to paraphrase: An unsupervised approach using

multiple-sequence alignment. In Proceedings

of the 2003 Conference of the North American

Chapter of the Association for Computational

Linguistics on Human Language Technology-

Volume 1, pages 16–23. Association for Com-

putational Linguistics.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals,

Andrew Dai, Rafal Jozefowicz, and Samy

Bengio. 2016. Generating sentences from a

continuous space. In Proceedings of The 20th

SIGNLL Conference on Computational Natural

Language Learning, pages 10–21, Berlin,

Germany. Association for Computational

Linguistics.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu

Wei. 2018. Retrieve, rerank and rewrite:

Soft template based neural summarization. In

Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 152–161.

Mingda Chen, Qingming Tang, Sam Wiseman,

and Kevin Gimpel. 2019a. Controllable para-

phrase generation with a syntactic exemplar.

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 5972–5984, Florence, Italy. Association

for Computational Linguistics.

Mingda Chen, Qingming Tang, Sam Wiseman,

and Kevin Gimpel. 2019b. A multi-task

approach for disentangling syntax and seman-

tics in sentence representations. In Proceedings

of the 2019 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers),

pages 2453–2464, Minneapolis, Minnesota.

Association for Computational Linguistics.

Junyoung Chung, Caglar Gulcehre, Kyunghyun

Cho, and Yoshua Bengio. 2014. Empirical

evaluation of gated recurrent neural networks

on sequence modeling. In NIPS 2014 Workshop

on Deep Learning, December 2014.

Herbert H. Clark and Eve V. Clark. 1968.

Semantic distinctions and memory for complex

sentences. Quarterly Journal of Experimental

Psychology, 20(2):129–138.

342

Rotem Dror, Gili Baumer, Segev Shlomov, and

Roi Reichart. 2018. The hitchhiker’s guide

to testing statistical significance in natural

language processing. In Proceedings of the 56th

Annual Meeting of the Association for Comput-

ational Linguistics (Volume 1: Long Papers),

pages 1383–1392, Melbourne, Australia. Asso-

ciation for Computational Linguistics.

Ankush Gupta, Arvind Agarwal, Prawaan Singh,

and Piyush Rai. 2018. A deep generative

framework for paraphrase generation. In

Thirty-Second AAAI Conference on Artificial

Intelligence.

Samer Hassan, Andras Csomai, Carmen Banea,

Ravi Sinha, and Rada Mihalcea. 2007. Unt:

Subfinder: Combining knowledge sources for

automatic lexical substitution. In Proceedings

of the 4th International Workshop on Semantic

Evaluations, pages 410–413. Association for

Computational Linguistics.

Dan Hendrycks and Kevin Gimpel. 2016.

Gaussian error linear units (gelus). arXiv

preprint arXiv:1606.08415.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.

Long short-term memory. Neural Computation,

9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang,

Ruslan Salakhutdinov, and Eric P Xing. 2017.

Toward controlled generation of text. In

Proceedings of the 34th International Confer-

ence on Machine Learning-Volume 70,

pages 1587–1596. JMLR.org.

Judith W. Irwin. 1980. The effects of explicitness

and clause order on the comprehension of

reversible causal relationships. Reading Re-

search Quarterly, pages 477–488.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou,

and Alexei A. Efros. 2017. Image-to-image

translation with conditional adversarial net-

works. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition,

pages 1125–1134.

Mohit Iyyer, John Wieting, Kevin Gimpel, and

Luke Zettlemoyer. 2018. Adversarial example

generation with syntactically controlled para-

phrase networks. In Proceedings of the 2018

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long Papers), pages 1875–1885, New Orleans,

Louisiana. Association for Computational Lin-

guistics.

Evelyn Walker Katz and Sandor B. Brent. 1968.

Understanding connectives. Journal of Memory

and Language, 7(2):501.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:

A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Diederik P. Kingma and Max Welling. 2014.

Auto-encoding variational bayes. In Proceed-

ings of ICLR.

Ashutosh Kumar, Satwik Bhattamishra, Manik

Bhandari, and Partha Talukdar. 2019. Submod-

ular optimization-based diverse paraphrasing

and its effectiveness in data augmentation.

In Proceedings of the 2019 Conference of

the North American Chapter of the Associ-

ation for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and

Short Papers), pages 3609–3619, Minneapo-

lis, Minnesota. Association for Computational

Linguistics.

Elena T. Levy. 2003. The roots of coherence

in discourse. Human Development, 46(4):

169–188.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng

Gao, and Bill Dolan. 2016. A diversity-

promoting objective function for neural

conversation models. In Proceedings of the

2016 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

pages 110–119.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang

Li. 2018. Paraphrase generation with deep

reinforcement learning. In Proceedings of the

2018 Conference on Empirical Methods in Nat-

ural Language Processing, pages 3865–3878,

Brussels, Belgium. Association for Computa-

tional Linguistics.

Zichao Li, Xin Jiang, Lifeng Shang, and Qun

Liu. 2019. Decomposable neural paraphrase

343

generation. In Proceedings of the 57th Annual

Meeting of the Association for Computational

Linguistics, pages 3403–3414, Florence, Italy.

Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: Apackage for auto-

matic evaluation of summaries. In Text Sum-

marization Branches Out. https://www.

aclweb.org/anthology/W04-1013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei

Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin

Stoyanov. 2019. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:

1907.11692.

Nitin Madnani and Bonnie J. Dorr. 2010. Gen-

erating phrasal and sentential paraphrases: A

survey of data-driven methods. Computational

Linguistics, 36(3):341–387.

Christopher D. Manning, Mihai Surdeanu, John

Bauer, Jenny Finkel, Steven J. Bethard, and

David McClosky. 2014. The Stanford CoreNLP

natural language processing toolkit. In Asso-

ciation for Computational Linguistics (ACL)

System Demonstrations, pages 55–60.

Kathleen R. McKeown. 1983. Paraphrasing

questions using given and new information.

Computational Linguistics, 9(1):1–10.

Kishore Papineni, Salim Roukos, Todd Ward,

and Wei-Jing Zhu. 2002. BLEU: A method

for automatic evaluation of machine translation.

In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics,

pages 311–318, Philadelphia, Pennsylvania,

USA. Association for Computational Linguistics.

Hao Peng, Ankur Parikh, Manaal Faruqui,

Bhuwan Dhingra, and Dipanjan Das. 2019.

Text generation with exemplar-based adaptive

decoding. In Proceedings of the 2019 Confer-

ence of the North American Chapter of the

Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long and Short Papers), pages 2555–2565,

Minneapolis, Minnesota. Association for

Computational Linguistics.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee,

Vivek Datla, Ashequl Qadir, Joey Liu,

and Oladimeji Farri. 2016. Neural paraphrase

generation with stacked residual LSTM net-

works. In Proceedings of COLING 2016, the

26th International Conference on Comput-

ational Linguistics: Technical Papers,

pages 2923–2934, Osaka, Japan. The COLING

2016 Organizing Committee.

Chris Quirk, Chris Brockett, and William Dolan.

2004. Monolingual machine translation for

paraphrase generation. In Proceedings of the

2004 Conference on Empirical Methods in

Natural Language Processing, pages 142–149.

Ehud Reiter. 2018. A structured review of the

validity of BLEU. Computational Linguistics,

44(3):393–401.

Abigail See, Peter J. Liu, and Christopher D.

Manning. 2017. Get to the point: Summa-

rization with pointer-generator networks. In

Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1073–1083,

Vancouver, Canada.

Rico Sennrich, Barry Haddow, and Alexandra

Birch. 2016. Neural machine translation of rare

words with subword units. In Proceedings of

the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long

Papers), pages 1715–1725, Berlin, Germany.

Tianxiao Shen, Tao Lei, Regina Barzilay, and

Tommi Jaakkola. 2017. Style transfer from non-

parallel text by cross-alignment. In Advances

in Neural Information Processing Systems,

pages 6830–6841.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016.

Does string-based neural MT learn source

syntax? In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language

Processing, pages 1526–1534, Austin, Texas.

Association for Computational Linguistics.

Advaith Siddharthan. 2014. A survey of research

on text simplification. ITL-International Jour-

nal of Applied Linguistics, 165(2):259–298.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and

Bill Byrne. 2016. Syntactically guided neural

machine translation. In Proceedings of the

54th Annual Meeting of the Association for

344

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

Computational Linguistics (Volume 2: Short

Papers), pages 299–305.

Kai Sheng Tai, Richard Socher, and Christopher

D. Manning. 2015. Improved semantic repre-

sentations from tree-structured long short-term

memory networks. In Proceedings of the 53rd

Annual Meeting of the Association for Com-

putational Linguistics and the 7th Interna-

tional Joint Conference on Natural Language

Processing (Volume 1: Long Papers),

pages 1556–1566.

Oriol Vinyals, Meire Fortunato, and Navdeep

Jaitly. 2015. Pointer networks. In Advances

in Neural Information Processing Systems,

pages 2692–2700.

Oriol Vinyals and Quoc Le. 2015. A neural

conversational model. arXiv preprint arXiv:

1506.05869.

John Wieting and Kevin Gimpel. 2018. Paranmt-

50m: Pushing the limits of paraphrastic sen-

tence embeddings with millions of machine

translations. In Proceedings of the 56th Annual

Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers),

pages 451–462.

Sander Wubben, Antal Van Den Bosch, and

Emiel Krahmer. 2010. Paraphrase generation as

monolingual translation: Data and evaluation.

In Proceedings of the 6th International

Natural Language Generation Conference,

pages 203–207. Association for Computational

Linguistics.

Xuewen Yang, Yingru Liu, Dongliang Xie, Xin

Wang, and Niranjan Balasubramanian. 2019.

Latent part-of-speech sequences for neural

machine translation.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P.

Xing, and Taylor Berg-Kirkpatrick. 2018. Un-

supervised text style transfer using language

models as discriminators. In Advances in

Neural Information Processing Systems,

pages 7287–7298.

Kaizhong Zhang and Dennis Shasha. 1989. Simple

fast algorithms for the editing distance between

trees and related problems. SIAM Journal on

Computing, 18(6):1245–1262.

Yuan Zhang, Jason Baldridge, and Luheng He.

2019. PAWS: Paraphrase adversaries from

word scrambling. In Proceedings of the 2019

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long and Short Papers), pages 1298–1308.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu,

and Sheng Li. 2008. Combining multiple

resources to improve SMT-based paraphras-

ing model. Proceedings of ACL-08: HLT .

pages 1021–1029.

345

	Introduction
	Related Work
	Sgcp: Proposed Method
	Inputs
	Semantic Encoder
	Syntactic Encoder
	Syntactic Paraphrase Decoder
	Using Semantic Information
	Using Syntactic Information
	Overall

	Experiments
	Methods Compared
	Datasets
	Evaluation
	Setup

	Results
	Semantic Preservation and Syntactic Transfer
	Syntactic Control
	Sgcp-R Analysis
	Qualitative Analysis
	Limitations and Future Directions

	Conclusion

