
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing, pages 41–47
Online, November 20, 2020. c©2020 Association for Computational Linguistics

41

Efficient Estimation of Influence of a Training Instance

Sosuke Kobayashi1,2 Sho Yokoi1,3 Jun Suzuki1,3 Kentaro Inui1,3

Tohoku University1 Preferred Networks, Inc.2 RIKEN3

sosk@preferred.jp
{yokoi,jun.suzuki,inui}@ecei.tohoku.ac.jp

Abstract

Understanding the influence of a training in-
stance on a neural network model leads to im-
proving interpretability. However, it is diffi-
cult and inefficient to evaluate the influence,
which shows how a model’s prediction would
be changed if a training instance were not
used. In this paper, we propose an efficient
method for estimating the influence. Our
method is inspired by dropout, which zero-
masks a sub-network and prevents the sub-
network from learning each training instance.
By switching between dropout masks, we can
use sub-networks that learned or did not learn
each training instance and estimate its influ-
ence. Through experiments with BERT and
VGGNet on classification datasets, we demon-
strate that the proposed method can capture
training influences, enhance the interpretabil-
ity of error predictions, and cleanse the train-
ing dataset for improving generalization.

1 Introduction

What is the influence of a training instance on a ma-
chine learning model? This question has attracted
the attention of the community (Cook, 1977; Koh
and Liang, 2017; Zhang et al., 2018; Hara et al.,
2019). Evaluating the influence of a training in-
stance leads to more interpretable models and other
applications like data cleansing.

A simple evaluation is by comparing a model
with another similarly trained model, whose train-
ing does not include the instance of interest. This
method, however, requires computational costs of
time and storage depending on the number of in-
stances, which indicates the extreme difficulty (Ta-
ble 1). While computationally cheaper estimation
methods have been proposed (Koh and Liang, 2017;
Hara et al., 2019), they still have computational dif-
ficulties or restrictions of model choices. The con-
tribution of this work is to propose an estimation

method, which (i) is computationally more effi-
cient while (ii) useful for applications (iii) without
significant sacrifice of model performance.

We propose a trick for enabling a neural network
without restrictions to estimate the influence, which
we refer to as turn-over dropout. This method is
computationally efficient as it requires only run-
ning two forward computations after training a
single model on the entire training dataset. In
addition to the efficiency, we demonstrated that
it enabled BERT (Devlin et al., 2019) and VG-
GNet (Simonyan and Zisserman, 2015) to analyze
the influences of training through various experi-
ments, including example-based interpretation of
error predictions and data cleansing to improve the
accuracy on a test set with a distributional shift.

2 Influence of a Training Instance

2.1 Problem Setup
We present preliminaries on the problem setup. In
this paper, we deal with the influence of training
with an instance on prediction with another one,
which has been studied in Koh and Liang (2017),
Hara et al. (2019) and so on. Let z := (x, y) be an
instance and represent a pair of input x 2 X and its
output y 2 Y , and let D := {zi}Ni=1 be a training
dataset. By using an optimization method with D,
we aim to find a model fD : X ! Y . Denoting the
loss function by L(f, z), the learning problem is
obtaining f̂D = argminfEzi2DL(f, zi).

The influence, I(ztarget, zi;D), is a quantitative
benefit from zi to prediction of ztarget. Let fD\{zi}
to be a model trained on the dataset D excluding
zi, the influence is defined as

I(ztarget, zi;D)

:= L(fD\{zi}, ztarget)� L(fD, ztarget). (1)

Intuitively, the larger this value, the more strongly a
training instance zi contributes to reduce the loss of
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Method Training Storage Estimation
Re-train O(|D|2) O(|✓||D|) O(F |D|)
Hara+ O(|D|) O(|✓|T ) O(F |D|+ (F+F

0)TB)
Koh+ O(|D|) O(|✓|) O(F |D|+ (F+F

0)rtb)
Ours O(|D|) O(|✓|) O(F |D|)

Table 1: Comparison of computational complexity for
estimating the influence of all instance on another in-
stance, with Hara et al. (2019) and Koh and Liang
(2017), where |✓| is the number of parameters, F is
a forward/backward computation, F 0 is a double back-
ward computation, T is the training steps, B is a train-
ing minibatch size, b is a minibatch size for stabilizing
approximation, rt are the hyper-parameters; typically
rt ⇡ |D|. See the references in detail.

prediction on another instance ztarget. The instance
of interest ztarget is typically an instance in a test
or validation dataset.

2.2 Related Methods

Computing the influence in Equation (1) by re-
training two models for each instance is computa-
tionally expensive, and several estimation methods
are proposed. Koh and Liang (2017) proposed an
estimation method that assumed a strongly convex
loss function and a global optimal solution1. While
the method is used even with neural models (Koh
and Liang, 2017; Han et al., 2020), which do not
satisfy the assumption, it still requires high compu-
tational cost. Hara et al. (2019) proposed a method
without these restrictions; however, it consumes
large disk storage and computation time that de-
pend on the number of optimization steps. Our
proposed method is much more efficient, as shown
in Table 1. For example, in a case where Koh and
Liang (2017)’s method took 10 minutes to estimate
the influences of 10,000 training instances on an-
other instance with BERT (Han et al., 2020), our
method only required 35 seconds2. This efficiency
will expand the scope of applications of computing
influence. For example, it would enable real-time
interpretation of model predictions for users of the
machine learning models.

1 Strictly speaking, Koh and Liang (2017) studied a similar
but different value from I in Equation (1). Briefly, the formu-
lation in Koh and Liang (2017) considers convex models with
the optimal parameters for fD\{zi} and fD . The definition
in Hara et al. (2019) did not have such conditions and treated
the broader problem. We follow Hara et al. (2019); therefore,
the definition in Equation (1) allows any fD and fD\{zi}, as
long as they have the same initial parameters and optimization
procedures using the same mini-batches except for zi.

2 For the details, see Appendix B.

Figure 1: Dropout generates a sub-network for each
training instance z, and updates its parameters (red;
top) only. By contrast, the (blue; bottom) sub-network
is not influenced by z. Our estimation uses the differ-
ence between the two sub-networks.

3 Proposed Method

3.1 Background: Dropout

Dropout (Hinton et al., 2012; Srivastava et al.,
2014) is a popular regularization methods for deep
neural networks. During training, d-dimensional
random mask vector m, where d refers to the num-
ber of parameters of a layer, is sampled, and a neu-
ral network model f is transformed into a variant
fm with a parameter set multiplied with m each
update3. The elements of mask m 2 {0, 1p}

d are
randomly sampled as follows: mj := m0

j/p, m
0
j ⇠

Bernoulli(p). Parameters masked (multiplied) with
0 are disabled in an update step like pruning. Thus,
dropout randomly selects various sub-networks fm

to be updated at every step. During inference at
test time, dropout is not applied. One interpretation
of dropout is that it trains numerous sub-networks
and uses them as ensemble (Hinton et al., 2012;
Srivastava et al., 2014; Bachman et al., 2014; Baldi
and Sadowski, 2014; Bul et al., 2016). In this work,
p = 0.5; approximately half of the parameters are
zero-masked.

3.2 Proposed Method: Turn-over Dropout

In the standard dropout method, dropout masks
are sampled independently at every update. In
our proposed method, however, we use instance-

specific dropout masks m(z), which are also ran-
dom vectors but deterministically generated and

3 Typically, dropout is applied to the layers of the neural
network rather than its parameter matrices. In this case, each
instance in a minibatch drops different column-wise parame-
ters of matrices at once.
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tied with each instance z. Thus, when the network
is trained with an instance z, only a deterministic
subset of its parameters is updated, as shown in
Figure 1. In other words, the sub-network fm(z)

is updated; however the corresponding counter-
part of the network ffm(z) is not at all affected
by z, where fm(z) is the flipped mask of m(z), i.e.,
fm(z) := 1

p � m(z). Both sub-networks, fm(z)

and ffm(z), can be used by applying the individual
masks to f . These sub-networks are analogously
comprehended as two different networks trained
on a dataset with or without an instance, respec-
tively, fD and fD\{zi}

4. From this analogy, the
influence of a training instance can be evaluated
by considering these two sub-networks. The in-
fluence I(ztarget, zi;D) = L(fD\{zi}, ztarget) �
L(fD, ztarget) is estimated as

Î(ztarget, zi;D)

:= L(f
fm(zi)
D , ztarget)� L(fm(zi)

D , ztarget), (2)

which corresponds to the gain when using fm(zi)
D ,

instead of ffm(zi)
D for a prediction on ztarget. We

call this estimation method turn-over dropout. Its
summarized advantages are as follows:
• Lower computation time: The method only

requires running forward procedure two times.
• No snapshot or re-training: A single model

can be used for all training instances.
• Easy to implement: The model modification

and estimation procedure are very simple.

3.3 Memory-efficient Instance-specific Masks
One may think that using instance-specific masks
require a large space, depending on the dataset
size and the number of parameters to be masked.
However, this cost is drastically reduced to a con-
stant O(1), using a trick. As the masks are not
updated, we do not have to save them directly. In-
stead, we can deterministically generate the ran-
dom masks with a fixed random seed number any-
time. Thus, models can avoid storing masks and
generate masks when using them. We call this trick
as volatile mask generation

5.
4 In this paper, we associate f

m(z) and f
fm(z) with fD

and fD\{zi}, respectively. However, while fD does not focus
on any instance in D so much, its substitute f

m(z) may be a
little biased to some characteristic of z. For ignoring bias, we
can use fD itself (i.e., full network) instead of fm(z), while
the representation powers of fD and fD\{zi} are different.
We tested the alternative but did not find large improvements.
Further exploration is an interesting future work.

5 The volatile mask generation method solved storage and
memory issues in our experiments. However, the memory

4 Experiments

The computational efficiency of our method is dis-
cussed in Section 2. Moreover, we answer a ques-
tion: even if it is efficient, does it work well on
applications? To demonstrate the applicability, we
conducted experiments using different models and
datasets.

Setup First, we used the Stanford Sentiment
TreeBank (SST-2) (Socher et al., 2013) binary sen-
timent classification task. Five thousand instances
were sampled from the training set, and 872 in-
stances in the development set were used. We
trained BERT-base classifiers (Wolf et al., 2019)
with the adapter modules (Houlsby et al., 2019),
which froze the pre-trained BERT parameters but
newly trained branch networks in addition to the
output layers. We applied the turn-over dropout on
the adapter modules and output layers.

In addition, we used the CIFAR-10 (Krizhevsky,
2009) 10-class image classification task, with the
50,000 training instances and 10,000 validation
instances. We trained the VGGNet19 classifier (Si-
monyan and Zisserman, 2015) with the turn-over
dropout.

Models were trained with the cross-entropy loss.
Further details of the setup are shown in Ap-
pendix A.

4.1 Side Effect on Model Performance

Note that turn-over dropout is not for improving
the accuracy of models. It gives the models the
method of efficiently estimating the influence of
each training instance. A possible side effect is a de-
terioration of accuracy due to introducing instance-
specific dropout with p = 0.56. Thus, we first ex-
plored the change of classification accuracy when
using the turn-over dropout.

For BERT with the adapter modules on SST-
2, if we use a small dataset (N=5,000), the accu-
racy slightly decreased from the baseline model,
from 90.0% to 88.3%. If we use a larger dataset
(N=20,000), the change is negligible; 90.5% and
90.2%. Thus, in a case with large datasets, where

issue could occur even with the method, depending on imple-
mentations. For such a particular case and another solution
for it, see Appendix C in detail.

6Dropout with p = 0.5 is often used in various neural
networks, especially on linear layers of them, and improves
the accuracy. However, dropout on all layers could damage. It
is also unclear how dropout with “static” masks effect because
the idea is novel.
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Figure 2: Loss curves of BERT on SST-2.

we typically want to use turn-over dropout for ef-
ficiency, applying the turn-over dropout does not
decrease the validation accuracy compared with the
baseline. However, when we use turn-over dropout
on all layers of BERT without the adapter modules
using makes training unstable. Furthermore the
same is true for VGGNet on CIFAR-10. Instead,
we first applied the turn-over dropout only for all
layers after the 11th layer, although this means
early layers can learn all instances in the training
dataset and make the turn-over dropout leaky7. We
found that VGGNet with turn-over dropout can
overfit more than the baseline does; their accura-
cies are 86.2% and 92.0%, respectively. If we add
regularization using the original dropout, the accu-
racy is recovered to 91.3%. Thus, in some cases,
we have to care about the decrease of model per-
formances when using turn-over dropout. While
we experimented with the successful architectures
only, exploring the side effect in various architec-
tures and its remedy is important future work.

4.2 Sanity Check: Learning Curves
We first observed an interesting property of the turn-
over dropout from the loss curves during training,
as shown in Figure 2. The solid red line of training
loss using m(ztrain), L(f

m(ztrain)
D , ztrain), showed

a typical tendency of training loss. However, the
solid blue line of training loss using fm(ztrain),
L(f

fm(ztrain)
D , ztrain), indicated loss values close to

the test losses (in dotted lines), without overfit-
ting. This fact agrees with the idea behind the
turn-over dropout; the sub-network ffm(ztrain) us-

7 Yuki M. Asano (2020) demonstrated that early layers
of CNN contained limited information about the statistics
of images, and such low-level statistics can be learned even
through a single image. Based on the finding, we assumed that
early layers did not fit each instance so much, and the effect
of leakage was small.

Figure 3: A misclassified text in the test set and the
text with the highest influence with the error label in
the training set for BERT on SST-2.

Figure 4: A misclassified text in the test set and the
texts with the highest influence with the error label in
the training set for BERT on Yahoo Answers.

ing the flipped mask does not learn each training
instance ztrain.

4.3 Interpretation of Error of Predictions
Neural network models are notorious for their
black-box prediction, which harms the trust and
usability (Ribeiro et al., 2016). The influence es-
timation can mitigate this problem by suggesting
possible reasons for a wrong model prediction by
identifying influential training instances.

To verify this benefit, we collected the misclas-
sified instances of the validation or test set and
searched for the training instances that most influ-
enced the wrong predictions. Figure 3 indicates a
text example from the results. Rare words of named
entities were divided into many subwords (Schus-
ter and Nakajima, 2012; Sennrich et al., 2016;
Wu et al., 2016) and requiring more complex pro-
cessing. A guess is that BERT might fail to un-
derstand the input due to the cluttered subwords,
and predict a wrong label, which depended on a
training instance similarly with many subwords.
Additionally, we conducted the same experiment
on Yahoo Answers 10-label question classification
dataset (Zhang et al., 2015)8, which is more com-
plex than sentiment analysis. Figure 4 shows the
results on Yahoo Answers. The misclassified text
shares the phrase “ch ##rist” with the two influen-

8We used 5,000 training instances as well as SST-2.
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Figure 5: Misclassified images in the validation set (up-
per row) and images with the highest influence in the
training set (lower row) for VGGNet on CIFAR-10.

Accuracy (%) Loss
1% Random Removal 76.8 ± 1.1 0.521 ± 0.030
No Cleansing 77.0 ± 0.9 0.536 ± 0.063
1% Cleansing 78.3 ± 0.2 0.484 ± 0.008

Table 2: The results of data cleansing. Loss is the
cross entropy loss. The averages and standard devia-
tions from four difference runs are shown.

tial instances. Such a low-level cue is not critical in
the test. However, it seemed that the model focused
on the phrase and predicted the label of training
instances containing the phrase.

In addition, more intuitively, image results are
shown in Figure 5. The two leftmost instances
with the “bird” label were wrongly predicted as
“airplane.” The training instances of airplane with
the highest influence on the error predictions are
shown in the row below. The corresponding images
had similar visual features, such as shape, layout, or
color, which probably led to the wrong predictions.

4.4 Data Cleansing
Another possible application of the influence esti-
mation is to eliminate harmful instances from the
training dataset. If the mean influence of a train-
ing instance on unseen instances is negative, the
instance can be harmful for generalization. We ex-
perimented with data cleansing in a case of domain
shift, where the training dataset is of SST-2 (movie
review); however, the validation and test dataset are
of the ‘electronics’ subset in Multi-Domain Senti-
ment Dataset (Blitzer et al., 2007) (Elec). We split
the Elec dataset into 200 instances for validation
and 1,800 instances for the test. Note that we do not
use Elec dataset as a training dataset for studying
only the effect of data cleansing.

We finetuned BERT models (with turn-over
dropout) on SST-2 dataset and calculated the mean
influences considering Elec’s validation set. Af-

ter that, we re-trained models without turn-over
dropout on datasets that removed training instances
with 1% of the most negative influences. Finally,
the model performances on Elec’s test dataset are
compared, as shown in Table 2. The models trained
on the cleansed datasets achieved better accuracy
and lower loss than those trained on the original
dataset. This result demonstrated that our estima-
tion of the influence could also be used for data
cleansing.

5 Conclusion

This paper proposed a method that required a low
computational cost for estimating the influence of
a training instance. The method alters dropout
with instance-specific masks and, for estimation,
uses sub-networks that are not trained with each
instance. The experiments demonstrated that this
method could be applied even for complex models.
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