
Proceedings of the SIGdial 2020 Conference, pages 86–96
1st virtual meeting, 01-03 July 2020. c©2020 Association for Computational Linguistics

86

It’s About Time:
Turn-Entry Timing For Situated Human-Robot Dialogue

Felix Gervits, Ravenna Thielstrom, Antonio Roque, Matthias Scheutz
Human-Robot Interaction Laboratory
Tufts University, Medford MA 02155

{felix.gervits, ravenna.thielstrom,
antonio.roque, matthias.scheutz}@tufts.edu

Abstract
Turn-entry timing is an important requirement
for conversation, and one that few spoken di-
alogue systems consider. In this paper we in-
troduce a computational framework, based on
work from psycholinguistics, which is aimed
at achieving proper turn-entry timing for situ-
ated agents. Our approach involves incremen-
tal processing and lexical prediction of the turn
in progress, which allows a situated dialogue
agent to start its turn and initiate actions earlier
than would otherwise be possible. We evaluate
the framework by integrating it within a cog-
nitive robotic architecture and testing perfor-
mance on a corpus of situated, task-oriented
human-robot directives. We demonstrate that:
1) the system is superior to a non-incremental
system in terms of faster responses, reduced
gap between turns, and the ability to perform
actions early, 2) the system can time its turn
to come in immediately at a turn transition,
or earlier to produce several types of overlap,
and 3) the system is robust to various forms of
disfluency in the input. Overall, this domain-
independent framework can be integrated into
existing dialogue systems to improve respon-
siveness, and is another step toward more nat-
ural and fluid turn-taking behavior.

1 Introduction

Behavioral evidence shows that humans are able to
exchange turns extremely quickly in conversation
– within a few hundred milliseconds on average
(Levinson and Torreira, 2015). This is a universal
human characteristic, though the nature of the tim-
ings varies slightly across languages (Stivers et al.,
2009). There is some debate about exactly how hu-
mans achieve this performance, but evidence from
psycholinguistic studies suggests that it is likely
done by processing ongoing utterances incremen-
tally and making lexicosyntactic predictions about
the turn in progress (de Ruiter et al., 2006; Mag-
yari and de Ruiter, 2012). This allows a listener to

plan what to say and to anticipate the end of the
speaker’s turn accurately so that turn-transitions
are seamless, and gaps between turns are mini-
mized. It also allows for the production of speech
overlap, to produce conversational behaviors such
as backchanneling and repair. Such human be-
haviors are desirable for spoken dialogue systems
(SDSs) where naturalness is a priority (Edlund
et al., 2008).

SDS research has produced an impressive body
of work on turn-taking (e.g. Bohus and Horvitz
(2011); Kronlid (2006); Raux and Eskenazi (2009,
2012); Skantze and Schlangen (2009); Zhao et al.
(2015)), and some early work on overlap and com-
pletions (Baumann and Schlangen, 2011; DeVault
et al., 2011b; Gervits and Scheutz, 2018a). How-
ever, relatively little focus has been placed on using
turn-taking capabilities for responsive turn-entry
timing, especially for situated agents. One excep-
tion is the approach by Baumann and Schlangen
(2011) which involves estimating word duration to
produce collaborative completions.

We build on this prior work through the devel-
opment of a framework for achieving responsive
turn-entry timing, as well as a full set of adaptive
human-like overlap and completion behaviors. Our
approach involves using utterance-level predictions
from partial input and information from a world
modeler to determine when to enter the turn (in-
cluding producing overlap at any of the entry points
shown in Figure 1), and whether to initiate actions
early. Such capabilities are particularly important
for situated dialogue agents, as responses, and es-
pecially actions, often involve lengthy processing
delays, which can be mitigated by preparing or
initiating them during an ongoing turn. Section 2
describes how this framework builds on existing
research, including our novel Turn-Entry Manager
(TEM) described in Section 2.4. In Section 3 we de-
scribe implementation details related to integrating
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Figure 1: Entry points in a sample utterance based on (Jefferson, 2004). A fluid turn exchange starts at the
transition point between turns (transition-relevance place or TRP), whereas earlier entry points indicate various
types of overlap.

the framework in a cognitive robotic architecture.
Then in Section 4 we evaluate our implementation
on a corpus of situated human-robot dialogue utter-
ances. Finally, we close with a discussion of the
contributions and directions for future work.

2 A Framework for Turn-Entry Timing

Here we discuss the framework needed to manage
turn-entry timing for situated dialogue agents, and
the related work that the framework builds on.

2.1 Incremental Processing with Prediction

Obtaining an early understanding of the meaning
of an utterance allows for faster feedback, support-
ive overlap, and faster actions. To achieve this, the
SDS needs prediction, which is enabled by incre-
mental processing.

Extensive prior work has supported fast and
effective incremental processing with prediction
(Paetzel et al., 2015; Skantze, 2017). For exam-
ple, Schlangen and Skantze (2011) developed the
Incremental Unit (IU) framework which supports
incrementalaity with prediction, revision, and man-
agement of alternative hypotheses. This and other
related approaches (e.g., Heintze et al. (2010);
Skantze and Schlangen (2009)) involve interpreting
meaning from each partial input rather than trying
to predict the complete utterance. Other work has
focused on predicting a full utterance (or seman-
tic frame) from partial input using a maximum en-
tropy classification approach (DeVault et al., 2011a;
Sagae et al., 2009). These approaches attempt to
find the point of maximal understanding at which
a response can be initiated, and have been demon-
strated to support the production of collaborative
completions (DeVault et al., 2009). While these
approaches use lexical cues in the input to generate
predictions, other cues can also be used for situated
interaction, including gesture and gaze (Kenning-
ton et al., 2013), and acoustic features (Maier et al.,
2017; Ward et al., 2010). Our approach builds on
this prior work in incremental processing, using it

as a component in our overall framework.

2.2 Speech Overlap Production

Speech overlap has been shown to serve many use-
ful functions in conversation, including responsive-
ness and repair (Jefferson, 2004), but historically
the SDS community has viewed it as an intrusive
property and used the term barge-in. Some SDS
work exists on the topic of intentional overlap pro-
duction, including a body of work aimed at produc-
ing appropriate backchannel feedback (Lala et al.,
2017; Truong et al., 2010). Another example comes
from DeVault et al. (2011b), who designed a proto-
type system using predictive capabilities to perform
collaborative completions and backchannel feed-
back. This work provides a necessary first step,
but it only covers a subset of the different types
of overlap possible, leaving out those that occur at
the transition space, post-transition, and interjacent
positions (Drew, 2009). Moreover, this work does
not deal with situated dialogue or issues of timing
in speech synthesis. Situated dialogue presents ad-
ditional opportunities for overlap which have yet
to be explored, such as coming in mid-utterance
to clarify an un-actionable command. Finally, if
a system will be producing overlap, then mecha-
nisms to manage and recover from overlap are also
needed. A preliminary approach was demonstrated
in Gervits and Scheutz (2018a) based on a corpus
analysis in Gervits and Scheutz (2018b), but other-
wise there is limited work in this area.

2.3 Preemptive Action Execution

For dialogue in real-world or virtual environments
with humans, situated agents can use predictive
language capabilities to perform actions early or
at least begin some processing during an ongoing
utterance. This has been explored by Hough and
Schlangen (2016), who developed a real-time incre-
mental grounding framework that supports “fluid”
interaction using the IU framework. While the
system performance is impressive, this work only
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Figure 2: Component diagram of the turn-taking framework as implemented in the DIARC cognitive robotic
architecture. Boxes represent architectural components and arrows represent the flow of information.

focused on action and did not involve timing dia-
logue responses. Moreover, the only actions con-
sidered were those that the robot could carry out.
In human-robot interaction, a robot might be in-
structed to perform an action that it does not know
how to do or that it cannot currently do. In order to
respond early, the robot will need to simulate the
action to determine if it will be successful. This
simulation may involve a cognitive architecture
carrying out an actual “mental” simulation of the
action, or simply checking if the preconditions for
the action are met. This is the type of processing
that can be done during an ongoing utterance.

2.4 Turn-Entry Manager

Given the multitude of points for which a system
may need to enter a turn (as shown in Figure 1),
some process is needed to manage turn entry. We
propose a Turn-Entry Manager (TEM) component
that carries out these tasks. The TEM works as
follows: it receives full utterance predictions from
partial automatic speech recognition (ASR) results
and determines when to initiate a follow-up utter-
ance and action based on the confidence in the
prediction as well as task context and agent goals.
The most intuitive location for the TEM is in the
Dialogue Manager (DM), as it uses information
only available further along in the pipeline. The
TEM will store the following information about
its prediction of an ongoing utterance: semantics
and text of the utterance, remaining words and ex-
pected duration of the utterance, response and ac-
tion associated with the utterance, confidence in
the prediction, cost of the action, entry time for
the transition-relevance place (TRP) (Sacks et al.,
1974) and several overlap positions, and latency of
various components. Most of this information is
updated with each increment received by the parser.
Using this information, the TEM determines the
timing of when to take a turn so as to achieve fluid
turn transitions. Depending on its policy, it can also

come in early to produce various kinds of overlap.
While most SDSs have some process that manages
turn entry, none, to our knowledge, possess the
capabilities described here.

3 Implementation in a Cognitive Robotic
Architecture

To effectively interact in a situated environment,
robots need to react to and affect the environment,
as well as to reason about the task and user; this
requires a cognitive robotic architecture. We in-
tegrated our turn-entry timing framework into the
DIARC architecture (Scheutz et al., 2019). We
used DIARC due to its emphasis on situated robot
dialogue (highlighted in Gervits et al. (2020)),
although in principle our framework is general
enough to be used with any architecture of its type.
Below we discuss each of the key components in
our architectural configuration.

3.1 Situated Natural Language Processing

Our work is mostly performed in the language-
processing components of DIARC, shown in Fig-
ure 2. First, speech is received by the ASR compo-
nent, which converts it into text. For ASR, we use
the Sphinx4 recognizer, modified to output incre-
mental results. A text interface can also be used
to simulate incremental speech input. The word-
by-word results are sent to the Utterance Predic-
tion component (described further in Section 3.2),
which generates a prediction using a bigram lan-
guage model and sends the prediction to the Se-
mantic Interpreter component. We use a rule-based
parser that performs syntactic and semantic parsing,
and converts the text of an utterance into a logical
predicate form. The predicate is then sent to the
DM component, which is a goal-based dialogue
manager that uses a Prolog knowledge base for
storing declarative knowledge, and for performing
logical inference over that knowledge to engage
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in mixed-initiative dialogue. The DM implements
a version of the TEM described in Sec. 2.4. The
DM also interacts with the Goal Manager (GM)
component, which contains a database of actions
that the robot can perform (including dialogue ac-
tions) and facilitates action execution. Actions in
DIARC are defined by their pre-, post-, and op-
erating conditions. The post-conditions of an ac-
tion are goal predicates that describe a state of
the world that an agent is trying to achieve, e.g.,
did(self,moveTo(self,bookshelf)) for an action goal,
and did(self,spoke(okay)) for a dialogue goal. For
dialogue actions, the DM obtains the surface form
of the response utterance from the NL Generator
component, and then submits the goal associated
with the action to the GM. The GM then calls the
text-to-speech (TTS) component (which is a wrap-
per for MaryTTs) to produce speech output. Phys-
ical actions are handled in a similar way, except
that the Effector component corresponding to the
action handles the execution.

3.2 Utterance Prediction with Contextual
Bias

For utterance prediction, we implemented a bigram
language model trained on the frequency distribu-
tion of bigrams in the HuRIC corpus (see Sec. 4).
More sophisticated prediction algorithms are pos-
sible, but given the importance of speed, we chose
a simple and effective approach. The prediction is
computed as follows: given an initial word as input,
the model generates a set of complete utterances
based on the most probable follow-up words along
with their associated probability. A cumulative
probability threshold is used to determine when
a prediction is sufficient, at which point the full
utterance prediction with the highest probability is
sent to the parser. If the threshold is not reached,
then the algorithm waits for the next input word
and repeats the same process.

A contextual bias is included to represent the
influence of the situated environment as observed
by the robot and included in a world model. This
context influences the utterance predictor by in-
creasing the probability of specific bigrams by a
set amount, causing the model to favor those words.
In our preliminary implementation, the context is
hand-tuned for each utterance in the corpus1, but
situated agents would be able to determine this con-

1For example, the context for the utterance “Grab the bottle
on the kitchen table” may be ‘kitchen’ (describing the envi-
ronment) and ‘bottle’ (describing an item in the environment)

text by perceiving the environment, through task
knowledge, or through the dialogue history.

3.3 An Algorithm for Turn-Entry
Management

The TEM algorithm works as follows (see Algo-
rithm 1): First, an utterance is received incremen-
tally from the ASR component. In parallel, each
word is sent to the Utterance Predictor component,
where the bigram language model described in
Sec. 3.2 generates predictions based on the fre-
quency distribution of the training corpus and any
contextual bias (Algorithm 1, line 3).

If a prediction clears a set threshold, then it is
sent to the DM component. The DM first computes
a score for the prediction based on the cost of the
associated action and the confidence in the proba-
bility (line 5). If the score is above a set threshold
then it continues. The score threshold can be set to
minimize early execution for costly actions (e.g.,
actions that can cause delay to repair, such as move-
ment) in the case of a wrong prediction. If the score
threshold is exceeded, the DM next computes the
TRP and last-item entry points based on the utter-
ance start time and expected duration, accounting
for the known TTS delay, which was about 40 ms
in our system (lines 7-8).

Next, the preconditions for the action associated
with the predicted utterance are checked (line 9). If
the action exists and the preconditions are met, then
a response is set (but not yet generated; line 13);
otherwise, a failure explanation is generated and
immediately produced (line 11). In the case that
the preconditions are met, the DM sets the overlap
type (TRP, last-item, or collaborative completion)
based on a simple policy (line 14).2 The action
corresponding to the prediction is then performed
(line 15). Finally, once the overlap type is set, a
separate thread running every 1 ms waits until the
current system time reaches the designated entry
point and then produces the associated response
(lines 22-26).

4 Evaluation

To evaluate the efficacy of our framework, we used
a corpus of directives to a household robot from
the S4R dataset of the HuRIC corpus (Bastianelli
et al., 2014). The dataset consisted of 96 impera-
tive utterances from a task in which people were

2The current policy is that if the response utterance is an
acknowledgment then the system will produce a last-item
overlap, otherwise it will aim for the TRP with no overlap.
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Algorithm 1 Turn-Entry Manager Algorithm
1: procedure TEM(Utterance u)
2: for all word ∈ u do
3: Prediction p = generatePrediction(word)
4: if p.probability > probThreshold then
5: p.score = p.cost * p.confidence
6: if p.score >= scoreThreshold then
7: p.TRP entry = p.startTime + p.duration - TTS delay
8: p.LI entry = p.startTime + p.duration - TTS delay - p.lastWord.duration
9: actionStatus = simulateAction(p.action)

10: if actionStatus == fail then
11: generateResponse(failure)
12: else
13: p.response = setResponse()
14: p.setOverlapType(p.response)
15: performAction(p.action)
16: end if
17: end if
18: end if
19: end for
20: end procedure
21:

22: procedure WAITTOSPEAK(Prediction p)
23: if currentTime >= p.TRP entry then
24: generateResponse(p.response)
25: end if
26: end procedure

asked to give commands to a physical robot operat-
ing in a household environment. The language was
unscripted and had few constraints, though people
were told about the robot’s capabilities and the lo-
cations and objects that it could recognize. While
the evaluation corpus contains only directives (no
dialogue), it includes the kinds of utterances com-
monly seen in situated task-based dialogues, to
which a robot would need to promptly respond
(and potentially initiate early), and serves as a use-
ful benchmark to test our framework.

The central aim of the evaluation is to show how
a situated agent given these instructions can make
predictions and respond at the TRP compared to
a non-incremental baseline system. We also seek
to demonstrate the potential for overlap produc-
tion and preemptive action execution. In addition
to the standard directives in the corpus, we also
evaluate several variants of them which contain dis-
fluency. It is important that SDSs are resilient to
disfluency, as it is common in team communication
channels (particularly in remote communication)

and has been implicated in effective team perfor-
mance (Gervits et al., 2016a,b). Including disfluent
utterances in the evaluation was done to show that
the algorithm can handle variations in the input
and still produce timely responses. Table 1 lists
the utterance subsets that were constructed from
the original corpus data. These include: 1) the
original utterance, 2) utterance-initial non-lexical
filler, 3) non-lexical filler after the first word, 4) 200
ms pause before the final word, and 5) repetition
self-repair of the first word.

Subset Example Utterance
1 go to the kitchen
2 <um>go to the kitchen
3 go <uh>to the kitchen
4 go to the <200 ms pause>kitchen
5 go- go to the kitchen

Table 1: Utterance subsets used in the evaluation
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4.1 Approach

First, the text strings from the HuRIC corpus were
extracted, along with the frequency distribution
of bigrams. Parse rules (linking the text string to
a semantic form) and actions (specifying the pre-
conditions and effect) were defined for each utter-
ance, and we generated the 5 subsets (see Table 1)
for each utterance in the corpus.

While the system is capable of processing speech
incrementally, we used incremental text input for
the evaluation in order to abstract away some of
the ASR noise (e.g., latency, errors, etc.)3. To sim-
ulate the timing associated with real speech, we
added a delay before each word corresponding to
180 ms x the number of syllables in the word. This
decision is based on the upper bound of the esti-
mated duration of a syllable from Wilson and Wil-
son (2005), and is roughly in line with data from
the Switchboard corpus, in which the mean syllable
duration was 200 ms (SD: 103) (Greenberg, 1999).
To handle the disfluency in Subsets 2-5, we used a
simple keyword-spotting approach to detect fillers
and pauses in the input, like most ASRs can do.
These fillers were excluded from the recognizer re-
sult, but importantly their duration was added to the
timing. We assume that fillers such as uh and um
are one syllable in length, and so have a duration
of 180 ms. While not all types of disfluencies are
handled with these subsets, we leave prolongations
and more complex self-repairs for future work.

The turn-taking policy used in the evaluation is
that the robot will attempt to come in at the TRP if it
made an early prediction and the action status of the
prediction was successful. If the action status was
a failure then the robot will overlap with the failure
explanation immediately. The score threshold was
set to 0 to maximize data collection. Other policies
are, however, possible such as never overlapping, or
using a higher score threshold to minimize wrong
predictions for costly actions.

4.1.1 Measures and Hypotheses
Our primary measure was the Floor Transfer Offset
(FTO), a term introduced by de Ruiter et al. (2006).
FTO is defined as the time difference in ms be-
tween the start of a turn and the end of the previous
turn. Positive values indicate gaps whereas neg-
ative values indicate overlap. We also computed

3In particular, we experienced significant delays with in-
cremental speech input. This is likely due to our Sphinx4 con-
figuration, as others have reported much faster performance
with the same ASR (Baumann and Schlangen, 2012).

the accuracy of the prediction model, the timing
of when a prediction was made, and the point at
which an action was initiated.

Overall, we expected the algorithm to perform
well for the majority of examples in Subset 1, lead-
ing to smaller FTOs compared to a non-incremental
system. This gives us:
H1: Incremental utterance prediction would lead
to smaller FTOs and earlier actions than non-
incremental processing without online prediction.
The non-incremental baseline system we used is a
similar DIARC configuration, with the main differ-
ence being that input is non-incremental and the
Utterance Predictor component is bypassed. We
ran utterances from Subset 1 in which a correct
prediction was made through this non-incremental
configuration to compare performance. Next, we
expected that the timing in the system would work
out such that it can time its turn to come in at or
near the TRP for actionable predictions, and much
earlier for un-actionable ones. Thus we have:
H2: Incremental utterance prediction would en-
able the system to 1) hit the TRP entry point for re-
sponses to actionable predictions, 2) initiate those
actions early, 3) and produce interjacent (mid-
speech) overlap for un-actionable predictions.
If the system makes an early prediction, subsequent
processing takes minimal time, so it should be able
to hit the TRP for all but very late predictions. It
would also be able to initiate the action shortly after
the DM receives the prediction. For early predic-
tions that are not actionable, it should produce an
interjacent overlap well before the utterance is fin-
ished. Finally, we expect performance on Subsets
2-5 to be dependent on whether a prediction was
made before or after the disfluency was detected.
This is because the TRP entry point is computed
from the expected duration of the predicted utter-
ance, and this duration may be incorrect if the pre-
diction did not incorporate the additional timing of
the disfluency. This leads to:
H3: The approach would be robust to disfluency
in the input, but only if the disfluency was detected
before a prediction was made.
Given H3, we expect the FTO for Subsets 1 and 2
to be close to 0 for correct predictions, since these
involve either no filler or an utterance-initial filler
(which will always be detected before a prediction
is made). Subset 4 will likely have a negative FTO,
as predictions will usually be made before the final
word, and so the 200 ms pause will not be added to
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Figure 3: Histograms showing the floor transfer offset
for A) predictive system and B) non-incremental (base-
line) system for cases in which a correct early predic-
tion was made. N = 68.

the utterance duration, leading to earlier turn entry.

4.2 Results

Below we present the results of the evaluation de-
scribed in Sec. 4. In general, prediction accuracy
of our bigram model was 70.8% with 340 of 480
test utterances predicted correctly. On average, a
prediction was made 50.8 ± 17.7% of the way into
an utterance, duration-wise.

4.2.1 H1: Incremental vs Non-Incremental
Processing

H1 dealt with the difference in FTOs between our
framework implementation and a non-incremental
baseline configuration of the same architecture. We
compared the correctly-predicted utterances from
Subset 1 (N=68) and the same utterances tested
on the baseline system. A Welch’s independent-
samples t-test showed a significant difference be-
tween FTOs for the incremental prediction cases
(M = -1.1± 3.2 ms) compared to the baseline cases
(M = 1409.5 ± 8.6 ms), t(85) = 1259.2, p < .001
(see Figure 3). These results support H1 in that
a system running our framework was able to take
a turn significantly earlier than a non-incremental
one that did not use the framework.

4.2.2 H2: Timing Turn-Entry
H2 stated that our framework implementation
would allow the system to reliably come in at the
TRP for actionable predictions, and produce early
failure explanations in the form of interjacent over-
lap for un-actionable (i.e., incorrect) predictions.
For Subset 1 (fluent) utterances, we found a mean
FTO of -1.1 ± 3.2 ms. Since an FTO of 0 means
a seamless transition, these results support H2 in
that the system was able to time its turn to hit the
TRP very accurately for actionable predictions. For
those predictions that were un-actionable in Subset
1, the system produced a failure explanation with
a mean FTO of -683.2 ± 713.7 ms (see Figure 4).
The earliest FTO was -2780 ms and the latest was
-8 ms. These results provide further support for H2
in that the system was able to provide early failure
explanations (i.e., interjacent overlap) when a pre-
dicted action could not be performed. See Table 2
for an overview of the results.

Figure 4: Floor Transfer Offset for cases in which the
predicted utterance could not be performed. The sys-
tem produced an interjacent overlap at the earliest op-
portunity. N = 15

To demonstrate preemptive action execution, we
calculated (for Subset 1) the earliest point at which
an action can be initiated. This is the point at which
a prediction was sent to the DM and the precondi-
tions for the corresponding action were checked.
The difference between the end of the utterance
and this point was 635 ± 197 ms, meaning that on
average, an action could be initiated 635 ms before
the end of an utterance.

As a supplementary analysis and to evaluate per-
formance with varying syllable duration, we tested
10 random utterances from Subset 1 in which each
syllable in the input was assigned a random dura-
tion between 100 and 200 ms (following Greenberg
(1999)). The average syllable count for these utter-
ances was 5.7± 1.6 and the average FTO was -16.5
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TRP Entry Interjacent Entry
N FTO (early prediction) N FTO (no prediction) N FTO

All 340 -55.7 ± 88.0 65 157.9 ± 47.5 75 -709.3 ± 714.2
Subset 1 68 -1.1 ± 3.2 13 164.8 ± 21.3 15 -683.2 ± 713.7
Subset 2 68 -5.5 ± 31.8 13 148.3 ± 19.4 15 -710.9 ± 703.5
Subset 3 68 -40.7 ± 75.9 13 147.8 ± 15.4 15 -746.4 ± 717.6
Subset 4 68 -191.2 ± 46.1 13 149.9 ± 13.9 15 -687.6 ± 780.1
Subset 5 68 -41.0 ± 75.6 13 176.0 ± 101.4 15 -630.6 ± 661.8

Table 2: Table of evaluation results. Mean values for Floor-Transfer Offset (FTO) are displayed for all evaluation
cases (N = 480). For a given case, either an early prediction was made, or no prediction was made. If the prediction
was correct and actionable, then a TRP entry was selected and an acknowledgment was produced. If the prediction
was un-actionable (i.e., incorrect), then an interjacent overlap was selected and a failure explanation was produced.

± 87.9 ms, with a range of -155 to 152 ms. The
difference between these results and the original
set was that the predicted duration could now be
wrong, and this was reflected in the slightly early
entry times. Still, the mean FTO was close to 0,
suggesting that the model still performs well with
variable input.

Figure 5: Floor Transfer Offset for correct predictions
in each utterance subset. N = 340

4.2.3 H3: Robustness to Disfluency
To evaluate H3, which involved the robustness of
the algorithm to disfluency in the input, we ana-
lyzed all of the disfluency cases in which a correct
prediction was made (Subsets 2-5; N = 272). As
expected, a key factor in correct timing here had
to do with whether the prediction was made be-
fore or after the filler. This was confirmed with an
independent-samples t-test, which found a signifi-
cant difference between FTOs for predictions made
after the filler (M = -2.4 ± 0.12 ms) compared to
those made before the filler (M = -188.1 ± 0.17
ms), t(127) = 44.6, p < .001. Predictions made
before the filler were most common in Subset 4
(making up 69% of the examples) and predictions
made after the filler were made up entirely of Sub-

Figure 6: Robot performing a situated interactive task
involving dialogue.

sets 2, 3, and 5. In Figure 5, we show the mean
FTO for each of the utterance subsets.

4.3 Demonstration

To supplement the evaluation and show a real-
world use-case, we ran the framework on a
PR2 robot using real speech input (see Fig-
ure 6). A video of the interaction is available at
https://vimeo.com/410675260. This video com-
pares our baseline (non-incremental) system to the
system running our turn-entry timing framework,
and demonstrates that a robot can reliably make
predictions about ongoing utterances using speech
input, and that it can initiate actions and responses
early.

5 Discussion

5.1 Contributions

Overall, we found support for H1, H2, and partial
support for H3.

For H1, we demonstrated that our system was
able to take a turn significantly faster than a non-
incremental version of the same architecture. This

https://vimeo.com/410675260
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is not surprising, as the advantages of incremental
processing are well known (Baumann et al., 2017).
However, the comparison quantifies the amount of
time that our approach saves.

H2 was also supported in that the system was
able to hit the TRP very accurately for correct and
actionable predictions (see Figure 3 A). Moreover,
those actions were initiated on average 635 ms
before the TRP, providing further support for H2.
For un-actionable predictions, interjacent overlap
was produced on average 709 ms before the TRP,
suggesting very early turn entry (see Figure 4).

Finally, H3 was partially supported in that
fillers that were processed before a prediction (i.e.,
utterance-initial fillers) had their duration added to
the overall utterance duration, but fillers towards
the end of an utterance (after the prediction) were
not detected in time. In these latter cases, the sys-
tem came in earlier than expected (40 - 191 ms
early), which would be a last-item overlap, and
would likely not require repair (see Figure 5).

Overall, our domain-independent framework can
be integrated into various SDSs in order to support
responsive dialogue behavior and early actions, as
well as to enable certain kinds of overlap that would
not be achievable in other approaches.

5.2 Limitations and Future Work

One limitation is that the evaluation involved text
rather than real speech and only considered simple
directives. More work is clearly needed to evaluate
the accuracy of the proposed approach with respect
to variable speech input. Nevertheless, state-of-the-
art ASRs can display very low recognition latency
(e.g., Baumann et al. (2009)), suggesting that this
would not significantly change our results.

Another limitation is that a fixed syllable dura-
tion was used to estimate timing, which was the
same duration used in the input text. Since syllable
length is a parameter in the model, this can be ad-
justed as needed to better estimate spoken syllable
length. We have shown in a supplementary analy-
sis on 10 utterances that the approach works rea-
sonably well with variable syllable length. Future
work will test other methods of estimating utter-
ance length, including the clever duration modeling
technique used in Baumann and Schlangen (2011)
involving the ASR and TTS modules. The current
results can be thought of as a best case scenario,
and we expect that with more accurate duration
estimates of real speech, system performance will

approach this upper bound.
Recovering from incorrect predictions is an im-

portant area for future work. Currently, when the
system makes a prediction it cannot change it, even
if new input comes in that contradicts the predic-
tion (this is because the timing is very tight). In
future work, it should be possible for the TEM to
be updated if the prediction changes. This will
support the handling of utterances such as those in
Subset 4 which were characterized by late pauses.

Finally, the prediction model itself can be im-
proved, perhaps through the use of a neural ap-
proach (Maier et al., 2017) or one that incorporates
syntactic or prosodic features (Ward et al., 2010).
Though we focus on lexico-syntactic cues for pre-
diction, future work could leverage recent findings
suggesting that prosody is more important to end-
of-turn projection than previously thought (Barthel
et al., 2016; Bögels and Torreira, 2015).

6 Conclusion

We have introduced a framework for turn-entry tim-
ing in human-robot dialogue which enables a situ-
ated agent to make incremental predictions about
an ongoing utterance and time its turn to hit a vari-
ety of entry points. We implemented the framework
in a robotic architecture and evaluated it on a corpus
of human-robot directives from a situated interac-
tive task. The system integrating our framework
is significantly faster than a non-incremental sys-
tem, and can produce fluid responses and various
types of overlap, as well as execute actions preemp-
tively. Moreover, the approach is robust to several
forms of disfluency in the input. This framework
offers a number of benefits for situated dialogue
agents, including better responsiveness, the ability
to produce various types of overlap (interjacent,
last-item, backchannels, and collaborative comple-
tions), and preemptive action execution. These
interactive capabilities are a step toward more nat-
ural and flexible turn-taking for situated dialogue
agents.
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