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IDSIA, Lugano, Switzerland

{vanik, sandra, alessandro, fabio.rinaldi}@idsia.ch

Alessandro Antonucci Fabio Rinaldi

Abstract

Lexical semantic change detection (also known as semantic shift tracing) is a task of identifying
words that have changed their meaning over time. Unsupervised semantic shift tracing, focal
point of SemEval2020, is particularly challenging. Given the unsupervised setup, in this work, we
propose to identify clusters among different occurrences of each target word, considering these as
representatives of different word meanings. As such, disagreements in obtained clusters naturally
allow to quantify the level of semantic shift per each target word in four target languages. To
leverage this idea, clustering is performed on contextualized (BERT-based) embeddings of word
occurrences. The obtained results show that our approach performs well both measured separately
(per language) and overall, where we surpass all provided SemEval baselines.

1 Problem Setup

Consider two corpora C1 and C2 for a same language but associated with different time stamps (say,
respectively, t1 and t2 > t1). Let W be a set of target words occurring in both corpora. Each target
word w ∈ W might assume multiple meanings, to be called senses, within the two corpora. A pool of
experts annotated a representative amount of occurrences with their corresponding senses. The problem
we consider is to characterize the semantic shift related to those senses from one corpus to the other
without having access to the expert annotations. In particular, we address the two following two subtasks:

• Subtask 1: Decide, for each w ∈ W , whether or not w gained or lost at least a sense between t1 and
t2. This is a binary decision task. We will denote this subtask as (S1).

• Subtask 2: Define, for the elements ofW , a measure of their degree of lexical semantic change
between t1 and t2 and sort these elements consequently. This is a ranking task. This subtask will be
referred to as (S2).

We1 describe two different methods able to address both subtasks. As both methods require a preprocessing
step based on transformers, let us start from this preliminary operation.

2 Preprocessing

For the proposed approach, we used embeddings derived from BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2018) model to represent the text information in the corpora.
BERT uses attention mechanism to learn the contextual relations and reads the input bidirectionally. It is
an encoder-only model (as the goal is to generate a language model) opposed to transformers (encoder-
decoder model)(Vaswani et al., 2017). BERT is trained on two main objectives, masked language model
(MLM) and next sentence prediction (NSP).
The corpus data is initially segmented at sentence-level and the BERT Word Piece tokenizer is applied on

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Our team name in SemEval2020 competition is NLP@IDSIA.
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these sentences, to get the token-level representations. BERT-base model with twelve transformer layers
is used and we derived the final embedding by concatenating the final four layers. If a single word gets
split by the tokenizer, we take the average embedding value of the sub-tokens. Thus, for each target word
we extract the embeddings from all the sentences associated with it from both corpora, C1 and C2. For
corpora other than English language, we used multilingual BERT models of respective languages. We
used the pre-trained model to generate the embeddings for all experiments, since the task is completely
unsupervised in nature.

Let us assume, for each w ∈ W , that Sj := {s(w)ij }
n
(w)
j

i=1 denote the n(w)j sentences in corpus Cj where
target word w occurred, for each j = 1, 2. The transformer maps those sentences into corresponding
vectors of a d-dimensional space. Let us perform a single transformation for both S1 and S2 simultaneously.
Denote as x(w)ij ∈ Rd the vector associated with s(w)ij , for each i = 1, . . . , nw,j and j = 1, 2. We regard
the relative distances between these vectors as proxy indicators of their semantic similarity. This helps to
cluster the similar senses together. While different distances, such as cosine, Manhattan and Euclidean
could be used to measure BERT embedding similarities, we adopt the Euclidean distance given the
findings in (Hewitt and Manning, 2019; Inui et al., 2019; Reif et al., 2019) which demonstrate that the
syntax tree distance between two words in BERT embedding space corresponds to the square of the
Euclidean distance. In the next two sections, in order to address subtasks (S1) and (S2), we focus on the
vectors associated with the same target word w and use their relative Euclidean distances as indicators of
possible semantic shifts from one corpus to the other.

Both methods will be based on clustering algorithms used to cluster the vectors associated with a given
target word of a single corpus or of the union of the two. We adopt the classical k-means clustering
algorithm, which forms the clusters by attempting to minimize the intra-cluster variance. So called
silhouette method is used for the selection of the optimal number of clusters k and the initialization (i.e.,
the position of the centroids before starting the algorithm) (Rousseeuw, 1987). Accordingly, given a value
of k, we compute in the corresponding cluster, the means of both the nearest-inter cluster distance and
the nearest-cluster distance. The difference between these two quantities normalized by the maximum
of the two is used as a fitness score to be maximized in order to select the optimal value of k. The same
approach is used to determine the initial centroids. In this case, we use the optimal k value and run the
k-means algorithm for N iterations, to determine the best centroids.

3 Method 1: Joint Clustering Vectors of Both Corpora

Let us focus on a particular target word w ∈ W . Accordingly, for the sake of readability, denote its vectors
in corpus Cj simply as Xj := {xij}

nj

i=1, for each j = 1, 2. We cluster the whole set of vectors of the two
corpora, say X := X1∪X2, and denote as {X k}mk=1 the n clusters returned by the algorithm. Note that we
cope with hard clustering methods, i.e., ∪nk=1X k = X and X k1 ∩ X k2 = ∅ for each k1, k2 = 1, . . . ,m,
with k1 6= k2. For each cluster X k we count how many of its elements belong to X1, say n1,k, and to X2,
say n2,k. We call impure a cluster such that both n1,k > 0 and n2,k > 0. As we regard the clusters as
equivalence classes for the abstract notion of sense, if all the m clusters are impure it means that no new
senses appeared in C2 and no new senses have been lost from C1 to C2. If this is not the case we might
have new senses in C2, i.e., there is at least a k such that n1,k = 0, or, vice versa, an old sense has been
lost, i.e., there is at least a k such that n2,k = 0. Following the guidelines of the SemEval shared task, we
might set a lower bound n to the number of occurrences of a word in a cluster before deciding to regard it
as a new sense. If this is the case the above conditions for the counts equal to zero should be replaced
by nj,k < n. Overall, this procedure corresponds to a sound algorithm to address (S1). We refer to it as
M1S1.

Regarding (S2), after the clustering, we might define a random variable S, to be called the sense
variable, whose m states are in one-to-one correspondence with the clusters. The variable denotes how
likely is finding an occurrence of w with sense S in a corpus. Accordingly, we might use the counts
{nj,k}mk=1 to learn a probability mass function Pj(S) for each j = 1, 2. Following a Bayesian approach,
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based on a Laplace uniform prior with equivalent sample size σ > 0 (Gelman et al., 2013), we have:

P (sk) =
nj,k + σ

m∑m
k=1 nj,k + σ

. (1)

In such a probabilistic setup, the semantic shift of the target word w between the two corpora can be
therefore described by the dissimilarity between the mass functions P1(S) and P2(S). We measure that by
the Shannon-Jensen distance SJ , i.e., a symmetrization of the popular Kullback-Leibler divergence. This
semantic shift of w corresponds therefore to the distance δ, with δ := SJ(P1, P2) and SJ(P1, P2) :=
1
2 [KL(P1, P2) +KL(P2, P1)] and KL(P1, P2) :=

∑m
k=1 P1(sk) ln P1(sk)

P2(sj)
. Note that with the Bayesian

smoothing in Equation (1), we cannot have zero probabilities and degenerate values in the computation of
the distance. The overall procedure gives an algorithm to address subtask S2, as this corresponds to sort
the elements ofW with respect to their value δ. We refer to this procedure as M1S2.

4 Method 2: Separate Clustering of the two Corpora

In this section, while still focusing on a given target word w ∈ W , we consider a different approach based
on the separate clustering of the two set of vectors X1 and X2. Let {X k11 }

m1
k1=1 and {X k22 }

m2
k2=1 denote

these two sets of clusters. As in the previous method we regard each cluster as a representative model
of a sense. Yet, unlike the previous case, here we need to define a map between the clusters of the first
corpus and those of the second. As discussed before we adopt the Euclidean distance between the vectors
as a proxy indicator of semantic similarity. In order to cope with single numerical values, for the sake of
simplicity, we represent each cluster with its center of mass. Let x̃kj1 denote the center of mass of X kjj for
each kj = 1, . . . ,mj and j = 1, 2. If m1 = m2, i.e., the two corpora have the same number of clusters,
we can reduce the identification of the map between the clusters of the two corpora to a minimum weight
matching in a complete bipartite graph, whose nodes are associated with the two sets of clusters and
whose weights are the Euclidean distances between the centers of mass. If this is not the case and, for
instance, m1 > m2, we add m1 −m2 dummy clusters to the second corpus and set to zero the weights for
all the arcs connecting these elements. We similarly proceed if m2 > m1.

The optimal matching minimizing the sum of the weights can be computed in cubic time with the
classical Hungarian algorithm (Kuhn, 1955; Jonker and Volgenant, 1987) and the results is a one-to-one
correspondence between the clusters, no matter whether proper or dummy, of the two corpora. As a
dummy cluster in a corpus has zero distance from all the clusters of the other corpus, the matching returned
by the Hungarian algorithm is properly minimizing the distance between the proper clusters. Two proper
clusters in the two corpora matched by the algorithm are intended as representative of the same sense.
Proper clusters of a corpus pointing to dummy cluster are regarded instead as a new sense appeared in the
second corpus only, or old sense occurred in the first corpus only.

After the matching, we define a single clustering withm := max{m1,m2} clusters and proceed exactly
as in the previous section. In practice, the vectors of two clusters matched by the Hungarian algorithm are
assigned to a single, impure, cluster, while those linked to dummy clusters produce pure clusters. We term
M2S1 and M2S2 the two algorithms corresponding to the approach discussed in this section to address
the two subtasks. Next section describes the experimental analysis and evaluation results.

5 Method 3: An alternative approach for Subtask 2 (S2)

As an alternative to the previously explained procedure for handling (S2), based on Bayesian approach
and Shannon-Jensen divergence, we consider another approach, exploiting only the number of word
occurrences per cluster and corpora. More precisely, assuming that we have K clusters in total and
∀k ∈ {1, ..,K} already calculated n1,k and n2,k from each corpora (regardless whether clusters come
from single clustering in M1 or after performing optimal cluster matching in M2), we define the coefficient
of semantic change of the word (ranking in (S2) terminology), as:

1

2S1S2

K∑
k=1

|S2 · n1,k − S1 · n2,k|
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where S1=
K∑
k=1

n1,k and S2=
K∑
k=1

n2,k. Let us assume that word w has p occurrences in both corpora. It is

trivial to see that in the case with K = 2 and clear cut between corpora (e.g. all occurrences in cluster
1 belong to C2 and all occurrences in cluster 2 belong to C1, i.e. n2,1 = n1,2 = p, n1,1 = n2,2 = 0, our
coefficient equals 1, which indicates complete change of sense. Likewise, if the distribution of occurrences
is uniform (n∗,∗=p/2), it yields 0, meaning no sense change. We denote these two new procedures for
(S2) for M1 and M2 as NM1 and NM2, respectively.

6 Experimental Analysis

Experimental analysis is performed according to the rules posed by SemEval2020 challenge2 organizers,
using provided corpora (2) and baselines (3). Corpora are provided in four languages: English (Alatrash
et al., 2020), Latin (McGillivray and Kilgarriff, 2013), German (Textarchiv, 2018) and Swedish (Adesam
et al., 2019). Table 1 provides brief statistics for given corpora stating the number of target words (NTW),
the total and average number of sentences containing target words (NSTW) per each language. The three
baselines provided are: normalized frequency difference (FD), count vectors with column intersection and
cosine distance (CNT+CI+CD) and a random baseline always predicting a majority class (RND/MC) - for
details see (Schlechtweg et al., 2019).

For evaluation purposes (as instructed by SemEval guidelines), accuracy is exploited for (S1), while
Spearman coefficient, taking values between -1 (corresponding to negative correlation) and 1 (perfect
correlation), was used for (S2). More details can be found in the system description paper (Schlechtweg
et al., 2020).

It is worth mentioning that the upper bound for the number of clusters for K-means which could be
retrieved by the silhouette score was set to 10.

As explained before, for (S1), the idea was to compare the number of elements of each cluster X k
coming from different corpora, say n1,k and n2,k, and claim a change in senses if ∃k : n1,k=0 ∨ n2,k=0.
This indeed was the procedure applied for Latin corpora. For other languages (with larger sizes of corpora),
following the guidelines of the SemEval shared task, additional restrictions in terms of lower (n) and
upper bounds (n̄) were set, with the following purpose: word is considered as gaining a new sense, if
∃k : n1,k≤ n̄ ∧ n2,k≥n (and vice versa for losing a sense). Additionally, suggested values for these
bounds were set to n = 5 and n̄ = 2.

The code3 is implemented in Python using Scikit (Buitinck et al., 2013) and Transformers (Wolf et al.,
2019) library.

Language NTW C1 C2
total (NSTW) average (NSTW) span (years) total (NSTW) average (NSTW) span (years)

English 37 24917 673.43 1810-1860 29088 786.16 1960-2010
Latin 40 26912 672.80 -200-0 126081 3152.03 0-2000

German 48 78845 1642.60 1800-1899 68621 1429.60 1946-1990
Swedish 31 83703 2700.10 1790-1830 241525 7791.13 1895-1903

Table 1: Summary statistics of corpora with respect to target words for different languages

The experimental results on the corpora over the two subtasks (S1) and (S2) are reported using the
methods M1 and M2, in Table 2. Results are shown for the four target languages and overall, as well
as compared with provided SemEval baselines. Best results per language and subtask are underlined.
Overall best results per subtask are denoted in boldface. As can be seen, except for the Latin, the proposed
methods are outperforming all baselines on (S1) with the procedure M1S1 being the best for German and
Swedish and M2S1 for English. On the other hand, for (S2), results are quite corpus/language dependent,
M1S2 scores best for English, M2S2 for Swedish, while baseline 2 (CNT+CI+CD) wins over all the
others for Latin and German. Overall, Method 2 outperforms its competitors on both subtasks. The

2https://competitions.codalab.org/competitions/20948#learn the details-overview
3The source code is available at: https://github.com/vanikanjirangat/SST BERT-SEMEVAL TASK1
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performance with the contextualized embeddings is actually comparable with the baseline approaches
in many cases. This could be the fact that pre-trained embeddings from BERT may not be completely
suitable for representing meaningful sentence vectors for clustering (Reimers and Gurevych, 2019). These
factors have to be investigated in the future.

Language Method 1 Method 2 SemEval Baselines

FD CNT+CI+CD MC

(S1) (S2) (S1) (S2) (S1) (S2) (S1) (S2) (S1) (S2)

English 0.541 0.028 0.622 -0.008 0.432 -0.217 0.595 0.022 0.568 /
Latin 0.375 0.253 0.625 0.253 0.650 0.020 0.525 0.359 0.350 /

German 0.708 0.176 0.625 0.176 0.417 0.014 0.688 0.216 0.646 /
Swedish 0.742 0.275 0.677 0.321 0.258 -0.15 0.645 -0.022 0.742 /

Overall 0.591 0.183 0.637 0.185 0.439 -0.083 0.613 0.144 0.576 /

Table 2: Performance of the proposed methods and different SemEval baselines. The baselines correspond
to normalized frequency difference (FD), count vectors with column intersection and cosine distance
(CNT+CI+CD) and majority class(MC)
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(a) M1-based clustering for target word tip

t-SNE1
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2

C1
C2

(b) M2-based clustering for target word lane

Figure 1: Obtained clusterings for target words

Figure 1a shows an example of the application of method M1 for the English target word tip, based
on 2D t-SNE (Maaten and Hinton, 2008) projections. The method produces two clusters, each denoted
with a different color. As it can be seen, one of the clusters (orange, k = 1) is remarkably larger than the
other (blue, k = 2). Additionally, it is also quite impure containing word occurrences from both corpora
(more precisely, n1,1 = 112 and n2,1 = 211), while the other cluster contains only 31 instance whose
distribution is n1,2 = 1 and n2,2 = 30. Given that n1,2 = 1 ≤ 2 = n̄ and n2,2 = 30 ≥ 5 = n, method
M1S1 correctly detects the sense change for the word tip.

Figure 1b shows an example of the application of method M2 for the English target word lane (2D
t-SNE projections). The clustering algorithms produce three clusters for each corpus, each denoted with a
different color, and the matching algorithm detect the correspondence between clusters minimizing the
distances between the centers of mass, depicted as squares in the figure. Matching clusters of the two
corpora are depicted with the same color.

The results of the alternative method M3 for subtask (S2) with respect to M1 and M2 and two baselines
(FD and CNT+CI+CD), are provided in Table 3. We can see that NM1 improves results on English and
German languages, and overall.
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M1 M2 SemEval Baselines NM1 NM2
FD CNT+CI+CD

English 0.028 -0.008 -0.217 0.022 0.159 0.037
Latin 0.253 0.253 0.020 0.359 0.231 0.333

German 0.176 0.176 0.014 0.216 0.525 0.062
Swedish 0.275 0.321 -0.15 -0.022 0.141 0.095

Overall 0.183 0.185 -0.083 0.144 0.264 0.132

Table 3: Performance of the semantic change coefficient methods NM1 & NM2 for (S2)

7 Related Work

The task of identifying words whose meaning has changed over time is well-known and the related
literature is, therefore, resourceful with many recent advancements. Albeit, there are still quite some issues
to be resolved, primary regarding the methodology and the respective ground truth (missing semantic
change annotations).

As for the latter, the first step is to decide whether to aim for a binary response (equivalent of Sem-
Eval2020 subtask 1) or to provide graded ratings of a sense change (equivalent of SemEval2020 subtask
2). Given that in both cases, but particularly with graded rating, inter-annotator agreement rates vary
greatly, as evidenced in (Erk et al., 2009), establishing a definition of a standard test set is extremely
difficult. In (Schlechtweg et al., 2018) a unifying evaluation framework for unsupervised lexical semantic
change detection was proposed based on changes in relatedness of word use pairs in each time period.

Regarding the former, many different approaches for unsupervised lexical semantic change detection
have been suggested. A detailed survey of studies can be found in (Kutuzov et al., 2018; Tahmasebi et al.,
2018). Most notably, several works (Baroni et al., 2014; Kim et al., 2014; Hamilton et al., 2016) showed
the benefits of using dense word representations for semantic shift detection. Furthermore, (Kulkarni et al.,
2015) showcased that these outperform the frequency-based methods. However, unlike our work, none of
these works exploits clustering. More close to our approach, that is, considering clusters as representative
semantic areas, are the works of (Mitra et al., 2014) and (Dubossarsky et al., 2015). The main differences
are however, that in (Mitra et al., 2014), clustering is performed on the level of the ego-network of each
word, where the network is constructed based on word co-occurences, while we perform clustering of the
word embeddings itself. Additionally, in contrast to (Dubossarsky et al., 2015) where the authors consider
incremental learning of word embeddings in yearly chunks and vary the number of clusters from 500 to
5000, we use silhouette scores to determine the optimal number of clusters per each target word.

8 Conclusion and Future Work

A word can have a different meaning (sense) in different contexts and/or different time periods. Despite
being quite extensively studied, the problem of identifying words that have changed their meaning over
time, particularly in an unsupervised way, still challenges researchers.

In this work, we propose two approaches, both of which combine contextualized word embeddings
(obtained by BERT) and clustering, differing thus only in the way the clustering has been performed.
Considering obtained clusters as proxies for word meanings allows us to quantify the level of change
per each target word in four target languages. The obtained results, especially looking overall, across all
target languages, where we are outperforming all provided baselines, demonstrate the usefulness of the
suggested approach.

As potential directions for future work we plan to investigate various strategies, including different
clustering methods and time-wise comparison of target words nearest-neighbours, in an attempt to identify
actual word senses more accurately. Additionally, we would like to further scrutinize how the linguistic
particularities of different corpora might have contributed to the variability of the results.
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