@inproceedings{pomsl-lyapin-2020-circe,
title = "{CIRCE} at {S}em{E}val-2020 Task 1: Ensembling Context-Free and Context-Dependent Word Representations",
author = {P{\"o}msl, Martin and
Lyapin, Roman},
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.21",
doi = "10.18653/v1/2020.semeval-1.21",
pages = "180--186",
abstract = "This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and context-dependent word representations. The key findings are that (1) context-free word representations are a powerful and robust baseline, (2) a sentence classification objective can be used to obtain useful context-dependent word representations, and (3) combining those representations increases performance on some datasets while decreasing performance on others.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pomsl-lyapin-2020-circe">
<titleInfo>
<title>CIRCE at SemEval-2020 Task 1: Ensembling Context-Free and Context-Dependent Word Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Pömsl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Lyapin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-dec</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and context-dependent word representations. The key findings are that (1) context-free word representations are a powerful and robust baseline, (2) a sentence classification objective can be used to obtain useful context-dependent word representations, and (3) combining those representations increases performance on some datasets while decreasing performance on others.</abstract>
<identifier type="citekey">pomsl-lyapin-2020-circe</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.21</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.21</url>
</location>
<part>
<date>2020-dec</date>
<extent unit="page">
<start>180</start>
<end>186</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CIRCE at SemEval-2020 Task 1: Ensembling Context-Free and Context-Dependent Word Representations
%A Pömsl, Martin
%A Lyapin, Roman
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 dec
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F pomsl-lyapin-2020-circe
%X This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and context-dependent word representations. The key findings are that (1) context-free word representations are a powerful and robust baseline, (2) a sentence classification objective can be used to obtain useful context-dependent word representations, and (3) combining those representations increases performance on some datasets while decreasing performance on others.
%R 10.18653/v1/2020.semeval-1.21
%U https://aclanthology.org/2020.semeval-1.21
%U https://doi.org/10.18653/v1/2020.semeval-1.21
%P 180-186
Markdown (Informal)
[CIRCE at SemEval-2020 Task 1: Ensembling Context-Free and Context-Dependent Word Representations](https://aclanthology.org/2020.semeval-1.21) (Pömsl & Lyapin, SemEval 2020)
ACL