@inproceedings{grigorev-ivanov-2020-inno,
title = "Inno at {S}em{E}val-2020 Task 11: Leveraging Pure Transfomer for Multi-Class Propaganda Detection",
author = "Grigorev, Dmitry and
Ivanov, Vladimir",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.193",
doi = "10.18653/v1/2020.semeval-1.193",
pages = "1481--1487",
abstract = "The paper presents the solution of team {''}Inno{''} to a SEMEVAL 2020 task 11 {''}Detection of propaganda techniques in news articles{''}. The goal of the second subtask is to classify textual segments that correspond to one of the 18 given propaganda techniques in news articles dataset. We tested a pure Transformer-based model with an optimized learning scheme on the ability to distinguish propaganda techniques between each other. Our model showed 0:6 and 0:58 overall F1 score on validation set and test set accordingly and non-zero F1 score on each class on both sets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="grigorev-ivanov-2020-inno">
<titleInfo>
<title>Inno at SemEval-2020 Task 11: Leveraging Pure Transfomer for Multi-Class Propaganda Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Grigorev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladimir</namePart>
<namePart type="family">Ivanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-dec</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents the solution of team ”Inno” to a SEMEVAL 2020 task 11 ”Detection of propaganda techniques in news articles”. The goal of the second subtask is to classify textual segments that correspond to one of the 18 given propaganda techniques in news articles dataset. We tested a pure Transformer-based model with an optimized learning scheme on the ability to distinguish propaganda techniques between each other. Our model showed 0:6 and 0:58 overall F1 score on validation set and test set accordingly and non-zero F1 score on each class on both sets.</abstract>
<identifier type="citekey">grigorev-ivanov-2020-inno</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.193</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.193</url>
</location>
<part>
<date>2020-dec</date>
<extent unit="page">
<start>1481</start>
<end>1487</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inno at SemEval-2020 Task 11: Leveraging Pure Transfomer for Multi-Class Propaganda Detection
%A Grigorev, Dmitry
%A Ivanov, Vladimir
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 dec
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F grigorev-ivanov-2020-inno
%X The paper presents the solution of team ”Inno” to a SEMEVAL 2020 task 11 ”Detection of propaganda techniques in news articles”. The goal of the second subtask is to classify textual segments that correspond to one of the 18 given propaganda techniques in news articles dataset. We tested a pure Transformer-based model with an optimized learning scheme on the ability to distinguish propaganda techniques between each other. Our model showed 0:6 and 0:58 overall F1 score on validation set and test set accordingly and non-zero F1 score on each class on both sets.
%R 10.18653/v1/2020.semeval-1.193
%U https://aclanthology.org/2020.semeval-1.193
%U https://doi.org/10.18653/v1/2020.semeval-1.193
%P 1481-1487
Markdown (Informal)
[Inno at SemEval-2020 Task 11: Leveraging Pure Transfomer for Multi-Class Propaganda Detection](https://aclanthology.org/2020.semeval-1.193) (Grigorev & Ivanov, SemEval 2020)
ACL