
Proceedings of the 4th Workshop on Neural Generation and Translation (WNGT 2020), pages 218–224
Online, July 10, 2020. c©2020 Association for Computational Linguistics

www.aclweb.org/anthology/D19-56%2d

218

Edinburgh’s Submissions to the 2020 Machine Translation Efficiency Task

Nikolay Bogoychev† Roman Grundkiewicz† Alham Fikri Aji† Maximiliana Behnke†

Kenneth Heafield† Sidharth Kashyap‡ Emmanouil-Ioannis Farsarakis‡ Mateusz Chudyk††

†University of Edinburgh
{n.bogoych,rgrundki,a.fikri,maximiliana.behnke,kenneth.heafield}@ed.ac.uk

‡Intel Corporation ††Samsung R&D Institute Poland
{sidharth.n.kashyap,manos.farsarakis}@intel.com m.chudyk@samsung.com

Abstract

We participated in all tracks of the Workshop
on Neural Generation and Translation 2020 Ef-
ficiency Shared Task: single-core CPU, multi-
core CPU, and GPU. At the model level, we
use teacher-student training with a variety of
student sizes, tie embeddings and sometimes
layers, use the Simpler Simple Recurrent Unit,
and introduce head pruning. On GPUs, we
used 16-bit floating-point tensor cores. On
CPUs, we customized 8-bit quantization and
multiple processes with affinity for the multi-
core setting. To reduce model size, we ex-
perimented with 4-bit log quantization but use
floats at runtime. In the shared task, most of
our submissions were Pareto optimal with re-
spect the trade-off between time and quality.

1 Introduction

This paper describes the University of Edinburgh’s
submissions to the Workshop on Neural Gener-
ation and Translation (WNGT) 2020 Efficiency
Shared Task1 using the Marian machine transla-
tion toolkit (Junczys-Dowmunt et al., 2018a). The
task has GPU, single-core CPU, and multi-core
CPU tracks. Our submissions focus on the trade-
off between translation quality and speed; we also
address model size after submission.

Starting from an ensemble of 4 transformer-big
teacher models, we trained a variety of student
configurations and on top of that sometimes pruned
transformer heads. For the decoding process, we
explored the use of lower precision GEMM for both
our CPU and GPU submissions. Small models
appear to be more sensitive to quantization than
large models.

Most of our single-CPU submissions had a mem-
ory leak, which also impacted speed; we report
results before and after fixing the leak.

1https://sites.google.com/view/wngt20/
efficiency-task

2 Shared Task Summary

The task measures quality approximated by BLEU
(Papineni et al., 2002), speed, model size, Docker
image size, and memory consumption of a machine
translation system from English to German for the
WMT 2019 data condition (Barrault et al., 2019).
We did not optimize Docker image size (using stock
Ubuntu) or memory consumption (preferring large
batches for speed).

The task intentionally did not specify a test set
until after submissions were made. This was later
revealed to be the average of BLEU from WMT test
sets from 2010 through 2019, inclusive. However,
the 2012 test set was excluded because it contains
English sentences longer than 100 words and par-
ticipants were promised input would be at most 100
words. We refer to the task’s metric as WMT1*.
All BLEU scores are reported using sacrebleu.2

The CPU tracks used an Intel Xeon Platinum
8275CL while the GPU track used an NVIDIA T4.
For speed, the official input has 1 million lines of
text with 15,048,961 space-separated words.

3 Teacher-student training

Following Junczys-Dowmunt et al. (2018b) and
Kim et al. (2019), all our optimized models are
students created using interpolated sequence-level
knowledge distillation (Kim and Rush, 2016), and
trained on data generated from a teacher system.

Teacher We used the sentence-level English-
German system from Microsoft’s constrained sub-
mission to the WMT’19 News Translation Task
(Junczys-Dowmunt, 2019). It is an ensemble of
four deep transformer-big models (Vaswani et al.,
2017), each with 12 blocks of layers in encoder
and decoder, model size of 1024, filter size of 4096,

2BLEU+case.mixed+lang.en-de+numrefs.1+s
mooth.exp+test.wmt*+tok.13a+version.1.4.8
for various WMT test sets.

https://sites.google.com/view/wngt20/efficiency-task
https://sites.google.com/view/wngt20/efficiency-task

219

Enc./Dec. BLEU
Model Emb. FFN Depth Voc. Params. Size WMT16 WMT19 WMT1*

Teacher ×4 1024 4096 12/12 32k 385.5M 1.5GB 42.4 42.5 36.4

Large 1024 3072 6/6 tied 32k 108.4M 414MB 41.0 43.0 35.3
Base 512 2048 6/2 tied 32k 39.0M 149MB 40.0 42.7 34.6
Tiny.Untied 256 1536 6/2 32k 16.9M 65MB 39.0 42.1 33.4
Tiny 256 1536 6/2 tied 32k 15.7M 61MB 38.7 41.5 33.0

Tiny.8k 256 1536 6/2 tied 8k 9.6M 37MB 37.4 40.6 31.7
Micro.8k 256 1024 4/2 tied 8k 7.0M 27MB 35.7 38.8 30.0

Table 1: Architectures and reference BLEU scores (on a GPU) for the teacher and student models. Reported values
are: size of embedding and filter layers, the number of encoder/decoder layers, vocabulary size, the total number
of parameters, and model size on disk. WMT1* is defined in Section 2.

and 8 transformer heads.3 The ensemble achieved
42.5 BLEU on the official WMT19 test set when
decoded with beam size of 8. We refer the reader
to the original paper for more details on how this
system has been built.

Data and training Our student models were
trained on pairs of original source and teacher-
translated target sentences generated from parallel
English-German datasets and English News Crawl
data available for WMT19 (Barrault et al., 2019).
For parallel data, we generated 8-best lists and se-
lected translations with the highest sentence-level
BLEU to reference sentences. Monolingual data
was translated with beam size of 4. We filtered
the data with language identification using Fast-
Text4 (Joulin et al., 2017), and then scored all sen-
tence pairs with a German-English transformer-
base model trained on a subset of original parallel
data, about 7 million sentences. The obtained log
probabilities were normalized with exp(0.1 ·p) and
used for data weighting during training. We also
removed ca. 5% of examples with worst scores
from each dataset, except Paracrawl (Bañón et al.,
2020), from which we used only 15M sentences
with highest scores for processing. This procedure
is similar to the single-direction step of the dual
cross-entropy filtering method (Junczys-Dowmunt,
2018). The final training set consisted of 185M sen-
tences, including 20M of originally parallel data.

All student models were trained using the con-
catenated English-German WMT test sets from
2016–2018 as a validation set5 until BLEU has
stopped improving for 20 consecutive validations,

3This system refers to the (4×c) configuration in Table 2
from the original paper.

4https://fasttext.cc/blog/2017/10/02/
blog-post.html

5The validation sentences were not teacher-translated.

and select model checkpoints with highest BLEU
scores. Since a student model should mimic the
teacher as closely as possible, we did not use regu-
larization like dropout and label smoothing. Other
training hyperparameters were Marian defaults for
training a transformer-base model.6

Student models All our students have standard
transformer encoders (Vaswani et al., 2017) and
light-weight RNN-based decoders with Simpler
Simple Recurrent Unit (SSRU) (Kim et al., 2019),
and differ in number of encoder and decoder blocks,
and sizes of embedding and filter layers. Most
models use shared vocabulary with 32,000 sub-
word units created with SentencePiece (Kudo and
Richardson, 2018), but we also experimented with
a smaller vocabulary with only 8,000 units for
model size optimized systems. Used student ar-
chitectures are summarized in Table 1.

Interestingly, our student models do much better
with originally English input, resulting in gener-
ally higher BLEU on the WMT19 test set w.r.t. the
teacher’s performance than on test sets from previ-
ous years, which consist of both translations and
translationese. For example, the teacher achieves
42.4 and 42.2 BLEU on originally English and
originally German subsets of the WMT16 test set,
respectively, while the Base student model has 42.5
and only 35.6 BLEU. We think the reason for this is
that student models were trained solely on teacher-
translated data without back-translations.

4 Attention pruning

Attention is one of the most expensive operations in
the transformer architecture, yet many of the heads
can be pruned after training (Voita et al., 2019).
Moreover, the lottery ticket hypothesis (Frankle

6Available via --task transformer-base.

https://fasttext.cc/blog/2017/10/02/blog-post.html
https://fasttext.cc/blog/2017/10/02/blog-post.html

220

BLEU
Model Enc. heads Params. Size WMT19 WMT1* WPS

Tiny 8 8 8 8 8 8 15.7M 61MB 41.5 32.9 2050

Tiny.Steady.i12 2 0 1 2 3 4 14.5M 56MB 41.1 32.4 2282
Tiny.Steady.i14 0 0 1 1 1 3 14.3M 55MB 40.8 32.1 2350

Tiny.Pushy.i6 2 2 2 2 2 2 14.5M 56MB 41.4 32.4 2298
Tiny.Pushy.i7 1 1 1 1 1 1 14.3M 55MB 40.2 31.5 2346

Table 2: Students with pruned encoder attention. Words per second (WPS) is evaluated in float32 with a single
CPU core on the official input (Section 2).

and Carbin, 2018) and subsequent work on pruning
optimisation (Frankle et al., 2019) suggests that
pruning is less damaging during training rather than
after training. Hence we combine these two ideas
to prune attention heads during training.

Since we are starting from a relatively optimized
model (Tiny in Table 1) whose decoder has one
tied layer with SSRU self-attention, our pruning
approach focuses on the 48 encoder heads. We ap-
ply a late resetting strategy that iteratively removes
heads in short training loops (Frankle et al., 2019).
This method starts by training the full model for
25k batches to create a checkpoint. Then we repeat-
edly train for 15k updates, remove N heads and
revert the rest of the parameters to their value from
the aforementioned checkpoint. Inspired by Voita
et al. (2019), we calculate attention “confidence”.
Each time a head appears, we take the maximum
of its attention weights. These maximums are then
averaged across all appearances of the head to form
a confidence score. Attention heads with high con-
fidence are considered to contribute the most to the
overall network performance. Thus, we remove the
N least confident heads in each pruning iteration.

We try removing N = 3 or N = 6 heads per it-
eration, dubbing these Steady and Pushy in system
names, respectively. Since the algorithm usually
picks one head from each layer, the final architec-
ture differs. For example, removing 6 heads per
iteration results in a monotonic attention distribu-
tion across the 6 encoder layers. For submissions,
we pruned 36 of the 48 heads; as an additional ex-
periment we tried removing 42 of the 48 heads. The
final attention distribution, size and BLEU scores
for those models are presented in Table 2.

Considering that our students perform better on
newer testsets, the pruning results show that it is
possible to remove at least 75% of self-attention
heads in an encoder with an average 0.4 BLEU loss.
With harsher pruning, the model with even num-

bers of heads performs better than the one missing
any from the first two layers. This indicates that,
in extreme cases, it is better to have at least one
head per layer than none. Since the dimension of
each head was small (256 / 8 = 32), pruning has not
reduced the overall size of the models drastically.
The speed-up is about 10% on CPU with 75% en-
coder heads removed. In terms of on GPU, our best
pruned model gains 15% speed-up w.r.t. words per
second (WPS) losing 0.1 BLEU in comparison to
an unpruned model (Tab. 4).

5 CPU optimizations

For our CPU optimization we build upon last year
submission (Kim et al., 2019). We use the same
lexical shortlist, but we extend the usage of 8bit
integer quantized GEMM operations to also cover
the shortlisted output layer in order to have faster
computation and even smaller model size.

5.1 8-bit quantization

Quantization from 32-bit floats to 8-bit integers
is well known (Kim et al., 2019; Bhandare et al.,
2019; Rodriguez et al., 2018) and reportedly has
minimal quality impact. For this year’s submis-
sion, we used intgemm7 instead of FBGEMM8 as
our 8bit GEMM backend. Vocabulary shortlisting
entails selecting columns from the output matrix
and intgemm can directly extract columns in its
packed format. The packed format reduces mem-
ory accesses during multiplication. Users can also
specify arbitrary postprocessing of the output ma-
trix while it is still in registers before writing to
RAM. Currently we use this to add the bias term in
a streaming fashion, saving a memory roundtrip on
the common A ∗B + bias operation in neural net-
work inference; in the future we plan to integrate
activation functions.

7https://github.com/kpu/intgemm/
8https://github.com/pytorch/FBGEMM

https://github.com/kpu/intgemm/
https://github.com/pytorch/FBGEMM

221

BLEU Words per second
Model Size xzip Size WMT19 WMT1* 1 core Leak 1 core Fixed Multi-core Fixed

Base + float32 149MB 135.0MB 42.6 34.53 843 843 19849
+ 8bit-untuned 38MB 25.4MB 42.5 34.29 Out of RAM 1648 39100
+ log-4bit 19MB 15.8MB 42.3 34.10 Run as float32

Tiny + float32 65MB 58.9MB 41.5 32.91 2220 2220 47030
+ 8bit 17MB 11.2MB 41.6 32.89 1028 3135 70037
+ log-4bit 8MB 6.7MB 40.0 31.46 Run as float32

Tiny.8k + float32 37MB 33.4MB 40.6 31.70 1956 1956 42085
+ 8bit 9MB 7.0MB 39.5 30.61 Not submitted 2664 60011
+ log-4bit 5MB 4.1MB 37.5 28.51 Run as float32

Micro.8k + float32 27MB 21.6MB 38.8 30.03 2459 2459 53204
+ 8bit 7MB 4.4MB 37.5 29.01 2094 3229 79992

Table 3: Model sizes, average BLEU scores and speed for quantized models. For the official submission we only
used the 8-bit quantized models. More information about the unquantized models can be found in Table 1. The
suffix “-untuned” means the model was quantized without continued training. In the multi-core setting, fixing the
memory leak had minor impact on speed so we only report fixed numbers. Here, size excludes a 315 KB sentence
piece model and an optional (but useful for speed) 11 MB lexical shortlisting file.

Last year (Kim et al., 2019), parameters were
quantized and packed offline from a fully trained
model. This year, we noticed quality degradation
when quantizing smaller models and therefore in-
troduced continued training. Continued training
ran for 5000–7000 mini-batches, emulating 8-bit
GEMM by quantizing the activations and weights
then restoring them to 32-bit values, borrowing
from methods used for 4-bit quantization (Aji and
Heafield, 2019).

Quantization entails computing a scaling fac-
tor to collapse the range of values to [−127, 127].
For parameters, this scaling factor is computed of-
fline using the maximum absolute value9 but ac-
tivation tensors change at runtime. This year, we
changed from computing a dynamic scaling fac-
tor on the fly for activations to computing a static
scaling factor offline. We decoded the WMT16
dataset and recorded the scaling factor α(Ai) =
127/max(|Ai|) for each instance Ai of an acti-
vation tensor A. Then, for production, we fixed
the scaling factor for activation tensor A to the
mean scaling factor plus 1.1 standard deviation:
α(A) = µ({α(Ai)}) + 1.1 ∗ σ({α(Ai)}). These
scaling factors were baked into the model file so
that statistics were not computed at runtime.

All parameter matrices are prepared either of-
fline, or when decoding the first word (in the case
of the output layer) and later on they are reused for
the GEMM operations (or in the case of the output
layers, columns associated with vocabulary items

9We tried a variety of statistics, including minimizing mean
squared error, but none worked as well as continued training.

are extracted from the prepared matrix).
For the GEMM operations at the attention layer,

we used cblas sgemm batched from Intel’s MKL
Library. Model sizes, translation quality and speed
are reported in Table 3.10

Memory leak Most of our CPU submissions had
a memory leak due to failing to clear a cache of
shortlisted output matrices. Hence our official
CPU submissions using intgemm had unreasonable
memory consumption after translating 1 million
lines as specified in the shared task. In one case,
this exceeded 192 GB RAM on the c5.metal in-
stance and a submission was disqualified; in other
cases the submissions ran but used too much RAM
and likely more CPU time as a consequence. In
practise, the negative effect on speed was only evi-
dent in the single core submissions because multi-
core submissions divided work across processes.

5.2 Log 4-bit quantization
Model parameters follow normal distribution: most
of them are near-zero. Therefore, a fixed-point
quantization mechanism such as in Section 5.1 is
not suitable when quantizing to lower precision.
We can achieve a better model size compression
by using a logarithmic 4-bit quantization (Aji and
Heafield, 2019).

We start by quantizing a baseline model into 4-
bit precision. We leave the biases unquantized as
they do not follow the same distribution as the rest

10Code for these models is at https://github.
com/marian-nmt/marian-dev/tree/intgemm_
reintegrated_computestats

https://github.com/marian-nmt/marian-dev/tree/intgemm_reintegrated_computestats
https://github.com/marian-nmt/marian-dev/tree/intgemm_reintegrated_computestats
https://github.com/marian-nmt/marian-dev/tree/intgemm_reintegrated_computestats

222

of the parameters matrices and therefore quantize
poorly. Moreover, the compression rate is practi-
cally unaffected since the biases are small in terms
of number of parameters. Finally, the model must
be fine tuned under 4-bit precision to restore the
quality lost by quantization.

With 4-bit precision, we can achieve around 8x
model size reduction. While 4-bit log quantization
is in principle hardware-friendly since it uses only
adds and shifts, current CPUs and GPUs do not na-
tively support it (GPUs do support 4-bit fixed-point
quantization, but this reduced quality compared
to log quantization). The additional instructions
required to implement 4-bit arithmetic made in-
ference slower than with native 8-bit operations.
Therefore, we focus on model size, useful for down-
loading, and dequantize before running the model
in float32.

Model sizes and BLEU scores are reported in
Table 3. Generally, quantizing the model is a better
choice when aiming for lower model size, com-
pared to reducing model parameters. For example,
Base + log-4bit is as small as 19MB, while losing
just 0.4 BLEU compared to the baseline. In con-
trast, the Tiny model is 65MB, but loses 1.5 BLEU
compared to the float32 and the int8 settings.

We see that 4-bit log quantization achieves the
best size and performance trade-off. For example,
our Base + log-4bit (19MB) achieves the highest
average BLEU of 34.1 among other models of sim-
ilar size, such as Tiny + 8bit (17MB, 32.89 BLEU).
Similarly, Our Tiny + log-4bit (8MB) achieves an
average BLEU of 31.46, compared to others with
similar range, for example Micro.8k + 8bit (9MB,
30.61 BLEU). However, larger models are more
robust towards extreme quantization, compared to
smaller models. Our Tiny.8k + log-4bit degrades
significantly in terms of quality.

5.3 Multi-core configuration

For the multi-core track, we swept configurations
of multiple processes and threads, settling on 24
processes with 2 threads each. The input text is
simply split into 24 pieces and parallelized over
processes. The mini-batch sizes did not impact
performance substantially and 32 was chosen as
the mini-batch size. The code profile under VTune
revealed that the performance was limited by mem-
ory bandwidth, hence, the Hyperthreads available
on the platform were not put into use and the 48
cores were saturated using 24 processes (Tange,

BLEU
Model WMT19 WMT1* WPS

Large (?) 43.0 35.27 2748
- w/o 16-bit 43.0 35.29 1764

- w/o shortlist 43.0 35.29 1775
Base (?) 42.7 34.54 6138
Tiny.Untied (?) 41.9 33.27 7602
Tiny 41.5 32.90 8210

Tiny.Steady.i12 41.4 32.36 9518
Tiny.Pushy.i6 (?) 41.0 32.40 9508

Table 4: Performance of student models measured on
an AWS g4dn.xlarge instance with one NVidia T4
GPU. BLEU scores, total translation times, and word
per seconds (WPS). Models with (?) have been submit-
ted to the GPU track.

2011) running 2 threads each. Each process was
bound to two cores assigned sequentially and to the
memory domain corresponding to the socket with
those cores using numactl. Output from the data-
parallel run is then stitched together to produce the
final translation.

6 GPU systems

This year, we did not implement any GPU-specific
optimizations and focused on comparing the per-
formance of student architectures, developed for
CPU decoding, on the GPU. We made 4 submis-
sions to the GPU track. The results for all student
models, averaged across 3 runs are reported in Ta-
ble 4. We decode on GPU using batched translation
with mini-batch of 256 sentences, pervasive FP16
inference, and lexical shortlists (Kim et al., 2019).
These are features already available in Marian 1.9.

The average speed-up from decoding in 16-bit
floats is 21%, depending on the model architecture.
The larger the model size, the larger speed improve-
ment, with as high as 56% improvement for the
Large student model, through 32% for Base, and
only 13-18% for Tiny models. This is with barely
any change in BLEU, lower than ±0.1. Models
with pruned transformer heads are faster than the
original Tiny model by 15% on GPU, but decrease
the accuracy by 0.1-0.5 BLEU on the WMT19 test
set. On this relatively small data set, we notice
a small translation speed decrease of up to 2%
from using lexical shortlists. Running concurrent
streams on a single GPU did not yield significant
improvements for us.

223

28

30

32

34

36

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

W
M

T
1*

B
L

E
U

Thousand words per real second

Our submissions
Ours after submission

Others’ submissions

(a) Speed on one CPU core

28

30

32

34

36

0 20 40 60 80 100 120

W
M

T
1*

B
L

E
U

Thousand words per real second

Our submissions
Ours after submission

Others’ submissions

(b) Speed on all CPU cores

28

30

32

34

36

0 5 10 15 20 25

W
M

T
1*

B
L

E
U

Thousand words per real second

Our submissions
Others’ submissions

(c) Speed on GPU

28

30

32

34

36

0 100 200 300 400 500

W
M

T
1*

B
L

E
U

Model size (MB)

Our submissions
Ours after submission

Others’ submisions

(d) Model size for CPU and GPU

Figure 1: Performance of our models compared to other teams. Not all models sought to optimize both speed and
space. For example, models stored in 4 bits ran with float32.

7 Results and discussion

All submissions and select experiments are de-
picted in Figure 1.

We explored a variety of ways to optimize the
trade-off between quality, speed, and model size.
We use an ensemble of 4 transformer-big teacher
models to train a number of different student con-
figurations. Smaller student models are faster to
decode, but also further degrade the performance
compared to the ensemble of teachers. Further-
more, we apply gradual transformer head pruning
to the student models. While pruning the number
of heads does not reduce the number of param-
eters significantly, it has a major impact on the
computational cost and is beneficial for increasing
translation speed, at a small penalty in BLEU score.

On the software side, we experiment with a num-
ber of methods that reduce the precision for the
GEMM operations. For our GPU submissions, we
decode using 16-bit floats and for CPU ones we use

8-bit integers. We note that the smaller (in terms
of number of parameters) the model is, the more
impacted quality is by quantization, and the bigger
the model is, the larger the speed increase is. We
found that fine tuning with a quantized GEMM can
recover some of the quality loss from quantization.

We also experimented with logarithmic 4-bit
model compression, which did not yield increased
translation speed due to hardware, but produced
the smallest model sizes.

Acknowledgements
We would like to thank Marcin Junczys-Dowmunt for sharing
his English-German WMT’19 NMT system that we used as a
teacher for our experiments.

This work was supported by funding from the Euro-
pean Union’s Horizon 2020 research and innovation

programme under grant agreement No 825303 (Bergamot)
and by the Connecting Europe Facility (CEF) - Telecommuni-
cations from the project No 2019-EU-IA-0045 (User-focused
Marian).

This work was performed using resources provided by the
Cambridge Service for Data Driven Discovery (CSD3) op-

224

erated by the University of Cambridge Research Computing
Service (http://www.csd3.cam.ac.uk/), provided by Dell EMC
and Intel using Tier-2 funding from the Engineering and Phys-
ical Sciences Research Council (capital grant EP/P020259/1),
and DiRAC funding from the Science and Technology Facili-
ties Council (www.dirac.ac.uk).

References
Alham Fikri Aji and Kenneth Heafield. 2019. Neural machine

translation with 4-bit precision and beyond. arXiv preprint
arXiv:1909.06091.

Loı̈c Barrault, Ondřej Bojar, Marta R. Costa-jussà, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof
Monz, Mathias Müller, Santanu Pal, Matt Post, and Marcos
Zampieri. 2019. Findings of the 2019 conference on ma-
chine translation (wmt19). In Proceedings of the Fourth
Conference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. Associa-
tion for Computational Linguistics.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L. For-
cada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Ser-
gio Ortiz Rojas, Leopoldo Pla Sempere, Gema Ramı́rez-
Sánchez, Elsa Sarrı́as, Marek Strelec, Brian Thompson,
William Waites, Dion Wiggins, and Jaume Zaragoza.
2020. ParaCrawl: web-scale acquisition of parallel cor-
pora. In Proceedings of the 2020 Annual Conference of
the Association for Computational Linguistics, Seattle.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada, Vivek
Menon, Sun Choi, Kushal Datta, and Vikram Saletore.
2019. Efficient 8-bit quantization of transformer neural
machine language translation model.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Training pruned neural networks. CoRR,
abs/1803.03635.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy,
and Michael Carbin. 2019. Stabilizing the lottery ticket
hypothesis. CoRR, abs/1903.01611.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. 2017. Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 427–431, Valencia, Spain.
Association for Computational Linguistics.

Marcin Junczys-Dowmunt. 2018. Microsoft’s submission to
the WMT2018 news translation task: How I learned to
stop worrying and love the data. In Proceedings of the
Third Conference on Machine Translation: Shared Task
Papers, pages 425–430, Belgium, Brussels. Association for
Computational Linguistics.

Marcin Junczys-Dowmunt. 2019. Microsoft translator at
WMT 2019: Towards large-scale document-level neu-
ral machine translation. In Proceedings of the Fourth
Conference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 225–233, Florence, Italy. Asso-
ciation for Computational Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz
Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann,
Frank Seide, Ulrich Germann, Alham Fikri Aji, Nikolay

Bogoychev, et al. 2018a. Marian: Fast neural machine
translation in C++. In Proceedings of ACL 2018, System
Demonstrations, pages 116–121.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu Hoang,
Roman Grundkiewicz, and Anthony Aue. 2018b. Mar-
ian: Cost-effective high-quality neural machine translation
in C++. In Proceedings of the 2nd Workshop on Neural
Machine Translation and Generation, pages 129–135.

Yoon Kim and Alexander M Rush. 2016. Sequence-level
knowledge distillation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 1317–1327.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Al-
ham Fikri Aji, Kenneth Heafield, Roman Grundkiewicz,
and Nikolay Bogoychev. 2019. From research to produc-
tion and back: Ludicrously fast neural machine translation.
In Proceedings of the 3rd Workshop on Neural Generation
and Translation, pages 280–288, Hong Kong. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 66–
71.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA. Associ-
ation for Computational Linguistics.

Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko,
Young Jin Kim, Haihao Shen, and Barukh Ziv. 2018. Lower
numerical precision deep learning inference and training.

O. Tange. 2011. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,
and Ivan Titov. 2019. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be
pruned. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 5797–
5808, Florence, Italy. Association for Computational Lin-
guistics.

http://www.aclweb.org/anthology/W19-5301
http://www.aclweb.org/anthology/W19-5301
http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1903.01611
http://arxiv.org/abs/1903.01611
https://www.aclweb.org/anthology/E17-2068
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
https://doi.org/10.18653/v1/W18-6415
http://www.aclweb.org/anthology/W19-5321
http://www.aclweb.org/anthology/W19-5321
http://www.aclweb.org/anthology/W19-5321
https://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/W18-2716/
https://www.aclweb.org/anthology/W18-2716/
https://www.aclweb.org/anthology/W18-2716/
https://arxiv.org/abs/1606.07947
https://arxiv.org/abs/1606.07947
https://www.aclweb.org/anthology/D19-5632
https://www.aclweb.org/anthology/D19-5632
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
https://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/P19-1580
https://www.aclweb.org/anthology/P19-1580

