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Abstract

This paper presents the results of the Third Shared Task on Multilingual Surface Realisation
(SR’20) which was organised as part of the COLING’20 Workshop on Multilingual Surface Re-
alisation. As in SR’18 and SR’19, the shared task comprised two tracks: (1) a Shallow Track
where the inputs were full UD structures with word order information removed and tokens lem-
matised; and (2) a Deep Track where additionally, functional words and morphological informa-
tion were removed. Moreover, each track had two subtracks: (a) restricted-resource, where only
the data provided or approved as part of a track could be used for training models, and (b) open-
resource, where any data could be used. The Shallow Track was offered in 11 languages, whereas
the Deep Track in 3. Systems were evaluated using automatic metrics and direct assessment by
human evaluators of Readability and Meaning Similarity to reference outputs. We present the
evaluation results, along with descriptions of the SR’20 tracks, data and evaluation methods,
as well as brief summaries of the participating systems. Full descriptions of the participating
systems can be found in separate system reports elsewhere in this volume.

1 Introduction

SR’20 is the fourth in a line of shared tasks focused on surface realisation, the name originally given to
the last stage in the first-generation (pre-statistical and pre-neural) Natural Language Generation (NLG)
pipeline, mapping from semantic representations to fully realised surface word strings. When we ran the
first Surface Realisation Shared Task in 2011 (Belz et al., 2011), it was to address a situation where there
were many different approaches to SR but none of them were comparable. We developed a common-
ground input representation that different approaches could map their normal inputs to, making results
directly comparable for the first time. Most SR’11 systems (and all top performing ones) were statistical
dependency realisers that did not make use of an explicit, pre-existing grammar. However, the question
of how inputs to the realisers were going to be provided in an embedding system was left open.

By the time we proposed the second SR Task (Mille et al., 2017), Universal Dependencies (UDs)
had emerged as a convenient standard in parsing, with many associated data sets, that we were able to
pick up and use as the common-ground representation. By now, the third, neural generation of NLG
methods was beginning to dominate the field, and systems participating in SR’18 were all trained to map
directly from the UD inputs to the surface strings by some form of neural method. The question of how
inputs to the realisers were going to be supplied remained open; moreover, most current approaches to
NLG no longer even distinguished a separate surface realisation stage. Nevertheless, the community
enthusiastically participated in SR’18 and SR’19 (Mille et al., 2018; Mille et al., 2019) as we expanded
tracks to 11 languages.

This year, things look different again. There is much discussion in the field of how to control the vexed
tendencies of neural generators to ‘hallucinate’ content (Dušek et al., 2019), and how to instil some order
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and coherence over longer texts. Multi-hop approaches are increasingly proposed to address such issues
(Hua and Wang, 2019; Zhai et al., 2019; Zhao et al., 2020), and are beginning to look somewhat like the
old NLG pipeline. In this context, surface realisation is very much back on the agenda, and the term is
coming back into frequent use (Zhai et al., 2019; Zhao et al., 2020). Our aim for future editions of the
SR Shared Task is to test whether multi-hop gives better results overall than single-hop, but also to link
up with content selection modules capable of supplying the inputs required by SR systems.

For this year, our main objective is to explore the impact of restricted vs. unrestricted resources in
system training, and cross-domain generalisability. We start below with an overview of the shared task
and tracks (Section 2), followed by descriptions of the participating systems (Section 3), the data (4),
evaluation methods (Section 5), and results (Section 6).

2 Overview of Shared Task and Tracks

SR’20 uses the same languages and datasets as SR’19. There is a shallow and a deep track, as before;
however, each track divides into two subtracks, one of which is retricted-mode, meaning only the data
provided or approved for the given track may be used to train systems, the other an open track where
any resources may be used in building systems. We have also created new test data sets derived from
Wikipedia articles by the method described in Section 4.2 below. This year’s set-up allows us to explore
topline system performance and generalisability of results to a new domain.

The two main tracks are as follows:

T1 Shallow Track: The inputs in this track are UD structures in which most of the word order informa-
tion has been removed and tokens have been lemmatised. In other words, it starts from unordered
dependency trees with lemmatised nodes that hold PoS tags and morphological information as found
in the original treebank annotations. The outputs are the fully realised sentences. The task in this
track therefore amounts to determining the word order and inflecting words.

a. Restricted-resources subtrack (same as SR’19 Track 1): Teams built models trained on the
provided T1 dataset(s), but use of external task-specific data was not permitted. However,
teams were allowed to use external generic resources. For example, available parsers such as
UUParser (Smith et al., 2018) could be run to create a silver standard versions of provided
datasets and use them as additional or alternative training material. Also permitted was the
use of generic publicly available off-the-shelf language models such as GPT-2 (Radford et
al., 2019), ELMo (Peters et al., 2018), polyglot (Al-Rfou et al., 2013). Alternatively, BERT
(Devlin et al., 2018) could be fine-tuned with publicly available datasets such as WikiText
(Merity et al., 2016) or the DeepMind Q&A Dataset (Hermann et al., 2015).

b. Open subtrack: In this track, teams built models trained on the provided T1 dataset(s), also
using any additional resources, without restrictions. Teams could even use the SR conversion
tool to produce data with the exact same specifications as the data provided in the track, by
applying the converter to a parsed output (see Section 4.2).

T2 Deep Track: Inputs in this track are UD structures as in T1 from which functional words (in par-
ticular, auxiliaries, functional prepositions and conjunctions) and surface-oriented morphological
and syntactic information have additionally been removed. The task in the Deep Track thus also in-
volves introduction of functional words and morphological features, in addition to what is required
for the Shallow Track.

a. Restricted-resources subtrack (same as SR’19 Track 2): Teams built models trained on the
provided T2 dataset(s) using resources restricted exactly as described for T1-a above.

b. Open subtrack: Teams built models trained on the provided T2 dataset(s), using additional
resources without restrictions as described for T1-b above.
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2019 test sets 2020 Wiki test sets
T1 T2 T1 T2

a b a b a b a b
ADAPT 20 english (ewt) english (ewt) – – english english – –
BME-TUW 20 all (all) – – – all – – –
Concordia 20 english (all) – english (all) – english – english –
IMS 20 all (all) all (all) all (all) all (all) all all all all
NILC 20 – – english (all) – – – english –
BME-UW 19 * N/A * N/A all N/A – N/A
IMS 19 * N/A * N/A all N/A all N/A
RALI 19 – N/A – N/A english N/A english N/A
Tilburg 19 – N/A – N/A all N/A – N/A

Table 1: Teams submitting in each track/language (dataset); * = 2019 outputs included in human eval.

3 Participating Systems

There were two distinct sets of participating systems this year. Firstly, there were the new participants
who built systems specifically for SR’20 (each system briefly summarised in Section 3.1). In addition,
we asked the 2019 participants to run their systems on the new test sets, and 4 teams were able to do
so (Section 3.2), two of which also submitted new systems to SR’20. Table 1 provides an overview of
which teams submitted outputs in which (sub)tracks, languages and datasets. The 2019 systems can only
contribute to the restricted track columns (‘a’) since it was the only mode of participation last year. We
also indicate in the table which systems we reevaluated in the human evaluation (* in the table).

3.1 SR’20 new systems

The ADAPT system was trained using a custom fork of the OpenNMT-py framework, the only change
made was to the beam search decoding code. The model used was a bidirectional recurrent neural
network (BRNN) with long short term memory (LSTM) cells. Two variants of the ADAPT system were
submitted; one trained with just the EWT dataset and one with both the EWT dataset and an augmented
dataset constructed from the WikiText 103 and CNN stories corpora. (For all datasets, see Section 4.)

The BME-TUW system performs word order restoration by learning rules of an Interpreted Regular
Tree Grammar (IRTG) that encodes the correspondence between UD-subgraphs and word orderings. The
grammars build strings and UD graphs simultaneously, using pairs of operations that each connect some
set of dependents to their common head while concatenating the corresponding words. The approach
extends the team’s 2019 system by allowing rules to reference lemmas in addition to POS-tags and by
giving preference to derivations that use a smaller number of more specific rules to construct a particular
UD graph. Word order restoration is performed separately for each clause. For the inflection step, a
standard sequence-to-sequence model with biLSTM encoder and LSTM decoder with attention is used.

Concordia uses a text-to-text model to tackle graph-to-text surface realisation. The approach fine-
tunes the pre-trained BART (Lewis et al., 2020) language model on the task of surface realisation where
the model receives the linearised representation of the dependency tree and generates the surface text.

The IMS system builds on their system from the previous year with a substantial change in the lin-
eariser proposed in (Yu et al., 2020), which models the task of word ordering as a Traveling Salesman
Problem, and uses a biaffine attention model to calculate the bigram scores for the output sequence. To
remedy the restriction of projectivity, it uses a transition system to reorder the sentence. Furthermore,
model ensembling and data augmentation is applied to push the performance.

The NILC submission explores different ways to represent a UD structure linearly, and models the
generation task by using the small version of GPT-2.

3.2 SR’19 systems run on the SR’20 new test sets

The BME-UW system (Kovács et al., 2019) performs word order restoration by learning Interpreted
Regular Tree Grammar (IRTG) rules encoding the correspondence between UD-subgraphs and word
orderings. The grammars build strings and UD graphs simultaneously, using pairs of operations each
connecting a set of dependents to their common head while concatenating the corresponding words. Rule
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Data type Dataset Track train dev test

In-domain

arabic_padt (ar) T1 6,075 909 680
chinese_gsd (zh) T1 3,997 500 500
english_ewt (en) T1, T2 12,543 2,002 2,077
english_gum (en) T1, T2 2,914 707 778
english_lines (en) T1, T2 2,738 912 914
english_partut (en) T1, T2 1,781 156 153
french_gsd (fr) T1, T2 14,450 1,476 416
french_partut (fr) T1, T2 803 107 110
french_sequoia (fr) T1, T2 2,231 412 456
hindi_hdtb (hi) T1 13,304 1,659 1,684
indonesian_gsd (id) T1 4,477 559 557
japanese_gsd (ja) T1 7,133 511 551
korean_gsd (ko) T1 4,400 950 989
korean_kaist (ko) T1 23,010 2,066 2,287
portuguese_bosque (pt) T1 8,328 560 477
portuguese_gsd (pt) T1 9,664 1,210 1,204
russian_gsd (ru) T1 3,850 579 601
russian_syntagrus (ru) T1 48,814 6,584 6,491
spanish_ancora (es) T1, T2 14,305 1,654 1,721
spanish_gsd (es) T1, T2 14,187 1,400 426

Out-of-domain
english_pud (en) T1, T2 - - 1,000
japanese_pud (ja) T1 - - 1,000
russian_pud (ru) T1 - - 1,000

Automatically parsed

english_ewtHIT (en) T1, T2 - - 1,795
english_pudLAT (en) T1, T2 - - 1,032
hindi_hdtbHIT (hi) T1 - - 1,675
korean_kaistHIT (ko) T1 - - 2,287
portuguese_bosqueSTF (pt) T1 - - 471
spanish_ancoraHIT (es) T1, T2 - - 1,723

Automatically parsed

english_wikiSTZ (en) T1, T2 - - 1,313
french_wikiSTZ (fr) T1, T2 - - 1,313
korean_wikiSTZ (ko) T1 - - 530

Wikipedia portuguese_wikiSTZ (pt) T1 - - 1,135
russian_wikiSTZ (ru) T1 - - 1,291
spanish_wikiSTZ (es) T1, T2 - - 1,280

Table 2: SR’20 dataset sizes for training, development and test sets (number of sentences).

weights are proportional to the observed frequency of each pattern in the training data. The inflection step
uses a standard sequence-to-sequence model with biLSTM encoder and LSTM decoder with attention.

IMS (Yu et al., 2019) uses a pipeline approach for both tracks, consisting of linearisation, completion
(for T2 only), inflection, and contraction. All models use the same bidirectional Tree-LSTM encoder
architecture. The linearisation model orders each subtree separately with beam search, then combining
the trees into a full projective tree; the completion model generates absent function words sequentially
given the linearised tree of content words; the inflection model predicts a sequence of edit operations to
convert lemmas to word forms character by character; the contraction model predicts BIO tags to group
words to be contracted, and then generates the contracted word form of each group with a seq2seq model.

The RALI system (Lapalme, 2019) uses a symbolic approach to transform the dependency tree into a
tree of constituents that is transformed into an English sentence by an existing English realiser, JSrealB
(Molins and Lapalme, 2015). This realiser was then slightly modified for the two tracks.

The Tilburg approach (Ferreira and Krahmer, 2019), based on Ferreira et al. (2018), realises texts by
first preprocessing the dependency tree into a preordered linearized form, which is then converted into
its textual counterpart using a rule-based approach together with a statistical machine translation (SMT)
model. A singular version of the model was trained for each language considered in the experiment.

4 Data Sets
4.1 T1 and T2 training and test sets (same as in SR’19)
There are 42 datasets in 11 languages, 29 datasets for T1, and 13 for T2 (for a summary overview,
see Table 2, top 3 sections of the table). The datasets were selected from the available collection of



5

Language Dataset Performance Performance Best CoNLL’18 Best CoNLL’18
(LAS) (lemmas) (LAS) (lemmas)

English ewt 83.59 97.21 84.57 97.23
French gsd 89.05 97.64 86.89 97.03
Korean gsd 83.53 92.69 85.14 94.02
Portuguese bosque 87.57 97.8 87.81 97.54
Russian syntagrus 90.06 97.51 92.48 98.19
Spanish ancora 90.01 99.19 90.93 99.02

Table 3: Datasets used to train the Stanza parsing models.

UD datasets mainly based on the completeness of annotations in terms of PoS tags and morphologically
relevant markup (number, tense, verbal finiteness, etc.). The test data sets can be grouped into three types:
(i) in-domain test data, in the same domains as the training and development data; (ii) Out-of-domain,
which are test sets of parallel sentences in different languages in domains not covered by the training and
development data; and (iii) silver standard data, which consists of automatically parsed sentences.

The in-domain and out-of-domain data is provided in the UD release V2.3.1 The silver standard data
was processed using the best CoNLL’18 parsers for the chosen datasets: the Harbin HIT-SCIR (HIT)
parser (Che et al., 2017) for English_ewt, Hindi_hdtb, Korean_kaist and Spanish_ancora; the LATTICE
(LAT) parser (Lim et al., 2018) for English_pud and the Stanford (STF) parser (Qi et al., 2019) for
Portuguese_bosque.2 A detailed description of all SR’19 datasets and how they were processed can be
found in the SR’19 report paper (Mille et al., 2019).

4.2 SR’20 new test sets

To obtain new test sets,3 we selected sentences from Wikipedia in six out of the eleven SR’19 languages
for which it was possible to get a good quantity of clean texts on the same topics. The used articles
contain mostly landmarks and some historical figures. On the extracted sentences, we applied extensive
filtering to achieve reasonably good text quality. We skipped sentences that include special characters,
contain unusual tokens (e.g. ISBN), or have unbalanced quotation marks or brackets. Furthermore, we
took only sentences with more than 5 tokens and shorter than 50 tokens. After the initial filtering, quite
a few malformed sentences remained. In order to remove those, we scored the sentences with BERT and
kept only the best scored half. Finally, via manual inspection we identified patterns and expressions to
reduce the number of malformed sentences still further.

We parsed the cleaned Wikipedia sentences with the Stanza parser (Qi et al., 2020), using the trained
models provided for the respective languages; the Stanza parser gets very competitive results on a large
set of languages (see Table 3). For each language, we executed the parser with the processors for Tokeni-
sation and Sentence Split, Multi-word Token Expansion, Part-of-Speech and Morphological Tagging,
Lemmatisation and Dependency Parsing. The performance of the parser for all six languages in terms
of Labelled Attachment Score and lemmatisation, two of the crucial aspects for our task, is provided
in Table 3; for reference, we also provide the LAS and lemma scores of the best parser on each dataset
according to the CoNLL’18 shared task results. All the datasets and their respective sizes are summarised
in Table 2; the STZ extension in the last 6 rows of the table indicate a reference to the Stanza parser.

As it was the case in the previous editions of the task, Shallow Track inputs were generated with the
aid of Python scripts from the UD structures, using all available input sentences (inflected forms and
most word order information are removed), and Deep Track inputs were then generated by automatically
processing the Shallow Track structures using a series of graph-transduction grammars for removing
functional nodes and other superficial features, and generalising the dependency relations; see SR’19
report (Mille et al., 2019) for details. The code for converting the UD trees into SR’19/SR’20 Shallow

1https://universaldependencies.org/
2The CoNLL’18 shared task submissions were downloaded from https://lindat.mff.cuni.cz/repository/

xmlui/handle/11234/1-2885.
3The complete SR’20 datasets can be downloaded from https://sites.google.com/site/

genchalrepository/surface-realisation/sr-20-multilingual
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Figure 1: Sample UD structure (without the last two columns).

Figure 2: Sample T1 input structure (without the last two columns).

Figure 3: Sample T2 input structure (without the last two columns).

and Deep Track inputs is available on GitLab.4 Figures 1, 2 and 3 shown sample UD, Track 1 and Track
2 structures respectively, taken from the parsed Wikipedia English dataset.

5 Evaluation Methods

5.1 Automatic methods
We used BLEU, NIST, BERT, and inverse normalised character-based string-edit distance (referred to as
DIST, for short, below) to assess submitted systems. BLEU (Papineni et al., 2002) is a precision metric
that computes the geometric mean of the n-gram precisions between generated text and reference texts
and adds a brevity penalty for shorter sentences. We use the smoothed version and report results for
n = 4. NIST5 is a related n-gram similarity metric weighted in favor of less frequent n-grams which
are taken to be more informative. DIST starts by computing the minimum number of character inserts,
deletes and substitutions (all at cost 1) required to turn the system output into the (single) reference
text. The resulting number is then divided by the number of characters in the reference text, and finally
subtracted from 1, in order to align with the other metrics. Spaces and punctuation marks count as
characters; output texts were otherwise normalised as for all metrics (see below). BERTScore (Zhang et
al., 2020) computes a token-based similarity score by comparing each token of the generated texts with
each token of the reference sentence. BERTScore uses contextual embeddings rather than exact matches,
and has been shown to correlate better with human judgments than other commonly used metrics. The
figures in the tables below are the system-level scores for BLEU, NIST and BERTScore, and the mean
sentence-level scores for DIST.

Output texts were normalised prior to computing metrics by lower-casing all tokens, removing any
extraneous whitespace characters. Missing outputs were scored 0. We only report results for all sentences
(incorporating the missing-output penalty), rather than also separately reporting scores for just the in-
coverage items.

4https://gitlab.com/talnupf/ud2deep
5http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-study.pdf; http://www.itl.

nist.gov/iad/mig/tests/mt/2009/



7

5.2 Human-assessed methods

For the human evaluation, we selected a subset of language/dataset combinations based on num-
ber of submissions received and availability of evaluators: three in-domain datasets (English_ewt,
Russian_syntagrus, Spanish_ancora), and the three corresponding Wikipedia datasets for these lan-
guages. All submitted Track 1 and Track 2 outputs for these datasets were evaluated, plus two 2019
outputs (IMS, BME-UW) for each in-domain dataset, which were already evaluated in 2019.

We adopted the same approach to human evaluation as in SR’18 (Mille et al., 2018) and SR’19 (Mille
et al., 2019). The evaluation method is Direct Assessment (DA) (Graham et al., 2016), as used by
the WMT competitions to produce the official ranking of machine translation systems (Barrault et al.,
2020) and video captioning systems at TRECvid (Graham et al., 2018; Awad et al., 2019). We ran the
evaluation on Mechanical Turk,6 assessing two quality criteria, in separate evaluation experiments, but
using the same method: Readability and Meaning Similarity. We used continuous sliders as rating tools,
the evidence being that raters tend to prefer them (Belz and Kow, 2011). Slider positions were mapped
to values from 0 to 100 (best).

Raters were given brief instructions, including the direction to ignore formatting errors, superfluous
whitespace, capitalisation issues, and poor hyphenation. The statement to be assessed in the Readability
evaluation was: The text reads well and is free from grammatical errors and awkward constructions.

The corresponding statement in the Meaning Similarity evaluation, in which system outputs (‘the
black text’) were compared to reference sentences (‘the gray text’), was:7,8 The meaning of the gray text
is adequately expressed by the black text.

The DA method involves quality assurance techniques as follows. System outputs are randomly as-
signed to HITs (following Mechanical Turk terminology) of 100 outputs, of which 20 are used solely for
quality assurance (QA) (i.e. do not count towards system scores): (i) some are repeated as-is, (ii) some
are repeated in a ‘damaged’ version and (iii) some are replaced by their corresponding reference texts.
In each case, a minimum threshold has to be reached for the HIT to be accepted: for (i), scores must
be similar enough, for (ii) the score for the damaged version must be worse, and for (iii) the score for
the reference text must be high. For full details of how these additional texts are created and thresholds
applied, please refer to Barrault et al. (2019). We report QA figures for the MTurk evaluations below.

Test set sizes out of the box varied for the different languages. For the human test sets we selected a
subset of at least 500 sentences for each language, motivated by the power analysis provided by Graham
et al. (2019). For subsets, test set items were selected randomly.

We follow the same format for reporting results as WMT adopt when reporting DA method results,
i.e. we report both average raw scores and average standardised scores per system in the tabular form
shown in the results tables below. In order to produce standardised scores we simply map each individual
evaluator’s scores to their standard scores (or z-scores) computed on the set of all raw scores by the given
evaluator using each evaluator’s mean and standard deviation. For both raw and standard scores, we
compute the mean of sentence-level scores.

6 Results

In this section, we present evaluation results produced with all evaluation methods from the preceding
section, for all test set outputs received from participants. The best scores are generally better this year
compared to 2019, both according to automatically computed metrics and human assessments. By way
of introduction, Table 4 shows a sample output for one of the English Wikipedia sentences, as generated
by each participating system. T1 and T2 inputs for these sample outputs are shown above in Figures 2 and
3 respectively. Interestingly, the outputs show a lot of variation, and none of them gets the target exactly.
The last column shows the percentage of sentences exactly matching their human-written reference for
each system, as calculated on the English_wiki dataset (1,313 sentences).

6We were able to reuse, with minor adaptations, the code produced for the WMT’17 evaluations: https://github.
com/ygraham/segment-mteval

7Since a main proportion of workers on Mechanical Turk are located in the US, we employ US spelling in evaluations.
8Past work in machine translation has investigated the degree to which the presence of a reference sentence might introduce
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System Sample output Exact (%)

HUMAN Will it not also be grandiose in its way?

ADAPT20aT1 In its way it will alson’t be grandiose? 15.8
ADAPT20bT1 Will it also not be grandiose in its way? 27.11
BME19T1 It will also be not grandiose in its way ? 0.57
BME20aT1 Also be it will not grandiose in its way ? 0.57
Concordia20aT1 Will it also not be grandiose in its way ? 0.46
Concordia20aT2 It will also not be grandiose in its way . 0.42
IMS19T1 Will not it also be grandiose in its way? 16.41
IMS19T2 It should also not grandiose in its way? 1.18
IMS20aT1 It will not be also grandiose in its way? 18.74
IMS20aT2 It will also not be grandiose in its way? 1.56
IMS20bT1 It will also not be grandiose in its way? 21.59
IMS20bT2 Will it also not be grandiose in its way? 2.17
NILC20aT2 It will also be n’t in its way; 1.56
RALI19T1 It? will not be grandiose also in its way. 0.46
RALI19T2 It is grandiose not also its way. 0.46
Tilburg19T1 it will also be not grandiose in its way. 0.23

Table 4: Sample system outputs for the inputs in Figures 2 and 3, and % of exact matches on English_wiki
(systems in alphabetical order).

6.1 Automatic Evaluation Results

6.1.1 Overview and of metric results provided
Tables 5, 6, 7, 8, 9, 10, 11 and 12 show the results of the automatic evaluations with BLEU, NIST, DIST,
and BERTScore on all test sets. We have grouped results tables together by metric, so that the first page
of results shows all BLEU results, in Tables 5 and 6; the second page of results shows all NIST results,
in Tables 7 and 8; the third page of results shows all DIST results, in Tables 9 and 10; and the fourth
page shows all BERT results, in Tables 11 and 12. In each case, the first, larger, table shows results for
the 2019 test sets, whereas the second, smaller table shows results for the new 2020 Wikipedia test sets.
In each table, the column headings show the system team, system year (20, 19) and subtrack (a, b) for
which results are shown in a column, while the row labels in the first column show which test set and
track (T1, T2) results are for. Rows are shown in alphabetical order of the test set name (ar_padt, en_ewt,
etc.). For an overview of test sets, see Table 2.

In Section 6.3, we furthermore provide comparisons between automatic and human evaluations.

6.1.2 Discussion of metric results
Considering all metric results tables together, scores are generally (but not always) higher for 2020
systems than for comparable 2019 systems (e.g. BLEU for BME20a is higher for most test sets than
for BME19, Table 5); and T1 results are higher in all cases than directly comparable T2 results. The
picture for ‘a’ subtracks (restricted) compared to ‘b’ subtracks (unrestricted) is different. Here we have
two teams who submitted comparable outputs for both subtracks, ADAPT and IMS. ADAPT submitted
just for T1 en_ewt, and here, all results for ‘b’ are higher than comparable results for ‘a’. IMS submitted
for all datasets in both subtracks ‘a’ and ‘b’ in both T1 and T2. For the 2019 tests, the picture is mixed,
and there is no clear, consistent benefit from additional resources. However, for the 2020 out-of-domain
Wikipedia test sets, ‘b’ scores are always greater than (or in one case equal to) comparable ‘b’ scores,
with the margin bigger for T2 scores than T1.

Taking a closer look at improvements this year compared to 2019, we see for instance, on the
English_ewt test set, last year’s top BLEU score in T1 (the Shallow Track) was 82.98 (IMS); in 2020,
it goes up to 86.16 in the restricted track (IMS), and 87.5 in the open track (ADAPT). In T2 (the Deep
Track), top BLEU scores also increased, from 54.75 (IMS) to 58.84 in the restricted track, and 58.66 in
the unrestricted track (both IMS).

We next look at overall improvements of team submissions across all test sets they submitted outputs

bias into the evaluation revealing no significant evidence of reference-bias (Ma et al., 2017).
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–BLEU-4– ADAPT BME Concordia IMS NILC
20a 20b 20a 19 20a 20a 20b 19 20a

T1_ar_padt 26 26.4 69.56 69.71 64.9
T1_en_ewt 80.4 87.5 57.25 59.22 70.71 86.16 85.67 82.98
T2_en_ewt 58.44 58.84 58.66 54.75 45.19
T1_en_gum 60.77 57.57 66.98 88.89 89.7 83.84
T2_en_gum 53.92 53.98 56.33 52.45 40.94
T1_en_lines 55.98 48.78 62.7 85.05 85.3 81
T2_en_lines 47.96 50.23 50.45 47.29 41.04
T1_en_partut 57.96 61.37 67.05 89.72 89.37 87.25
T2_en_partut 50.54 46.87 50.11 45.89 43.41
T1_es_ancora 59.32 61.09 87.42 87.34 83.7
T2_es_ancora 56.67 55.64 53.13
T1_es_gsd 54.6 53.74 84.61 84.52 82.98
T2_es_gsd 55.1 55.99 51.17
T1_fr_gsd 43.21 43.8 86.08 85.08 84
T2_fr_gsd 58.86 56.95 53.62
T1_fr_partut 52.46 49.17 87.09 89.22 83.38
T2_fr_partut 51.11 57.62 46.95
T1_fr_sequoia 45.25 46.72 87.25 87.29 85.01
T2_fr_sequoia 59.37 60.26 57.41
T1_hi_hdtb 57.2 63.63 84.53 84.77 80.56
T1_id_gsd 59.16 54.22 87.53 88.33 85.34
T1_ja_gsd 50.89 49.53 89.36 89.54 87.69
T1_ko_gsd 58.37 46.08 81.14 82.52 74.19
T1_ko_kaist 57.05 47.23 79.96 80.28 73.93
T1_pt_bosque 39.89 39.53 82.92 83.36 77.75
T1_pt_gsd 30.68 30.39 80.59 80.69 75.93
T1_ru_gsd 54.28 54.58 77.43 78.93 71.23
T1_ru_syntagrus 54.79 50.91 81.82 79.78 76.95
T1_zh_gsd 50.58 58.72 86.36 88.05 83.85

T1_en_pud 58.67 60.42 74.47 85.37 85.65 86.61
T2_en_pud 58.45 50.59 53.7 51.01 42.6
T1_ja_pud 51.08 53.65 88.88 89.21 86.64
T1_ru_pud 46.07 10.15 69.07 69.35 58.38

T1_en_ewtHIT 55.5 58.07 67.12 84.72 84.31 81.8
T2_en_ewtHIT 56.01 57.1 57.14 53.54 43.15
T1_en_pudLAT 54.76 53.46 73.41 79.74 80.14 82.6
T2_en_pudLAT 56.69 47.96 50.15 47.6 42.64
T1_es_ancoraHIT 59.7 61.26 86.97 86.81 83.31
T2_es_ancoraHIT 56.92 55.96 53.54
T1_hi_hdtbHIT 56.83 64.27 84.42 84.78 80.19
T1_ko_kaistHIT 56.74 46.72 81.01 81.42 74.27
T1_pt_bosqueSTA 41.86 40.42 84.35 85.18 78.97

Macro-avg 80.4 87.5 51.96 50.04 61.75 74.56 75.13 71.13 42.71

Table 5: BLEU scores on the 2019 datasets, with indicative average scores on the submitted outputs.

–BLEU-4– ADAPT BME Concordia IMS NILC RALI Tilburg
20a 20b 20a 19 20a 20a 20b 19 20a 19 19

T1_en_wikiSTZ 84.11 94.32 60.8 63.37 74.66 88.34 90.85 86.54 43.73 61.54
T2_en_wikiSTZ 57.49 52.8 56.26 49.74 39.68 25.23
T1_es_wikiSTZ 61.13 16.34 87.85 88.28 84.97 58.18
T2_es_wikiSTZ 52.86 56.19 51.69
T1_fr_wikiSTZ 46.33 51.14 89.22 90.6 87.79 56.59
T2_fr_wikiSTZ 59.22 60.68 55.74
T1_ko_wikiSTZ 53.61 40.9 76.57 81.65 73.81 1.72
T1_pt_wikiSTZ 42.22 11.78 83.57 84.74 79.69 36.88
T1_ru_wikiSTZ 51.89 13.54 77.91 76.31 73.86 34.01

Macro-avg 84.11 94.32 52.66 32.85 66.08 74.26 76.17 71.54 39.68 34.48 41.49

Table 6: BLEU scores on the Wikipedia datasets, with indicative average scores on the submitted outputs.
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–NIST– ADAPT BME Concordia IMS NILC
20a 20b 20a 19 20a 20a 20b 19 20a

T1_ar_padt 8.29 8.29 12.63 12.62 12.22
T1_en_ewt 13.47 13.81 12.52 12.62 12.7 13.78 13.74 13.61
T2_en_ewt 11.61 12.13 12.14 11.79 9.96
T1_en_gum 12.1 11.99 11.62 12.96 12.98 12.69
T2_en_gum 10.51 11.09 11.25 11.04 9
T1_en_lines 11.78 11.54 11.3 12.98 12.97 12.71
T2_en_lines 9.93 10.82 10.89 10.63 9.09
T1_en_partut 10.22 10.34 9.83 11.07 11.05 11.01
T2_en_partut 8.57 8.92 9.26 9.03 8.24
T1_es_ancora 13.57 13.52 14.9 14.89 14.69
T2_es_ancora 12.66 12.66 12.38
T1_es_gsd 11.6 11.44 12.86 12.86 12.77
T2_es_gsd 11.05 11.13 10.82
T1_fr_gsd 10.41 10.33 12.58 12.55 12.45
T2_fr_gsd 11.14 11.06 10.79
T1_fr_partut 9.05 8.99 10.56 10.58 10.36
T2_fr_partut 8.38 8.88 8.27
T1_fr_sequoia 10.56 10.55 12.65 12.64 12.53
T2_fr_sequoia 11.02 11.21 11
T1_hi_hdtb 11.98 12.26 13.32 13.34 13.07
T1_id_gsd 12.14 11.82 12.89 12.91 12.83
T1_ja_gsd 10.08 9.99 12.53 12.54 12.42
T1_ko_gsd 12.12 11.98 12.44 12.46 12.27
T1_ko_kaist 12.77 12.65 13.18 13.19 13
T1_pt_bosque 9.89 9.77 12.4 12.41 12.15
T1_pt_gsd 8.97 8.85 13.33 13.34 13.07
T1_ru_gsd 11.9 11.91 12.4 12.42 12.15
T1_ru_syntagrus 14.17 13.8 15.45 15.34 15.08
T1_zh_gsd 11.62 11.85 12.86 12.91 12.78

T1_en_pud 12.48 12.6 12.62 13.41 13.41 13.47
T2_en_pud 11.43 11.36 11.59 11.45 9.68
T1_ja_pud 10.34 10.56 13.2 13.23 13.02
T1_ru_pud 11.26 9.64 11.85 11.89 10.91

T1_en_ewtHIT 12.36 12.49 12.4 13.61 13.59 13.46
T2_en_ewtHIT 11.19 11.88 11.92 11.55 9.64
T1_en_pudLAT 12.27 12.29 12.52 13.16 13.16 13.26
T2_en_pudLAT 11.18 11.02 11.19 11.08 9.59
T1_es_ancoraHIT 13.57 13.51 14.81 14.8 14.61
T2_es_ancoraHIT 12.63 12.63 12.36
T1_hi_hdtbHIT 11.97 12.29 13.31 13.33 13.05
T1_ko_kaistHIT 12.77 12.63 13.22 13.23 13.02
T1_pt_bosqueSTA 9.89 9.73 12.4 12.43 12.14

Macro-avg 13.47 13.81 11.47 11.39 11.24 12.4 12.44 12.21 9.31

Table 7: NIST scores on the 2019 datasets, with indicative average scores on the submitted outputs.

–NIST– ADAPT BME Concordia IMS NILC RALI Tilburg
20a 20b 20a 19 20a 20a 20b 19 20a 19 19

T1_en_wikiSTZ 13.77 14.3 12.76 12.94 12.9 14 14.14 13.91 10.99 12.72
T2_en_wikiSTZ 11.57 11.82 12.12 11.56 9.31 8.74
T1_es_wikiSTZ 13.03 10.5 14.09 14.1 13.95 12.81
T2_es_wikiSTZ 11.72 12.04 11.22
T1_fr_wikiSTZ 11.25 11.42 13.98 14.09 14 12.04
T2_fr_wikiSTZ 12.06 12.28 11.72
T1_ko_wikiSTZ 11.12 10.98 11.5 11.55 11.37 3.24
T1_pt_wikiSTZ 10.64 9.26 13.57 13.61 13.25 9.61
T1_ru_wikiSTZ 12.04 10.87 12.86 12.86 12.65 10.04

Macro-avg 13.77 14.3 11.81 11 12.24 12.84 12.98 12.63 9.31 9.87 10.08

Table 8: NIST scores on the Wikipedia datasets, with indicative average scores on the submitted outputs.
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–DIST– ADAPT BME Concordia IMS NILC
20a 20b 20a 19 20a 20a 20b 19 20a

T1_ar_padt 44.78 43.06 75.8 76.51 73.71
T1_en_ewt 85.5 90.35 65.23 62.69 77.94 88.48 87.74 86.72
T2_en_ewt 73.66 78.99 79.23 76.3 64.83
T1_en_gum 62.86 56.07 69.87 91.41 91.97 83.49
T2_en_gum 67.02 73.22 76.47 73.07 60.42
T1_en_lines 61.44 52.77 68.62 85.89 86.48 82.21
T2_en_lines 64.33 73.06 73.1 71.93 61.18
T1_en_partut 58.39 61.22 71.59 90.38 88.73 85.68
T2_en_partut 62.39 69.75 72.98 67.45 59.74
T1_es_ancora 55.66 58.15 85.66 85.26 79.82
T2_es_ancora 71.85 71.52 68.58
T1_es_gsd 55.5 59.03 82.6 82.53 79.45
T2_es_gsd 71.01 72.53 68.85
T1_fr_gsd 55.48 59.35 84.64 83.24 84.15
T2_fr_gsd 72.38 71.94 68.82
T1_fr_partut 62.26 56.87 85.84 87.67 82.32
T2_fr_partut 68.43 75.04 68.99
T1_fr_sequoia 57.61 59.28 85.65 85.12 85.13
T2_fr_sequoia 73.71 73.3 72.06
T1_hi_hdtb 57.55 64.04 83.03 83.14 79.07
T1_id_gsd 59.62 55.57 86.41 87.11 83.92
T1_ja_gsd 60.57 57.03 87 87.83 87.17
T1_ko_gsd 66.14 52.1 85.49 86.82 80.95
T1_ko_kaist 62.88 50.9 84.52 84.9 78.69
T1_pt_bosque 55.63 58.72 84.59 85.45 79.8
T1_pt_gsd 53.49 54.93 87.86 87.7 79.33
T1_ru_gsd 53.78 52.67 78.89 81.54 73.04
T1_ru_syntagrus 56.72 55.6 83.02 81.07 78.66
T1_zh_gsd 54.56 59.29 83.89 85.19 83.18

T1_en_pud 61.85 59.84 76.46 85.75 84.52 87
T2_en_pud 68.83 70.43 73.31 72.31 59.85
T1_ja_pud 55.77 56.72 85.67 86.29 84.04
T1_ru_pud 56.17 32.08 82.4 82.67 77.12

T1_en_ewtHIT 62.82 60.36 74.47 86.65 86.24 85.35
T2_en_ewtHIT 69 77.23 76.98 74.99 62.2
T1_en_pudLAT 59.93 56.13 77.68 82.19 82.23 86.18
T2_en_pudLAT 67.79 70.53 72.76 71.65 60.43
T1_es_ancoraHIT 56.14 58.38 86.96 86.36 81.14
T2_es_ancoraHIT 73.27 73.06 70.02
T1_hi_hdtbHIT 57.43 64.58 83.52 84.05 78.88
T1_ko_kaistHIT 62.31 50.16 85.36 85.82 79.12
T1_pt_bosqueSTA 56.6 59.72 87.35 87.98 81.56

Macro-avg 85.5 90.35 58.25 56.11 70.69 81.21 81.77 78.38 61.24

Table 9: DIST scores on the 2019 datasets, with indicative average scores on the submitted outputs.

–DIST– ADAPT BME Concordia IMS NILC RALI Tilburg
20a 20b 20a 19 20a 20a 20b 19 20a 19 19

T1_en_wikiSTZ 84.93 94.56 62.73 60.94 76.93 86.51 89.21 86.52 58.42 71.69
T2_en_wikiSTZ 67.26 72.53 74.94 71.46 57.56 50.68
T1_es_wikiSTZ 57.66 35.26 87.35 87.68 81.39 63.27
T2_es_wikiSTZ 73.5 75.84 71.46
T1_fr_wikiSTZ 58.82 66.53 91.64 92.58 86.44 70.12
T2_fr_wikiSTZ 73.68 76.64 72.53
T1_ko_wikiSTZ 62.55 49.04 80.2 85.99 79.87 47.12
T1_pt_wikiSTZ 59.08 34.89 84.58 86.4 81.54 62.93
T1_ru_wikiSTZ 56.67 33.07 82.37 80.09 77.26 55.85

Macro-avg 84.93 94.56 59.59 46.62 72.1 81.37 83.26 78.72 57.56 54.55 61.83

Table 10: DIST scores on the Wikipedia datasets, with indicative average scores on the submitted outputs.
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–BERT– ADAPT BME Concordia IMS NILC
20a 20b 20a 19 20a 20a 20b 19 20a

T1_ar_padt 0.9595 0.9618 0.9835 0.9836 0.9812
T1_en_ewt 0.9815 0.9924 0.9473 0.958 0.9565 0.9849 0.9844 0.9819
T2_en_ewt 0.9635 0.965 0.9643 0.9607 0.941 1
T1_en_gum 0.943 0.9503 0.9555 0.9897 0.9904 0.9829
T2_en_gum 0.9572 0.9586 0.9624 0.9573 0.939 9
T1_en_lines 0.9341 0.9321 0.9565 0.9819 0.9826 0.9765
T2_en_lines 0.9487 0.9519 0.9535 0.9491 0.938 1
T1_en_partut 0.934 0.9474 0.9565 0.9857 0.985 0.9829
T2_en_partut 0.9505 0.9464 0.9528 0.9433 0.943 8
T1_es_ancora 0.9509 0.9612 0.9893 0.9891 0.9843
T2_es_ancora 0.9644 0.9642 0.9601
T1_es_gsd 0.9498 0.9584 0.9743 0.9738 0.9798
T2_es_gsd 0.9532 0.9545 0.9561
T1_fr_gsd 0.9414 0.9584 0.9853 0.9845 0.9835
T2_fr_gsd 0.964 0.9622 0.9583
T1_fr_partut 0.9452 0.9501 0.9886 0.9902 0.9854
T2_fr_partut 0.954 0.9649 0.9525
T1_fr_sequoia 0.9452 0.9562 0.9869 0.9872 0.9857
T2_fr_sequoia 0.966 0.9666 0.9629
T1_hi_hdtb 0.9808 0.9836 0.992 0.992 0.99
T1_id_gsd 0.9589 0.9581 0.9707 0.9708 0.9843
T1_ja_gsd 0.8833 0.9679 0.9917 0.9921 0.9914
T1_ko_gsd 0.9814 0.9784 0.9933 0.9936 0.9903
T1_ko_kaist 0.9811 0.976 0.9919 0.9921 0.9887
T1_pt_bosque 0.9463 0.9546 0.9856 0.9857 0.98
T1_pt_gsd 0.9297 0.9374 0.9845 0.9844 0.9785
T1_ru_gsd 0.9702 0.9755 0.7624 0.7626 0.9828
T1_ru_syntagrus 0.9718 0.9769 0.991 0.9899 0.9882
T1_zh_gsd 0.887 0.9688 0.9894 0.9906 0.9884
T1_en_pud 0.9385 0.9482 0.9605 0.9812 0.9812 0.983
T2_en_pud 0.9613 0.9515 0.9557 0.9607 0.938 2
T1_ja_pud 0.8761 0.9666 0.9905 0.9909 0.9892
T1_ru_pud 0.9686 0.9612 0.9876 0.9878 0.9833
T1_en_ewtHIT 0.9431 0.9535 0.9562 0.9824 0.982 0.9806
T2_en_ewtHIT 0.9593 0.9614 0.9611 0.9578 0.939 2
T1_en_pudLAT 0.9333 0.9383 0.9596 0.9734 0.9738 0.9785
T2_en_pudLAT 0.9584 0.9475 0.9505 0.9474 0.936 8
T1_es_ancoraHIT 0.9506 0.9607 0.9886 0.988 0.9843
T2_es_ancoraHIT 0.9641 0.9636 0.9601
T1_hi_hdtbHIT 0.9806 0.984 0.9922 0.9923 0.9898
T1_ko_kaistHIT 0.9768 0.9757 0.9924 0.9927 0.9892
T1_pt_bosqueSTA 0.9475 0.9544 0.9856 0.9868 0.9795

Macro-avg 0.9815 0.9924 0.9468 0.9605 0.9572 0.972 0.9728 0.9755 0.9396

Table 11: BERT scores on the 2019 datasets, with indicative average scores on the submitted outputs.

–BERT– ADAPT BME Concordia IMS NILC RALI Tilburg
20a 20b 20a 19 20a 20a 20b 19 20a 19 19

T1_en_wikiSTZ 0.9826 0.9849 0.9413 0.9435 0.9614 0.9856 0.9882 0.9837 0.9396 0.938
T2_en_wikiSTZ 0.9473 0.9555 0.959 0.9515 0.9317 0.9171
T1_es_wikiSTZ 0.952 0.9089 0.9893 0.9892 0.9853 0.9477
T2_es_wikiSTZ 0.9638 0.9671 0.9613
T1_fr_wikiSTZ 0.9435 0.9508 0.9902 0.9917 0.9872 0.9512
T2_fr_wikiSTZ 0.9637 0.9667 0.9606
T1_ko_wikiSTZ 0.9756 0.9683 0.9895 0.9919 0.9612 0.9354
T1_pt_wikiSTZ 0.948 0.9107 0.9801 0.9857 0.9801 0.9385
T1_ru_wikiSTZ 0.9707 0.9604 0.9883 0.987 0.986 0.9645

Macro-avg 0.9826 0.9849 0.9552 0.9404 0.9826 0.9784 0.9807 0.973 0.9317 0.9284 0.9459

Table 12: BERT scores on the Wikipedia datasets, with indicative average scores on the submitted out-
puts.
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for, which we roughly approximate with macro-averages of all scores for a given metric as indicated in
the bottom row of each metric results table. BME-UW and IMS improved their 2019 average scores
on all datasets by 1.92 and 3.43 BLEU points respectively (+4 points in the open track for IMS), while
ADAPT increased its score by 0.7 BLEU points, and almost 8 points in the open track. Concordia
substantially improved their system compared to last year, now generating also from T2 inputs, and
obtaining the highest BLEU scores on half of the English T2 datasets.

We now turn to comparisons between results for gold standard annotated datasets, and datasets with
automatically generated inputs (silver standard data), for the same language. As in 2019, for the English
and Spanish gold standards datasets (ewt and ancora), systems score equally high or higher than on the
silver standard datasets (predHIT ) for the same language; this year this is also true for Korean and Hindi,
but not for Portuguese. On the new 2020 datasets, all of which are silver standard (see Section 4.2), the
general tendency is that systems score higher than on the gold standard datasets (this is the case for 6 out
of 9 test sets), even for systems that were not further developed compared to last year (BME-UW, RALI,
Tilburg).9 For 2 of the 9 Wikipedia datasets, namely Korean and Russian, all systems score lower than
on any 2019 dataset in the same language, and on English-T2, only a few scores are higher than on the
2019 silver-standard datasets (but never higher than on the gold standard datasets). One explanation to
the generally higher scores on the Wikipedia datasets might be that these contain cleaner sentences, or
at least sentences are easier to parse and generate from, than those in the other data sets, which contain
more varied and less standard sentences.

In terms of highest scores, bearing in mind scores aren’t directly comparable across different test sets,
we note that stand-out highest scores were achieved on the new 2020 Wikipedia English dataset in T1 by
ADAPT which reaches over 94 BLEU / 14.3 NIST / 94 DIST, in subtrack ‘b’ (unrestricted resources).
IMS matches this performance in terms of BERT score only. IMS also has the highest scores on all other
new 2020 Wikipedia test sets in terms of all metrics (in some cases being the only team that submitted),
except for the T2_en_wiki ‘b’ BLEU score, where Concordia reaches 57.49. As mentioned in the human
evaluation section, ADAPT’s very high scores on T2_en_wiki ‘b’ subtrack are in part due to the fact that
it used models trained on WikiText-103 (Merity et al., 2016).

6.2 Human Evaluation Results

Tables 13 and 14 show results from the human evaluations with Direct Assessment (DA) for English,
Russian and Spanish (see Section 5.2 for details of the evaluation method). The datasets included were
as shown in the results tables, and included all new SR’20 test sets. For each dataset, system outputs in
the Shallow (T1) and Deep (T2) Tracks were evaluated in the same experiment.

Results from DA quality control were as follows. A total of 183,000 human assessments were collected
on Mturk.10 A lower rate of bad data was incurred with a higher proportion of Mturk workers, 48%
passing quality control, compared to previous years, but still a large proportion, 52%, who did not meet
this criterion, were omitted from computation of the official DA results above. High levels of low quality
workers are consistent with what we have seen in DA used for crowd-sourced Machine Translation
(Graham et al., 2016) and Video Captioning evaluations (Graham et al., 2017).

Results in Tables 13 and 14 are laid out as six separate tables one for each experiment run. The rank
column indicates groups of systems where all systems have significantly higher scores than all systems in
the next group below. Note that these groupings obscure some significant differences between systems
within the same group. But because groups cannot be further subdivided in the sense above, systems
within each group are of the same rank. Column ‘Ave.’ gives the average raw scores, ‘Ave. z’ the
corresponding standard scores, n is the number distinct test sentences, and N the number of evaluators.

As can be seen from the tables, we included the 2019 submissions from two teams who submitted
new systems in 2020: BME-UW’s and IMS’s English_ewt, Russian_syntagrus and Spanish_ancora
outputs, in order to have comparable results. Results from the 2019 human evaluations are otherwise not
comparable to the 2020 results, because a different set of systems was evaluated in each case. Absolute

9However, Tilburg and BME-UW show unexpected drops on some test sets that remain to be explained.
10www.mturk.com
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English (ewt)
Rank Ave. Ave. z n N System

1 92.6 0.540 1,698 1,931 ADAPT20BT1
92.7 0.534 1,693 1,919 IMS20AT1
92.3 0.520 1,683 1,912 IMS20BT1
91.5 0.504 1,706 1,943 IMS19T1
90.7 0.476 1,685 1,914 ADAPT20AT1

6 87.0 0.332 1,679 1,915 CONCORDIA20AT1
7 85.1 0.272 1,667 1,927 IMS20BT2

84.7 0.259 1,701 1,942 IMS20AT2
84.7 0.245 1,675 1,897 CONCORDIA20AT2

10 82.7 0.201 1,692 1,920 IMS19T2
11 79.3 0.086 1,679 1,925 BME20AT1

77.4 0.024 1,690 1,933 BME19T1
13 75.6 −0.079 1,657 1,892 NILC20AT2

English (Wiki)
Rank Ave. Ave. z n N System

1 94.7 0.638 699 1,043 ADAPT20BT1
2 93.7 0.535 719 1,072 IMS20BT1

92.3 0.475 708 1,052 IMS20AT1
91.6 0.444 715 1,061 IMS19T1
91.6 0.441 718 1,115 ADAPT20AT1

6 88.7 0.275 707 1,038 CONCORDIA20AT1
7 87.3 0.157 700 1,016 IMS20BT2
8 85.6 0.057 755 1,078 IMS20AT2

85.5 0.025 698 1,023 IMS19T2
84.7 −0.029 715 1,036 CONCORDIA20AT2
83.4 −0.033 698 1,033 TILBURG19T1
81.8 −0.050 724 1,055 BME20AT1
82.4 −0.074 721 1,056 BME19T1
81.5 −0.118 689 1,021 RALI19T1

15 76.0 −0.463 720 1,044 RALI19T2
76.6 −0.491 721 1,088 NILC20AT2

Russian (syntagrus)
Rank Ave. Ave. z n N System

1 90.3 0.375 4,403 5,269 IMS20AT1
2 89.4 0.319 4,377 5,260 IMS20BT1
3 88.9 0.285 4,429 5,332 IMS19T1
4 81.2 −0.166 4,461 5,392 BME20AT1

81.3 −0.177 4,466 5,371 BME19T1

Russian (wiki)
Rank Ave. Ave. z n N System

1 89.1 0.490 722 963 IMS20AT1
2 88.1 0.396 724 947 IMS19T1

87.2 0.382 728 972 IMS20BT1
4 78.2 −0.079 738 963 BME20AT1
5 73.7 −0.256 703 929 TILBURG19T1
6 68.2 −0.493 722 968 BME19T1

Spanish (ancora)
Rank Ave. Ave. z n N System

1 89.8 0.518 1,233 1,491 IMS20AT1
89.5 0.498 1,251 1,479 IMS20BT1

3 85.9 0.383 1,252 1,504 IMS19T1
4 77.9 0.037 1,184 1,421 IMS20AT2

77.1 0.017 1,225 1,467 IMS20BT2
76.8 −0.029 1,199 1,436 IMS19T2

7 70.6 −0.271 1,223 1,490 BME19T1
70.2 −0.276 1,230 1,489 BME20AT1

Spanish (Wiki)
Rank Ave. Ave. z n N System

1 87.6 0.557 879 1,167 IMS20BT1
86.3 0.524 909 1,192 IMS20AT1

3 85.2 0.465 897 1,162 IMS19T1
4 76.9 0.123 847 1,088 IMS20BT2

75.9 0.092 910 1,197 IMS20AT2
75.4 0.063 880 1,124 IMS19T2

7 71.0 −0.119 894 1,173 TILBURG19T1
69.8 −0.170 877 1,139 BME20AT1

9 55.5 −0.726 908 1,181 BME19T1

Table 13: Human evaluation results for Meaning Similarity. Ave. = average score received by systems;
Ave. z = corresponding average standardized score; systems ranked according to Ave. z score; horizontal
lines indicate groups, such that systems in a group all significantly outperform all systems in lower ranked
groups; n = total number of distinct test sentences assessed; N = total number of human judgments.

scores (Ave.) are particularly affected by differences even from different sets of evaluators and output
samples. Pairwise rankings for the same systems however, can be expected to be more robust.

The 2020 evaluations are indeed consistent with last year’s in terms rankings according to z-scores:
when a system was in a higher cluster than another in 2019, it is still the case in 2020. There are
two exceptions, IMS19T2 and BME19T1 were together in the same cluster on Meaning Similarity and
Readability for English_ewt, but this year appear in consecutive clusters. One explanation for this is that
we collected considerably more judgements this year, and when there are more judgements, it is likely
that more statistically significant differences are found, which seems to be the case here. Most of the
standard scores are lower in 2020 than they were in 2019, and this is likely due to the fact that the best
scoring systems score higher (e.g. 4 systems at the level or above the best 2019 system on English_ewt)
which tends to push down the lower systems in terms of z score.

Looking at the 2020 results only, for both Meaning Similarity (Table 13) and Readability (Table 14),
SR’20 systems are generally ranked higher than SR’19 systems, T1 systems are generally ranked higher
than T2 systems, and where a system has both ‘a’ (restricted subtrack) and ‘b’ (open subtrack) variants,
the ‘b’ system is ranked higher in most (though not all) cases. This is all as expected.

In terms of Meaning Similarity, the best score is higher than last year on all three comparable
datasets: the best system obtains an average z score of 0.54 on English_ewt (0.507 in 2019), 0.375
on Russian_syntagrus (0.238), and 0.518 on Spanish_ancora (0.378). For Readability, the best z scores
are 0.426, 0.546 and 0.446 respectively, compared to 0.507, 0.238 and 0.519 in 2019, that is, only for
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English (ewt)
Rank Ave. Ave. z n N System

1 75.7 0.426 797 913 ADAPT20BT1
− 75.7 0.417 669 1,402 HUMAN

73.9 0.374 807 917 IMS20AT1
73.9 0.370 810 927 IMS20BT1
73.4 0.346 811 926 IMS19T1
71.8 0.321 806 908 CONCORDIA20AT2
72.5 0.320 830 953 ADAPT20AT1
70.2 0.270 860 969 CONCORDIA20AT1
68.6 0.185 823 947 NILC20AT2
67.3 0.159 807 936 IMS20BT2
65.8 0.109 753 866 IMS20AT2

11 63.6 0.027 808 923 IMS19T2
12 58.2 −0.152 839 946 BME20AT1

56.7 −0.208 822 935 BME19T1

English (Wiki)
Rank Ave. Ave. z n N System

− 87.4 0.592 955 2,605 HUMAN
1 86.3 0.551 910 1,274 ADAPT20BT1
2 83.3 0.444 938 1,302 IMS20BT1

79.6 0.401 942 1,290 CONCORDIA20AT1
82.1 0.383 949 1,314 IMS20AT1
81.5 0.373 948 1,346 ADAPT20AT1
80.6 0.370 952 1,283 CONCORDIA20AT2
81.3 0.361 937 1,321 IMS19T1

8 75.4 0.213 930 1,273 NILC20AT2
9 70.2 0.055 932 1,256 IMS20BT2

69.0 −0.030 963 1,284 IMS20AT2
11 67.3 −0.095 932 1,233 IMS19T2

67.8 −0.128 932 1,306 TILBURG19T1
13 64.4 −0.181 897 1,239 BME19T1
14 60.8 −0.299 933 1,297 BME20AT1

62.3 −0.303 912 1,242 RALI19T1
16 56.1 −0.562 940 1,329 RALI19T2

Russian (syntagrus)
Rank Ave. Ave. z n N System

− 93.5 0.635 499 689 HUMAN
1 90.8 0.546 943 1,068 IMS20AT1
2 89.1 0.489 972 1,106 IMS20BT1
3 87.3 0.424 949 1,085 IMS19T1
4 69.7 −0.166 966 1,106 BME20AT1

67.3 −0.230 943 1,078 BME19T1

Russian (Wiki)
Rank Ave. Ave. z n N System

− 92.6 0.924 414 658 HUMAN
1 85.5 0.720 695 897 IMS20AT1
2 83.1 0.643 677 868 IMS19T1

83.1 0.635 705 916 IMS20BT1
4 63.2 0.050 703 900 BME20AT1
5 47.9 −0.415 710 911 TILBURG19T1
6 37.7 −0.781 679 883 BME19T1

Spanish (ancora)
Rank Ave. Ave. z n N System

− 90.7 0.595 676 1,110 HUMAN
1 87.6 0.446 944 1,164 IMS20AT1

86.7 0.433 929 1,144 IMS20BT1
85.8 0.391 920 1,112 IMS19T1

4 80.2 0.173 923 1,127 IMS20BT2
79.5 0.158 933 1,149 IMS20AT2

6 77.0 0.066 923 1,157 IMS19T2
7 67.1 −0.378 923 1,155 BME19T1

66.4 −0.401 906 1,125 BME20AT1

Spanish (Wiki)
Rank Ave. Ave. z n N System

− 87.7 0.371 524 798 HUMAN
1 86.5 0.289 643 733 IMS20AT1

85.6 0.249 623 721 IMS20BT1
84.9 0.237 620 715 IMS19T1

4 81.5 0.142 620 711 IMS20BT2
79.3 0.046 619 713 IMS20AT2
79.0 0.044 637 725 IMS19T2
77.2 0.015 574 663 BME20AT1
74.8 −0.053 614 699 TILBURG19T1

9 62.2 −0.628 592 679 BME19T1

Table 14: Human evaluation results for Readability. Ave. = average score for system; Ave. z = corre-
sponding average standardized score; systems ranked by Ave. z score; horizontal lines indicate groups,
such that systems in a group all significantly outperform all systems in lower ranked groups; n = distinct
test sentences assessed; N = total number of judgments; HUMAN = original reference texts.

the Russian dataset the absolute z score is higher. However, both in English and Spanish, the human
references are also scored lower,

On the English_ewt dataset, for both criteria , ADAPT and IMS get all their T1 submissions in the first
rank (including the 2019 one for IMS); for Readability, Concordia’s T1 and T2 submissions, NILC’s T2
and IMS’s T2 also make it to the first cluster, which contains 10 systems. It is the first time that some T2
submissions make it to the same cluster as the human-written references. In terms of Meaning Similarity,
three of the four T2 top-ranking submissions are found at the seventh rank, in the third cluster (IMS’s
and Concordia’s 2020 submissions); NILC ranks last in for this criterion, indicating that although the
generated texts read well, they do not contain the expected information.

IMS’s restricted track T1 submissions ranks in the first cluster for all four non-English datasets ac-
cording to both criteria. Note that this is consistent with the results of the automatic evaluations, in which
even though IMS’s open track systems gets overall better results, it is not the case on every individual
dataset. On the Spanish Wikipedia dataset, IMS gets their three T1 submissions in the same cluster as the
human-written texts (Readability), while also scoring high in terms of Meaning Similarity. Here again it
is the first time that a system gets at a level where it is statistically not significantly ranked lower than a
human reference in a non-English language.

On the English_wiki dataset, ADAPT ranks first for both criteria, and is the only one in the same clus-
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BLEU NIST DIST BERT Read.

English (ewt) 0.94∗∗ 0.85∗∗ 0.97∗∗ 0.94∗∗ 0.78∗∗

English (Wiki) 0.95∗∗ 0.92∗∗ 0.97∗∗ 0.97∗∗ 0.74∗∗

Russian (syntagrus) 1.00∗∗ 0.98∗∗ 1.00∗∗ 0.97∗∗ 1.00∗∗

Russian (Wiki) 0.99∗∗ 0.88∗∗ 0.98∗∗ 0.99∗∗ 0.99∗∗

Spanish (ancora) 0.87∗∗ 0.72∗ 0.98∗∗ 0.97∗∗ 0.95∗∗

Spanish (Wiki) 0.94∗∗ 0.80∗∗ 0.99∗∗ 0.99∗∗ 0.95∗∗

Table 15: Pearson correlation of BLEU, NIST, DIST, BERT and Readability scores with human assess-
ment of Meaning Similarity Ave z. ** = significant at p< 0.01; * = significant at p< 0.05.

BLEU NIST DIST BERT Mean. Sim.

English (ewt) 0.69∗∗ 0.39 0.82∗∗ 0.70∗∗ 0.78∗∗

English (Wiki) 0.79∗∗ 0.62∗∗ 0.81∗∗ 0.81∗∗ 0.74∗∗

Russian (syntagrus) 1.00∗∗ 0.99∗∗ 1.00∗∗ 0.96∗∗ 1.00∗∗

Russian (Wiki) 1.00∗∗ 0.91∗∗ 0.97∗∗ 0.99∗∗ 0.99∗∗

Spanish (ancora) 0.67∗ 0.47 0.98∗∗ 0.87∗∗ 0.95∗∗

Spanish (Wiki) 0.92∗∗ 0.77∗∗ 0.96∗∗ 0.97∗∗ 0.95∗∗

Table 16: Pearson correlation of BLEU, NIST, DIST, BERT and Meaning Similarity scores with human
assessment of Readability Ave z. ** = significant at p< 0.01; * = significant at p< 0.05.

ter as the human references for Readability. The very high scores of ADAPT reflect the also very strong
automatic evaluation (94 BLEU, see previous subsection). On this dataset, the gap between ADAPT and
the other systems was a little bit surprising, and we realised that it used models trained on WikiText-103
(Merity et al., 2016), which seems to contain a small proportion of the sentences of the test set. This was
of course not something done on purpose by the team, since the participants did not know that the new
test sets would contain exclusively Wikipedia material. Note that IMS’s 2019 system remains extremely
competitive on this dataset, outperforming all other submissions except ADAPT. The other 2019 systems
(Tilburg, RALI, BME-UW) occupy the lower ranks as expected, with NILC’s T2 submission.

6.3 Comparisons between human and automatic evaluations

In this section, we compare the metrics results presented in Section 6.1 with human evaluation results
presented in Section 6.2 first informally, then more systematically, in two ways. First in terms of Pearson
correlation of metrics with Meaning Similarity z scores (Table 15) and Readability z scores (Table 16),
both at the test set level; second by plotting all system scores for the T2_en_ewt test set in groups by
system, once in decreasing order of Meaning Similarity scores (Figure 4), and once in decreasing order
of Readability scores (Figure 5).

In terms of human and automatic metrics for individual systems, the IMS 2020 results are very high
both in terms of automatic evaluations and human assessments for many of the languages offered, and
represent a substantial improvement over their 2019 system, both through method improvement (higher
results despite using the same data resources for training), and through using better data (open track
results). ADAPT got very high automatic and human scores in the open subtrack for the English T1 test
sets compared to other English T1 submissions, to the point of drawing level with the human en_ewt
texts for Readability (Table 14, top left). Concordia obtained the highest Readability scores on the En-
glish T2 submissions, while matching the IMS Meaning Similarity scores; however, the corresponding
metric scores were lower. Overall, IMS, ADAPT, BME-TUW and Concordia all achieved major im-
provements in their systems. The NILC results appear to show the limitations of using an off-the-shelf
generic model.

There are indications that we do capture different aspects with the two quality criteria. For instance,
NILC gets good Readability scores but low Meaning Similarity, which is typical of generative models
like GPT-2, which are able to generate very good texts but without ensuring that they correspond to the
input fed to the system. Concordia’s T2 submissions seems to have similar features, even though it
scores consistently higher than NILC’s submission.
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Figure 4: Visualisation of the scores of the 13 submissions on the English_ewt dataset according to the
6 metrics. On the X axis, the systems as ranked by Meaning Similarity Ave. z in Table 13.12

-25

0

25

50

75

100

ADA20
bT

1

IM
S20

aT
1

IM
S20

bT
1

IM
S19

T1

Con
20

aT
2

ADA20
aT

1

Con
20

aT
1

NIL2
0a

T2

IM
S20

bT
2

IM
S20

aT
2

IM
S19

T2

BME20
aT

1

BME19
T1

Readability

BLEU

NIST

DIST

BERT

Meaning Similarity

Figure 5: Visualisation of the scores of the 13 submissions on the English_ewt dataset according to the
6 metrics. On the X axis, the systems as ranked by Readability Ave. z in Table 14.12

Regarding correlations of metrics with Meaning Similarity, Table 15 shows these to be generally in
the mid to high nineties, with isolated lower scores, e.g. for BLEU on Spanish_ancora. One notable
exception is the lower correlation of Meaning Similarity with Readability on the English test sets. This
may be due to English outputs being of higher quality generally than those for other languages, and
evaluators finding it easier to judge Meaning Similarity separately when sentences are more readable.

Regarding correlations of metrics with Readability (Table 16), the quality criterion generally supposed
to correlate better with metrics, there are more cases of lower correlation including all scores for both
English test sets, as well as BLEU, NIST and BERT for Spanish_ancora and NIST for Spanish_wiki.
For the Russian test sets, all correlations are exceptionally high.

For Readability, the reported correlations are noticeably lower than the ones reported in both 2018 and
2019. One possible explanation is that in the previous years, the differences between the systems were
very clear, but now we have many more good systems, so it is more difficult for the automatic metrics

12Lines have been added to the plot to show up clearly which scores are for the same evaluation method, even in black and
white version.
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to capture the differences between them. This year, in contrast to SR’19, the DIST metric has the most
consistently high correlation scores with the human evaluation methods.

Figure 4 plots results for all systems on English_ewt, with score points for each evaluation method
connected by a line to indicate that they are for the same method, systems ordered across the x dimension
in order of decreasing Meaning Similarity. From the plot we can see clearly that, as Meaning Similarity
goes down, generally so do the metrics, and also Readability except for scores for Concordia20aT2 and
NILC20aT2 which buck the trend.

Figure 5 shows a similar plot, this time ordered by decreasing Readability. This shows very clearly
that all metrics and Meaning Similarity scores dip at the same two points, Concordia20aT2 and
NILC20aT2, although this is less evident for BERT and NIST scores (in the latter case because NIST
has a very different range from the other evaluation methods and because it is not bounded at the top end
cannot simply be mapped to a 0–1 range). So here too, it is clear that for those two systems, Readability
is lower than would be expected on the basis of all other evaluation methods including human assessment
of Meaning Similarity.

7 Concluding Remarks

The 2020 edition of the SR Shared Task (SR’20) saw 5 teams submitting new systems and 4 teams
submitting outputs for the new test sets using their 2019 systems. Datasets, evaluation scripts, system
outputs and more information about the shared task can be found on the GenChal repository.13

Among the notable trends we can observe in evaluations this year are the following: (i) the best
Shallow Track English systems appear to have closed the gap to human-written texts in terms of all
evaluation measures; (ii) for the first time we have seen outputs for a non-English language (Spanish)
approach the quality of human-written reference texts; and (iii) allowing additional resources to be used
in system building can make a very big difference to performance. Further progress has also been made
in SR’20 for deep track systems: the best Deep Track system performed equally well or better than most
Shallow Track systems for both Readability and Meaning similarity.

Overall, the SR’20 results provide further evidence that generation from structured meaning represen-
tations can be done with impressive success by current neural methods. Our aim for next year’s edition of
the shared task is to add linked tasks corresponding to an earlier stage in the generation process, asking
for submissions which use the intermediate UD representations as well as submissions that by-pass them
in order to compare which gives better results overall.
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