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Abstract

In this paper, we evaluate LSTM, biLSTM,
GRU, and Transformer architectures for the
task of name transliteration in a many-to-one
multilingual paradigm, transliterating from
590 languages to English. We experiment
with different encoder-decoder combinations
and evaluate them using accuracy, character er-
ror rate, and an F-measure based on longest
continuous subsequences. We find that using
a Transformer for the encoder and decoder
performs best, improving accuracy by over 4
points compared to previous work. We ex-
plore whether manipulating the source text
by adding macrolanguage flag tokens or pre-
romanizing source strings can improve per-
formance and find that neither manipulation
has a positive effect. Finally, we analyze
performance differences between the LSTM
and Transformer encoders when using a Trans-
former decoder and find that the Transformer
encoder is better able to handle insertions and
substitutions when transliterating.

1 Introduction

The world’s written languages collectively repre-
sent hundreds of different writing systems. Translit-
eration is the process of converting a word’s written
representation in one language to its equivalent in a
target language and is a key component of machine
translation and cross-lingual information extraction
and retrieval. It is especially relevant for recovering
named entities, which often cannot be “translated”
in the traditional sense, and linking names across
texts in different languages.

In this work, we apply existing architectures
used for machine translation to the task of name
transliteration, the task of converting the written
citation form of a name in one language to an-
other language. We use an existing massively-
multilingual resource of aligned parallel names in
591 languages (Wu et al., 2018) and evaluate four

neural architectures for transliteration. While the
use of neural machine translation architectures for
transliteration is not novel, to the best of our knowl-
edge a comparative study of the performance of
multiple models and preprocessing strategies in the
many-to-one transliteration paradigm has not been
previously performed.

The contributions of this paper are as follows:
first, we provide a performance comparison of sev-
eral different neural architectures on the task of
name transliteration in a many-to-one paradigm.
Second, we evaluate the effectiveness of various
methods of manipulating input sequences for name
transliteration. Finally, we present a multilingual
transliteration model with a 1-Best accuracy of
73%, a 4-point improvement over the previous best
model for this task.

2 Related Work

The 2018 Named Entities Workshop included a
shared task on Named Entity Transliteration (Chen
et al., 2018) that established several useful metrics
to evaluate various elements of transliteration qual-
ity. We use their mean F-score metric in this work.
As part of the shared task, Kundu et al. (2018) com-
pared RNN and CNN architectures on the task of
name transliteration for 13 language pairs. They
found that their character-level RNN model per-
formed best and achieved state-of-the-art results
for one language pair. Notably, the authors focused
on only a few higher-resource languages, whereas
our study uses a much larger set of languages, in-
cluding many lower-resourced ones.

Merhav and Ash (2018) released a set of bilin-
gual name dictionaries mined from Wikipedia for
English to Russian, Hebrew, Arabic, and Japanese
Katakana transliteration, and compare traditional
weighted FST models with more modern neural
techniques on bilingual transliteration tasks. Their
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models collapse all names written in Latin scripts
under the English label. But very different lan-
guages may share a script; we aim to create mod-
els sensitive to these differences. Benites et al.
(2020) recently released a much more comprehen-
sive name corpus covering 3 million names across
180 languages derived from Wikipedia, GeoNames,
and the dataset released by Merhav and Ash (2018).

Regarding lower-resourced transliteration, Upad-
hyay et al. (2018) proposed a bootstrapping method
wherein a “weak” generation model is used to guide
discovery of possible transliteration candidates for
a given word. Le and Sadat (2018) used a combina-
tion of G2P, neural networks and word embeddings
to improve English-Vietnamese transliteration.

Johnson et al. (2017) introduced a now-popular
technique for invoking transfer learning in a many-
to-one multilingual translation framework. A sin-
gle model is trained with a mixed source vocabulary
and a single target vocabulary. An artificial “flag”
token is appended to each source sequence to help
the model identify languages, circumventing the
need for training a separate encoder and decoder
for each language pair. We use this approach to
perform many-languages-to-one transliteration.

Wu and Yarowsky (2018) explored approaches
to extremely low-resource name transliteration, us-
ing a multiparallel corpus of Biblical names across
591 languages (Wu et al., 2018). The authors also
provided a cursory report on the results of an ex-
perimental multilingual transliteration model, us-
ing the technique proposed by Johnson (Johnson
et al., 2017). They found that a character-level
RNN trained on concatenated data from all source
languages significantly outperformed individual
language-pair models. Using the same data, we
aim to provide a more comprehensive study of the
performance of various neural architectures and the
applicability of potential performance-boosting pre-
processing techniques for the task of transliteration
in a many-to-one framework.

3 Experiment Design

3.1 Data

The corpus we use to train our models (Wu et al.,
2018) represents 591 languages with varying num-
bers of alignments to 1129 English names. After
removing any blank names, the final dataset com-
prised 348,991 name pairs. We partitioned the
data using the exact train/development/test split
(80/10/10) and random seed provided by Wu and

Yarowsky (2018), which enables us to directly com-
pare our results with the values they report. Our re-
sulting training set consisted of 279,192 name pairs.
The mean number of training pairs per language
was 472, the median was 454, and the minimum
and maximum were 34 and 938.

3.2 Models

Our models are implemented using OpenNMT ver-
sion 1.0.2 (Klein et al., 2017). We experimented
with several different combinations of encoders and
decoders. Our baseline architecture is the model
used by Wu and Yarowsky, a GRU encoder paired
with the default decoder, using their hyperparame-
ters as our defaults. We configured three additional
encoders: an LSTM, a biLSTM, and a Transformer.
We paired the GRU, LSTM and biLSTM encoders
each with two decoders, a Transformer and Open-
NMT’s default LSTM decoder with attention. We
paired the Transformer encoder with a Transformer
decoder; for brevity we will refer to this as our
Transformer model without separately mentioning
the encoder and decoder. After testing each model
on a single random seed with embedding sizes of
200, 300 and 400—using the same size for both
source and target—we chose the size with the low-
est development set perplexity (in all cases, 200).

The LSTM, biLSTM and GRU encoders are
2-layer models with hidden size 200, trained for
44k steps, the same hyperparameters used by Wu
and Yarowsky 2018.1 The Transformer encoder
is a 4-layer model with 8-headed self-attention,
sinusoidal positional encoding with clipping dis-
tance of 2, and hidden feed-forward size of 1024.
We tested several positional encoding clipping dis-
tances, choosing the value that produced the lowest
development set perplexity. Based on inspecting
development set perplexity, we increased the Trans-
former encoder’s training duration to 90k updates,
with 10k warmup steps and a learning rate decay
interval of 10k steps.

OpenNMT’s default decoder is a 2-layer LSTM
RNN of size 500 with attention that implements
input-feeding (see Luong et al. 2015), wherein at-
tention vectors are fed as input to the next time step.
The hidden size of each layer is 200. The Trans-
former decoder is identical to our Transformer
encoder—4 layers with 8-headed self-attention—

1In the case of the biLSTM encoder, each direction has 100
hidden units for a total of 200. We experimented with doubling
the total number of hidden units so that each direction was
size 200, but this increase did not improve performance.
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Encoder Mean F-score Accuracy CER

GRU 92.27 ± .07 68.66 ± .25 17.53 ± .23
LSTM 92.94 ± .13 71.14 ± .34 16.10 ± .44
biLSTM 92.93 ± .09 71.13 ± .20 16.05 ± .23

Table 1: Mean and standard deviation of all metrics for
each encoder using the default (LSTM) decoder

except it has a hidden size of 2048.
All models were trained using ADADELTA,

with dropout of 0.2 and a batch size of 64. Training
was performed on a single computer with an AMD
2990WX CPU, two RTX 2080 Ti GPUs, and one
Titan RTX GPU. Training on a single RTX 2080 Ti
for the GRU (1,818,431 parameters with the default
decoder, 3,103,631 with a Transformer decoder)
and LSTM (2,180,031 parameters with the default
decoder, 3,545,727 with a Transformer decoder)
models took approximately 26 minutes. The biL-
STM model (2,020,031 parameters with the default
decoder, 3,385,727 with a Transformer decoder)
took approximately 29 minutes. Transformer train-
ing (5,839,623 parameters) took approximately 98
minutes.

3.3 Metrics

We report three separate evaluation metrics for each
model: 1-best accuracy, the percentage of perfectly
transliterated names; character error rate (CER),
the error rate of characters across names as calcu-
lated using Levenshtein distance; and mean F-score
or “Fuzziness in Top-1,” a metric introduced by the
NEWS 2018 Shared Task on Named Entity Translit-
eration (Chen et al., 2018). Mean F-score computes
the character-level F1-score based on the longest
common subsequence between a source and target
sequence.

3.4 Evaluation Procedure

Each experimental configuration for each model
architecture was run 10 times using 10 different
random seeds. Checkpoints were saved every 5k
updates, and the checkpoint with the lowest devel-
opment set perplexity was used for evaluation. For
a given experimental configuration we report the
mean and standard deviation for each evaluation
metric taken across all random seeds.

4 Results

Figure 1 displays box plots for mean F-score for
each configuration of each architecture. Each box’s

Encoder Mean F-score Accuracy CER

GRU 92.87 ± .07 70.78 ± .25 16.15 ± .30
LSTM 93.08 ± .09 71.49 ± .32 15.65 ± .36
biLSTM 92.99 ± .19 71.37 ± .28 15.82 ± .35
Trans. 93.48 ± .03 73.01 ± .10 14.73 ± .08

Table 2: Mean and standard deviation of all metrics for
each encoder using the Transformer decoder

whiskers give the minimum and maximum scores;
each box gives the 25th, 50th, and 75th percentiles.
As the plots for the other metrics look extremely
similar, we provide plots for accuracy (Figure 4)
and CER (Figure 5) at the end of the paper. Ta-
ble 1 gives results for all architectures using the
default decoder, and Table 2 gives results for all
architectures using the Transformer decoder.

As many of the results are similar—especially
the LSTM and biLSTM—we performed statistical
significance tests and bolded the highest score and
the scores that were not found to be significantly
different at the p < 0.05 level from the highest
score. We use Dunn’s test, applying Bonferroni
correction to a Kruskal-Wallis test, which is similar
to Mann-Whitney U . In short, this approach tests
differences between median scores without making
any assumptions that the data come from a normal
distribution, and ti adjusts for the fact that we are
comparing more than two scores. While we follow
the convention of reporting the mean and standard
deviation in tables, neither the mean nor standard
deviation is used by our non-parametric statistical
significance testing procedure.

As Table 1 shows, when combined with the de-
fault decoder the LSTM and biLSTM encoders
perform almost identically (comparing using each
metric, all comparisons p > 0.05), and outperform
the GRU (all comparisons p < 0.001).

As Table 2 shows, using a Transformer decoder
generally leads to improved performance compared
to the default decoder. Among the encoders evalu-
ated, the Transformer performs best, and the differ-
ences are statistically significant when compared
to each of the other encoders and across all metrics
(all comparisons p < 0.05).

As Figure 1 shows, there is no overlap between
the minimum and maximum mean F-score values
attained by the Transformer (when used as both en-
coder and decoder) and other architectures. In addi-
tion to achieving the highest performance across all
metrics, the Transformer’s variation across random
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Figure 1: Mean F-score across encoder and decoder architectures

Format Source Target

Standard <aln> e m a n u e l i m m a n u e l
Macrolang. <aln> <sqi> e m a n u e l i m m a n u e l

Table 3: Source preprocessing with ISO-639-3 lan-
guage (<aln>) and macrolanguage (<sqi>) codes

seeds is smaller than other architectures, both in the
range between the minimum and maximum values
and the standard deviation.

5 Extensions

5.1 Artificial Tokens

Johnson et al. (2017) used ISO-639-3 language
codes as flag tokens. To our knowledge, subsequent
implementations of multilingual translation have
all used similar codes, including Wu and Yarowsky
(2018)’s transliteration model and our own models.
As these language codes are arbitrary, atomic flags,
they do not encode known relationships between
languages. The ISO-639 schema designates 58
languages as macrolanguages, which unite groups
of closely-related languages that may exist on a
dialect continuum.2 Of the 7,868 individual lan-
guages identified by ISO-639-3, 453 (5.8%) have
a corresponding macrolanguage, and those that do
tend to be lower-resourced languages. The Bib-
lical names corpus compiled by Wu et al. (2018)
mirrors these statistics; of the 591 languages, 36

2https://iso639-3.sil.org/code_tables/
macrolanguage_mappings/read

(6.1%) have a corresponding macrolanguage code.
These languages comprised 6.8% of the training
set (19,040 name pairs) and 6.9% of the test set
(2,432 pairs).

We can leverage this information in our models
by appending an additional macrolanguage flag to-
ken following a language’s ISO-639-3 code, where
applicable, as shown in Table 3. We expected that
this may lead to small improvements in transliter-
ation quality for lower-resourced languages that
belong to the same macrolanguage. We tested this
by evaluating using our Transformer model.

As Table 4 shows, the addition of macrolan-
guage tokens actually slightly hurt the models’ per-
formance on every metric. The 36 languages in
our dataset with a corresponding macrolanguage
shared 24 macrolanguages, making it difficult for
a model to leverage cross-lingual similarities. We
suspect that macrolanguage information ultimately
amounted to noise.

We also evaluated on only the subset of lan-
guages with a corresponding macrolanguage, to
see whether the addition of macrolanguage tokens
improved performance for them. However, perfor-
mance using macrolanguage tokens (Mean F-score
92.04 ± .08; Accuracy 69.65 ± .26; CER 18.29
± .18) decreased from the baseline (93.35 ± .08;
72.33 ± .38; 14.79 ± .2).

5.2 Romanization

In analyzing per-language performance, we found
the expected relationship between the number of

 https://iso639-3.sil.org/code_tables/macrolanguage_mappings/read
 https://iso639-3.sil.org/code_tables/macrolanguage_mappings/read


83

Figure 2: Per-language mean character error rate and
number of training pairs, with linear fit line

training pairs in the language and the performance
in that language, as shown in Figure 2 for charac-
ter error rate. However, there is a lot of variation
across languages, even among those with scripts
very different from English, which is suggestive
of successful transfer learning across languages.
Many languages with fewer examples are doing
better than expected, reducing the correlation be-
tween per-language training data size and perfor-
mance. The largest cluster of number of training
pairs per language is approximately 500 languages
with around 500 name pairs each. Even within that
cluster there is tremendous variance in performance
around that number of training examples. Iloko
(ilo), the best-performing language in that cluster,
has a CER of 3.6, while the worst-performing lan-
guage, Inuktitut (iku), has a CER of 48.2. There is
a nearly uniform distribution of languages between
those extremes.3

As previously identified by Wu and Yarowsky
(2018), transliteration is more successful when the
edit distance between source and target is low. Fig-
ure 3 shows the mean CER, along with the mean
edit distance to English, for each language, using a
single run of the Transformer model with standard
preprocessing. One possible approach to reducing
edit distance is to romanize the data before translit-
eration. Wu and Yarowsky (2018) report that

3For this example and in Figures 2 and 3 we exclude three
extremely poorly-performing languages (cmn, mya, khm, each
with CER > 75) where the poor performance can be traced to
errors in the training data which aligned names to phrases.

Figure 3: Per-language mean character error rate and
mean edit distance from English, with linear fit line

Condition Mean F-score Accuracy CER

Standard 93.48 ± .03 73.01 ± .10 14.73 ± .08
Macrolang. 93.45 ± .04 72.90 ± .13 14.75 ± .11
Romanized 93.40 ± .03 72.96 ± .14 14.86 ± .07

Table 4: Mean and standard deviation of all metrics
for the Transformer encoder and decoder for standard,
macrolanguage-marked, and romanized source text

preprocessing data into ASCII using Unidecode
yielded no improvement in performance. How-
ever, their approach is extremely simple; we eval-
uate a more sophisticated, hand-tuned romanizer,
uroman (Hermjakob et al., 2018). We romanized
data before providing it as source text, and trained
the Transformer using standard preprocessing. As
shown in Table 4, this slightly reduces accuracy and
mean F-score, and slightly increases CER. Further
analysis revealed that romanization did not actually
decrease edit distance to English; it increased it for
as many languages as it decreased it, likely because
it often lengthened words.

5.3 Summary

As shown in Table 4, neither the use of macrolan-
guage tokens nor romanization improves perfor-
mance. As the bolding indicates, for mean F-score
the standard condition performs significantly bet-
ter than macrolanguage (p = 0.03) and romanized
(p = 0.0007); for CER, standard performs better
than romanized (p = 0.008). The results for the
accuracy metric are statistically indistinguishable
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(all comparisons p > 0.05); all values are bolded
as it is essentially an all-way tie.

6 Discussion

Our findings demonstrate that using a Transformer
architecture for the encoder and decoder results in
reliably strong performance for this task. Attempt-
ing to improve the model through simple “tweaks”
to the input does not improve performance and
may hurt it. However, one may wonder why the
Transformer does so much better at this task than
an LSTM encoder and a decoder with attention
when the transliteration problem is relatively sim-
ple compared to sentence translation. There is only
limited reordering in transliteration, and there may
be fewer long-range dependencies.

While we have manually examined the output of
the transliteration system across architectures, it is
difficult to identify obvious patterns, and attempt-
ing to do so puts us at risk of overgeneralizing our
observations that are based on the relatively few
writing systems that we can read.

To further analyze performance, for every item
in the test set we computed the Levenshtein
distance—expressed as insertions, deletions, and
substitutions—between the source name and target
name. We then analyzed the relationship between
these edit distance metrics and 1-best accuracy by
predicting whether the system correctly transliter-
ated each item of the test set using logistic regres-
sion. We analyze two systems: the LSTM and
Transformer encoders, each paired with the Trans-
former decoder.4

We examined the contribution of each type of
edit (insertions, etc.) on the performance of each
system. We fit a logistic regression model to the
689,960 predictions across all items and random
seeds for the models we are comparing. For each
item, we used the number of source-target edit
distance operations to predict whether the model
made any errors. We employed interactions be-
tween the encoder type and each predictor to ex-
plicitly test for differences between the LSTM and
Transformer encoders. In other words, our model
tested whether the two encoders differed in how
each edit operation required affected their ability
to correctly transliterate.

4We exclude pairs from the languages with codes cmn,
mya, khm, and nab from this analysis after review of the
training data revealed that edit distance between source and
target names was artificially high due to data problems.

We found that there were significant differences
in the interaction terms of the model for insertions
and substitutions, but not for deletions. For the
Transformer encoder, with each additional inser-
tion in the edit distance, it was 1.1% less likely to
produce an error than the LSTM was (p = 0.0006),
for substitutions, 1.8% (p < 0.0001). This helps
further characterize the performance differences be-
tween these models. While they are equally capable
of handling deletions, the Transformer encoder can
better handle insertions and substitutions, and the
advantage is larger for substitutions.

7 Conclusion

We conclude that using a Transformer architecture
for both the encoder and decoder leads to the best
performance on the many-languages-to-English
transliteration task that we evaluate. However, us-
ing macrolanguage codes and pre-romanizing the
input do not improve performance.

Our best multilingual transliteration model
achieves a 1-best accuracy of 73%, a 4-point im-
provement over the baseline provided by Wu and
Yarowsky (2018). When using a Transformer en-
coder, our model demonstrates an improved ability
to handle substitution edits in source-target pairs
compared to an LSTM encoder.

While an off-the-shelf MT system provides a
strong starting system for the task of many-to-
one transliteration, future improvements for lower-
resourced settings will likely require a greater level
of sophistication, possibly using monolingual pre-
training to better model the source language given
few training examples. Additionally, while using
the Transformer for the encoder and decoder gives
the strongest results, it may be possible to further
simplify the model and achieve similar results.
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