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Abstract

Generating expert ground truth annotations of documents can be a very expensive process.
However, such annotations are essential for training domain-specific keyphrase extraction
models, especially when utilizing data-intensive deep learning models in unique domains
such as real-estate. Therefore, it is critical to optimize the manual annotation process to
maximize the quality of the annotations while minimizing the cost of manual labor. To
address this need, we explore multiple annotation strategies including self-review and peer-
review as well as various methods of resolving annotator disagreements. We evaluate
these annotation strategies with respect to their cost and on the task of learning keyphrase
extraction models applied with an experimental dataset in the real-estate domain. The results
demonstrate that different annotation strategies should be considered depending on specific
metrics such as precision and recall.

1 Introduction

Automatic keyphrase extraction is an important technology on the crossroads of natural language pro-
cessing and information access. Domain-specific keyphrase extraction models are widely used in many
real-world applications such as document characterization and clustering (Hammouda et al., 2005), do-
main specific knowledge organization (Kosovac et al., 2002), topic-based access to document collections
(Jones and Paynter, 1999), natural language question answering (Chaudhri et al., 2013), personalized
recommendation of external content (Agrawal et al., 2014), and many other tasks (Papagiannopoulou and
Tsoumakas, 2019).

One approach to such keyphrase extraction is to apply pre-trained or unsupervised models. However,
such models might suffer from a lack of domain-specific knowledge. For example, while the terms
“home” or “bedroom” alone can be called keyphrases in general, they carry very little information in the
real-estate domain. Therefore, training domain-specific keyphrase extraction models based on expert
knowledge is vital in such applications. In addition, for some easier tasks such as content linking or content
recommendation, automatic processing could support sufficient levels of quality. For more challenging
tasks, such as personalization, the use of expert annotation in some form is essential.

Annotations of domain-specific documents can be performed via crowd-sourcing, online workers
and/or expert annotators (Su et al., 2007; Snow et al., 2008). This process can be done by each expert
annotating a single document, doing self-review, multiple experts annotating the same document or doing
peer-reviews. In the case of multi-annotator disagreement, a voting rule should be applied. In previous
studies, a common practice to measure the quality of annotation labels is to compute inter-annotator
agreement (Wilbur et al., 2006; Ogren et al., 2006; Kim et al., 2008; South et al., 2014; Augenstein et al.,
2017). More annotation/review steps involved in this process often result in a better agreement between
annotators.
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However, it is still unclear whether the training set extracted from annotations with multiple annota-
tion/review steps would increase the performance of keyphrase extraction models significantly. In addition,
multiple annotation/review steps inevitably increase the cost of the annotation process as multiple experts
have to tag the same set of documents. Due to the cost of hiring domain experts, it is critical to select
an annotation strategy that maximizes the quality while minimizing the cost. Despite this substantial
higher cost, to the best of our knowledge, there is no study analyzing the tradeoff of using annotations by
multiple experts and the performance improvements of the keyphrase extraction model.

To fill in this gap, this paper experimentally analyzes the tradeoff between the cost of annotation
strategies and the impact these strategies have on the model performance. We measure the mean anno-
tation time per document and compare the precision, recall and f1-score measures of classification and
sequence labeling models over self-review, peer-review and different annotation aggregation methods.
The experimental results demonstrate that different annotation strategies should be selected depending on
whether the objective is to optimize for precision, recall or f1-score.

The rest of the paper is organized as follows. Section 2 reviews related work and Section 3 discusses
annotation and keyphrase extraction methodology. The experimental results are presented in 4 and the
paper is concluded in 5.

2 Related Work

2.1 Data Annotation

Annotation is the basis of any supervised natural language processing research. Annotation processes has
been applied in various domains, including the scientific publication domain (Augenstein et al., 2017),
biomedical literature (Wilbur et al., 2006; Kim et al., 2008), educational textbooks (Chau et al., 2020),
and medical records (Ogren et al., 2006; Xia and Yetisgen-Yildiz, 2012). These processes often start
with recruiting domain experts and defining initial guidelines. Next, the guidelines are iteratively refined
until the agreement reaches a pre-defined threshold. Each expert then annotates a larger scale document
collection using the guideline. Eventually, ground truth data is selected based on the inter-annotator
agreement. In the annotation process, organizing meetings with the annotators and involving them in
reviewing and adjudication have shown positive impacts on the quality of annotations (Kim et al., 2008;
Chau et al., 2020) but of course increase annotation efforts. Interestingly, Wilbur et al. (2006) found that
the inter-annotator agreement could significantly increase among annotators who had gained experience
working with the guidelines.

There are efforts in exploring the possibility of utilizing crowdsourcing for domain-specific text
annotations. For instance, Uzuner et al. (2010) addressed the problem of annotating documents in the
medical domain through experts to generate guidelines and a community of medical practitioners to
perform annotations, which has a lower cost in comparison to employing experts for annotations. By
utilizing guidelines generated by the experts and distributing them to the community annotators, they
have achieved promising annotations. This indicates the value of including knowledge of the domain in
generating high-quality annotation results in domain-specific tasks. Sabou et al. (2014) proposed a set of
best practice guidelines for crowdsourced corpus acquisition and introduced an extension of the GATE
NLP platform to facilitate the creation of crowdsourced tasks based on best practice. Liu et al. (2016)
found that crowdsourced annotation can boost F1 score in relation extraction by Gated Instruction, which
combines an interactive tutorial feedback to correct errors during training and improved screening, and
they also claimed that with the high quality Gated Instruction annotations, a single annotation is more
effective than majority vote over multiple annotators.

In contrast, researchers also explore the application of machine-assisted methods in expediting the text
annotation process. A web survey conducted in 2009 (Tomanek and Olsson, 2009) shows that 20% of
participants said they had used active learning as support in their annotation projects. There are also tools
enabling semi-automatic annotation process, such as TURKSENT (Eryiğit et al., 2013), BRAT (Stenetorp
et al., 2012), eHOST (South et al., 2012), and NER (Chen et al., 2017). They can generate annotations
via experts correcting the output of a pre-trained linguistic system. Stenetorp et al. (2012) found a 15%
decrease in total annotation time for a multicategory entity mention annotation task. However, South
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et al. (2014) claimed that manual annotation process produced higher quality data without taking more
time in comparison with an annotation method that combines machine pre-annotations with an interactive
annotation interface in the manual annotation process.

For labeling keyphrases in text documents, the process of gathering the annotators (usually weekly) to
discuss, resolve conflicts and agree on the annotations is very expensive. Allowing annotators to review
their own or others’s annotation may help to improve annotation quality with lower cost. However, it is
still not clear how those extra efforts could help to increase keyphrase extraction models overall. This
study attempts to understand the tradeoff between those cost and quality of the keyphrase annotation.

2.2 Keyphrase Extraction
There is a wide range of automatic keyphrase extraction methods from using unsupervised learning to
rule-based, supervised learning or deep neural network models. Typical keyphrase extraction systems
firstly pre-process data, extract candidate keyphrases using predefined Lexico-Syntactic patterns (Florescu
and Caragea, 2017; Le et al., 2016), Part-of-Speech (POS) tags (e.g., nouns or noun-nouns) (Mihalcea
and Tarau, 2004; Bougouin et al., 2013; Liu et al., 2009a; Wan and Xiao, 2008) or n-grams with simple
filtering rules (Witten et al., 1999; Medelyan et al., 2009); and then predict which of these candidates are
correct keyphrases.

An example of unsupervised keyphrase extraction methods are graph-based methods explored by
(Mihalcea and Tarau, 2004; Bougouin et al., 2013). They consider a candidate keyphrase as important
if it is related to a large number of candidates and those candidates are also important in the document.
Candidates and their relations form a graph for the given document and keyphrases are selected based
on their PageRank score. In addition, topic-based clustering methods (Liu et al., 2009b; Liu et al.,
2010; Grineva et al., 2009) attempt to group semantically similar candidates in a document as topics.
Keyphrases are then selected based on the centroid of each cluster or the importance of each topic.
Although unsupervised learning models can extract keyphrases without any need for labeled data, their
performances are commonly insufficient.

Supervised keyphrase extraction models often frame this task as binary classification or sequence
labeling problems. The classifiers use different kinds of features, including statistics-based features,
linguistics-based features or external resources (Hammouda et al., 2005; Witten et al., 1999; Rose et al.,
2010; Hulth, 2003; Wang et al., 2015; Yih et al., 2006; Nguyen and Kan, 2007; Chau et al., 2020) to train
supervised models. Sequence labeling models for keyphrase extraction have shown promising results
in a recent study (Gollapalli et al., 2017). The deep sequence labeling with Bi-LSTM-CRF models has
shown to significantly outperform its unsupervised and supervised baseline models (Alzaidy et al., 2019).
However, the deep learning models require a large amount of data to achieve their best performances
compared with traditional machine learning approaches.

Due to the high cost of creating training data, advanced weak supervision approaches have recently
been attractive to the NLP community; however, expert knowledge is still needed to define labeling
functions (especially in specific domains) and extra steps are usually applied to create cleaner training
data outputs for ML models (e.g., slice-based learning) (Ratner et al., 2017; Chen et al., 2019). In this
study, we focus on understanding the cost and quality of expert annotation for keyphrase extraction when
manual annotation is essential, and compare supervised models to unsupervised models which do not
need extra efforts for the problem.

3 Methodology

3.1 Annotation Procedure
To evaluate the tradeoff between cost and quality of expert annotation labels, we analyze multiple methods
and aggregation strategies (voting rules) for label generation. In this annotation process, three experts,
who have at least six months experience of working in the real-estate domain, receive training and pass a
test that focuses on the understanding of the task and the BRAT annotation interface1. They, then, develop
guidelines (described in Section 3.1.1) through multiple weekly annotation discussions. In each iteration,

1https://brat.nlplab.org
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Guidelines

Keyphrases should not contain multiple pieces of information.
Keyphrases should be the longest consecutive phrases.
Keyphrases should not have redundant words.
Keyphrases can have misspellings.

Table 1: An example set of guidelines created by the experts.

the experts independently label keyphrases in 10 listing descriptions, followed up with a discussion to
resolve disagreement and updating the guidelines. Next, the experts annotate a larger set of 50 listing
descriptions and record the annotation time. The experts are not allowed to discuss their annotation/review
before finishing all annotation tasks. All labels generated in the procedure are combined based on different
strategies (described in Section 3.1.2) and used as ground truth data for training classification and sequence
labeling models.

3.1.1 Guidelines
The annotation guidelines are created by experts through multiple annotation-discussion iterations. These
iterations should continue until no guidelines are added or updated by the experts in a discussion session.
An example set of these guidelines is shown in Table 1.

Some of the created guidelines can be used in the review process (presented in the next section) to
reject an annotated keyphrase. For example, the guideline “Keyphrases should not contain multiple
pieces of information” can be used to reject “4 bedrooms near Disneyland” which contains two pieces of
information: “4 bedrooms” and “near Disneyland”. On the other hand, a number of created guidelines
such as “Keyphrases can have misspellings” can be used to guide the experts to accept keyphrases like “4
bedrom”. For the guideline “Keyphrases should be the longest consecutive phrases”, 3 bedrooms is the
keyphrase in “This home has 3 bedrooms.” but 3 bedrooms upstairs is the keyphrase in “It has 3 bedrooms
upstairs”.

The experts may combine guidelines to select or reject a keyphrase. For example, an expert may
consider the guideline “Keyphrases should not contain multiple concepts” in conjunction with the guideline
“Keyphrases should be the longest consecutive phrases” and “Keyphrases should not have redundant
words” to select/reject a keyphrase.

We use the annotation labels generated during the guideline development process as ground truth data
for model evaluation during our experiments.

3.1.2 Coding Procedure for Training Set
Having experts resolve annotation conflicts via discussion can be very expensive and not scalable for a
large number of listing descriptions. Instead, a review process can be adopted to ensure the keyphrases
adhere to the guidelines. Performing review after annotation steps increases the cost of annotation, but it
may help to improve the quality of the keyphrase labels by mitigating issues such as experts’ fatigue and
lack of attention. An additional factor influencing the tradeoff between annotation cost and quality is the
number of experts required to annotate each listing.

The review process can be either a self-review or a peer-review process. In the case of a self-review
process, the same expert reviews his/her keyphrase annotation to ensure that he/she has followed the
provided guidelines. The self-review also provides a chance for the experts to adjust their annotations
based on their interpretations of guidelines so far. For a peer-review, the experts are exposed to the
interpretation of the guidelines by the other experts. This exposure may cause the experts to change
their mind about some of their interpretations of guidelines. The final annotations are the results of the
reviewers’ edits.

By considering the mean annotation time per document including the review process, the lowest cost
approach is to have each document annotated by a single expert with no review. On the other hand,
the most costly approach is to annotate the same listing descriptions by all the experts and perform a
peer-review. This process is schematically depicted in Figure 1.
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Figure 1: Process of generating training data based on peer-review.

3.2 Keyphrase Extraction Models
A domain-based keyphrase extraction task can be formulated as follows: given a domain-specific text
document, extract all phrases of interest to the users of that domain. For this task, we investigate a shallow
classification model and a deep sequence labeling model.

3.2.1 Classification Model (LogReg)
For the classification model, we recast the keyphrase extraction as a binary classification problem including
three main steps:
Pre-processing data: We use spaCy2, an open-source library for NLP, to tag part-of-speech (POS) and
then apply pre-defined patterns with regular expressions to extract all possible candidates (i.e., mostly
but not limited to nouns and noun phrases). We only extract keyphrase candidates which consist of a
maximum of 4 words in accordance with our annotation guidelines.
Feature Extraction: we extract an extensive list of features for each of the candidates:
• linguistic-based features: length of n-grams, concatenated POS of all tokens (e.g., ["JJ", "NN"]

for “great location”), POS of each of the tokens, POS of two words before, POS of two words after,
and whether the phrase contains any named entities (e.g., area names).
• statistics-based features: document term frequency, collection term frequency, tf-idf, okapi BM25

and c-value (i.e., calculated from a collection of five thousand listing descriptions).
We bin and discretize non-binary numerical features in our model. We also apply a one-hot encoding

on all non-binary features.
Model training and prediction: A logistic regression model (LogReg) is trained on the labeled feature
vectors of candidate keyphrases. For the prediction phase, an input document is also processed by the first
two steps and then the trained model will predict keyphrase likelihood for all candidates.

3.2.2 Sequence Labeling Model (Bi-LSTM-CRF)
We also approach the keyphrase extraction problem as a sequence labeling task. This task can be formally
stated as a named entity recognition (NER) problem. Given a sequence of n words in a listing description
d = {w1, w2, ..., wn}, we want to infer their hidden class labels (i.e., belonging to a keyphrase class). In
this model, we set 3 class labels Y = {kB, kI , kO}, representing “beginning of a keyphrase”, “inside of a
keyphrase”, and “not a part of a keyphrase”.

In this study, we apply a Bi-LSTM-CRF architecture to perform this task, which has been shown to
achieve the best performance across several public datasets (Alzaidy et al., 2019). The standard Bi-LSTM-
CRF model consists of three main components (see Figure 2). We briefly present these components as
below, for the detailed architecture refer to this work (Liu et al., 2018).
Embedding Layer: word and character-level embeddings are trained purely on un-annotated sequence
data from a text corpus. While word embeddings capture syntactic and semantic regularities in language,
character embeddings provide additional information about the underlying style and structure of words,

2https://spacy.io/
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Figure 2: Bi-LSTM-CRF model for keyphrase extraction.

both improving many NLP tasks including NER. The one-hot vector of an input word wt is mapped to a
fixed size dense vector in this layer.
Bi-LSTM Layer: the concatenation of character and word embeddings is the input for this layer. An
LSTM unit has four components: input gate, forget gate, memory cell and output gate. The input
vectors go through LSTM units in both directions, creating two hidden state vectors:

−→
ht and

←−
ht capturing

information from words before and after wt, respectively. The concatenation of these two vectors
←→
ht

represents the semantics and dependencies of wt in the context of the input text.
CRF Layer: Conditional Random Field (CRF) based models introduced by (Lafferty et al., 2001) have
been successfully used in many sequence labeling tasks.

←→
ht is the input for the CRF layer which produces

a probability distribution over a tag sequence based on the mapping of the input vectors to the class space
and the dependencies of adjacency class labels of the entire sequence. CRFs use the Viterbi algorithm to
efficiently infer the optimal sequence of labels for an input sequence.

Our implementation of the model is based on the version presented in (Liu et al., 2018)3. We use the
Glove pre-trained word embeddings of 100-dimensions4. Character embeddings are trained along with
the main model with Bi-LSTM networks. The dimension of character embeddings is set to 30. We use
a 300-dimension hidden layer for the character learning model as well as the main model. The models
are trained using mini-batch stochastic gradient descent with momentum. The batch size is set to 5. The
learning rate and decay ratio are set to 0.015 and 0.05, respectively. Dropout and gradient clipping of 5.0
are also applied to avoid over-fitting and increase stability.

4 Experiments and Results

4.1 Annotation Data Analysis

Statistics: We focus on the real-estate domain in English and create a dataset with 50 and 20 listing
descriptions for training and evaluation. The average length of the sampled listing descriptions was 125
words, with some having as few as 50 and as many as 500. Table 2a lists the mean annotation time for
each expert. It shows that, on average, experts conducted self- and peer-review in about half the time as
the initial annotation.
Count of Keyphrases: Table 2b shows the average count of keyphrases per listing selected by experts
in different steps of the annotation/review process. This table indicates that, on average, self- and peer-
review steps slightly increase the number of selected keyphrases, indicating that experts more often added
additional keyphrases than removed the already annotated ones.

3https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
4https://nlp.stanford.edu/projects/glove/
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Step Annotation Self-Review Peer-Review

Time 00:02:49 00:01:23 00:01:25

(a)

Step/Expert A B C

Annotation 20.52 18.52 20.8
Self-Review 20.34 19.66 22.62
Peer-Review 20.74 20.24 21.98

(b)

Table 2: (a) Average time spent (in HH:MM:SS format) by each expert on each annotation/review step.
(b) The average count of keyphrases selected by different experts from each listing description.
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Figure 3: (a) The ratio of keyphrases with different lengths of n-grams. Bigrams are the most selected
keyphrases. (b) Agreement (in terms of IoU) in selected keyphrases by different experts in different
annotation/review steps. Peer-review is more effective than self-review in increasing the agreement.

n-grams in Selected Keyphrases: Figure 3a shows that the majority of selected keyphrases were bigrams
(around 40%). Although per the guidelines, the experts were asked to limit the length of the annotated
n-grams to 4, in less than 1% of cases, 5- and 6-grams were selected due to either a mistake or an incorrect
interpretation of the guidelines (e.g., by selecting “14 x 14 covered dec” as a keyphrase). Figure 3a also
shows that the length of the selected keyphrase did not change significantly after self- or peer-review
processes.
Self- and Peer-Review Processes: In Figure 3b, we use the intersection-over-union (IoU) to measure the
amount of agreement among experts, which is defined as # of keyphrases selected by all experts over # of
keyphrases selected by any expert. The value of IoU ranges from 0 to 1, where 0 and 1 corresponds to no
common keyphrases and all keyphrases being shared between experts, respectively.
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Figure 4: The average number of keyphrases
added/removed per listing description during self
and peer review steps.

Method Precision Recall F1-score

TextRank 0.32 0.46 0.35
SingleRank 0.36 0.46 0.39
TopicRank 0.28 0.47 0.33
TopicalPageRank 0.32 0.41 0.35
PositionRank 0.31 0.44 0.34
MultipartiteRank 0.28 0.51 0.34

LogReg 0.59 0.83 0.69
Bi-LSTM-CRF 0.60 0.66 0.63

Table 3: The performances of two supervised
models (LogReg and Bi-LSTM-CRF) trained
on orig-one dataset in comparison to multiple
unsupervised baselines.
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Dataset Average no. of
keyphrases per Doc.

Time per
Doc. (sec)

LogReg Bi-LSTM-CRF
Precision Recall F1 Precision Recall F1

orig-one 19.66 170 0.59 0.83 0.69 0.60 0.66 0.63
orig-two-union 24.3 340 0.54 0.86 0.66 0.59 0.68 0.63
orig-two-unanimity 15.34 340 0.60 0.83 0.69 0.70 0.58 0.64
orig-three-union 26.88 510 0.51 0.87 0.65 0.57 0.70 0.63
orig-three-majority 19 510 0.58 0.83 0.68 0.63 0.68 0.65
orig-three-unanimity 13.28 510 0.61 0.80 0.69 0.74 0.56 0.64
self-one 20.84 255 0.58 0.86 0.69 0.59 0.68 0.63
self-two-union 25.42 510 0.52 0.87 0.65 0.58 0.69 0.63
self-two-unanimity 15.98 510 0.60 0.84 0.70 0.68 0.62 0.65
self-three-union 28.1 765 0.49 0.87 0.63 0.52 0.72 0.60
self-three-majority 19.84 765 0.56 0.83 0.67 0.61 0.71 0.66
self-three-unanimity 13.94 765 0.61 0.82 0.70 0.71 0.59 0.64
peer-one 20.72 253 0.55 0.83 0.67 0.63 0.69 0.66
peer-two-union 24.86 506 0.51 0.89 0.65 0.56 0.74 0.64
peer-two-unanimity 16.7 506 0.60 0.85 0.70 0.66 0.66 0.66
peer-three-union 26.82 759 0.51 0.89 0.65 0.54 0.74 0.63
peer-three-majority 20.22 759 0.55 0.84 0.67 0.64 0.70 0.67
peer-three-unanimity 15.12 759 0.59 0.82 0.69 0.66 0.62 0.64

Table 4: The performance comparison of LogReg and Bi-LSTM-CRF models trained on different
variations of our dataset.

Figure 3b shows that the ratio of common keyphrases between experts significantly increases during
the peer-review process, while it remains unchanged during self-review. Therefore, in resolving the
disagreements among experts, peer-review appears to be far more effective than self-review. The increase
in agreements after the peer-review process can stem from the way that experts reconsidered their
interpretation of guidelines when they were exposed to the annotations by other experts.

Top keyphrases that experts considered as acceptable after the peer-review process include “Dock”,
“Deck”, and “Conveniently Located”, and those removed after the peer-review process include “Stunning”
and “Amenities”.

When examining the average number of added and removed keyphrases across all listing descriptions,
we found that the number of added/removed keyphrases in the peer-review process is around 5 times more
than that in self-review process and that the number of added keyphrases is higher than removed in both
self- and peer-review processes (see Figure 4). It suggests that experts more frequently tend to identify
additional keyphrases that might have been missed previously in either self- or peer-review process.

4.2 Model Performance Comparison

As described in Section 3.1.2, we investigate the tradeoff between quality and cost of the annotations
given the number of experts annotating each listing description and the type of review process. To do
so, each listing description is firstly annotated by three experts separately and then it goes through the
self- and peer-review processes. Therefore, the data we collected includes three annotations per each
description. This allows us to create training sets with one or two expert annotations per listing description
via uniformly sampling which one or two annotations out of the three available should be considered.

In this study, we also investigate three review types: (1) orig: original (no-review), (2) self : self-review,
or (3) peer: peer-review. In the case of having more than one annotation per listing description, we
investigate three voting rules: (1) union: a keyphrase is selected if it was annotated by at least one expert,
(2) majority: a keyphrase is selected if it was annotated by two or more experts, or (3) unanimity: a
keyphrase is selected if it was annotated by all three experts. By combining review types, number of
annotators per listing description and the voting rules, we generated 18 different training data sets. The
name of these data sets are described in Table 4 by the following format: review type (orig, self, or
peer)-number of annotations per listing description (one, two, three)-voting rule (union, majority, or
unanimity).

In Table 4, we show the performance of the classification (LogReg) and sequence labeling (Bi-LSTM-
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Output from LogReg Output from Bi-LSTM-CRF

A ranch style home inside the Western Park community! Entering the home you step inside the large
living room that basks in plenty of sunshine. The eat-in kitchen overlooks the living room, allowing you
to chat while you cook dinner! The kitchen boasts countertop space, upper cabinetry, a large pantry , and
sleek black appliances.

A ranch style home inside the Western Park community! Entering the home you step inside the large
living room that basks in plenty of sunshine. The eat-in kitchen overlooks the living room, allowing you
to chat while you cook dinner! The kitchen boasts countertop space , upper cabinetry, a large pantry, and
sleek black appliances.

Table 5: LogReg vs. Bi-LSTM-CRF: keyphrase extraction in real estate. The yellow keyphrases are true
positives and the blue ones are false negatives.

CRF) keyphrase extraction models trained on all the 18 training data sets and evaluated on the common
ground truth data, which as described in Section 3.1.1 includes 20 descriptions and has average of 14.8
keyphrases per document. As an example of the final output, Figure 5 depicts a listing description and
the extracted phrases from LogReg and Bi-LSTM-CRF. In addition to comparing precision, recall and
f1-scores, we also include the average number of keyphrases and the mean annotation time per listing
description for each training set. The presented experimental results allow us to analyze the tradeoff
between the cost and quality of the selected keyphrase annotation methods.

Observations from Table 4:
• Precision vs. Time: For both LogReg and Bi-LSTM-CRF models, using orig-three-unanimity data

set results in the highest precision value.
• Recall vs. Time: the best recall was achieved by peer-two-union for both LogReg and Bi-LSTM-CRF

models with regard to time.
• F1-score vs. Time: the best performance was achieved by peer-two-unanimity for LogReg and by

peer-three-majority for Bi-LSTM-CRF models. However, in the case of LogReg model, orig-one
only needs 170 seconds but its performance is very close to the best, which requires on average 506
seconds of annotation time.
• Precision and Recall vs. Voting Rule: From these results we can conclude that the more agree-

ment is enforced among the annotators, the higher precision (e.g., Precision(*-three-unanimity) >
Precision(*-three-majority) > Precision(*-three-union)). The result consistently indicates that the
larger the size of the training data, the higher the recall (e.g., Recall(*-three-union) > Recall(*-three-
majority) > Recall(*-three-unanimity)).
• LogReg vs. Bi-LSTM-CRF: the recall of LogReg model is higher than Bi-LSTM-CRF model;

on the other hand, the precision of the latter is higher than the former. Overall, the F1-score of
LogReg model is a bit better. The Bi-LSTM-CRF model typically requires much more labeled data
to boost the performance or needs to fine tune on a pre-trained model. Nevertheless, with this small
training set, the deep sequence labeling model is still able to obtain a good result that outperforms
unsupervised models that will be presented shortly.
• Original vs. self-review vs. peer-review: the average performance as well as the mean annotation

time of the self-review and peer-review data are very similar. The original data, which requires least
effort, has the lowest recall but surprisingly the highest precision. For the average F1-scores, we do
not see significant differences among these three.

In Table 3, we compare the performances of the two supervised models with state-of-the-art unsuper-
vised models (Mihalcea and Tarau, 2004; Wan and Xiao, 2008; Bougouin et al., 2013; Sterckx et al.,
2015; Florescu and Caragea, 2017; Boudin, 2018).5 We choose orig-one dataset, which requires the
least annotation effort, as the training data for the supervised models. Table 3 reveals that the supervised
models substantially outperform all the unsupervised baselines in terms of precision, recall and f1-score.
This performance again emphasizes the importance of exploiting domain-specific knowledge and expert
annotations as labeled training data for training keyphrase extraction models.

5 Conclusions

In this paper, we presented multiple annotation strategies including self-review and peer-review processes
as well as various ways of resolving annotator disagreement for keyphrase annotation problems. We
trained a classification model with an extensive list of features in the domain of real-estate. In addition,

5https://github.com/boudinfl/pke



83

we applied a Bi-LSTM-CRF architecture for a sequence labeling approach to extract keyphrases. We
evaluated the two models’ performances with eighteen different training datasets generated from the
aforementioned strategies to see the tradeoff between the cost and quality of expert annotations. The
results showed that different annotation strategies can be considered depending on a specific metric. We
observed the consistent improvement for precision or recall when applying different voting rules for all the
three review types. With respect to average f1-scores, we do not see an improvement of self-review and
peer-review over the original annotations. The comparison between the two supervised models with the
state-of-the-art unsupervised models has shown the importance of exploiting domain-specific knowledge
and expert annotations to keyphrase extraction problems. However, this work is limited to one small
dataset. It could be extended and evaluated on multiple datasets from different domains (e.g., e-commerce,
education or medical) to examine the general applicability of our proposed annotation strategies.

This work, to the best of our knowledge, is the first to understand the tradeoff between cost and quality
of expert annotation for keyphrase extraction. There is still room to improve the models, for example by
leveraging user search terms as a feature for LogReg or pre-trained language models and transfer learning
for Bi-LSTM-CRF. Our priority is to investigate whether the approach is valid for other NLP tasks such as
relation extraction. We also plan to investigate how useful the generated code book for weak supervision
modeling, how to translate the rules in the guidelines to labeling functions in weak supervision.
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