@inproceedings{lakumarapu-etal-2020-end,
title = "End-to-End Offline Speech Translation System for {IWSLT} 2020 using Modality Agnostic Meta-Learning",
author = "Lakumarapu, Nikhil Kumar and
Lee, Beomseok and
Indurthi, Sathish Reddy and
Han, Hou Jeung and
Zaidi, Mohd Abbas and
Kim, Sangha",
booktitle = "Proceedings of the 17th International Conference on Spoken Language Translation",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.iwslt-1.7",
doi = "10.18653/v1/2020.iwslt-1.7",
pages = "73--79",
abstract = "In this paper, we describe the system submitted to the IWSLT 2020 Offline Speech Translation Task. We adopt the Transformer architecture coupled with the meta-learning approach to build our end-to-end Speech-to-Text Translation (ST) system. Our meta-learning approach tackles the data scarcity of the ST task by leveraging the data available from Automatic Speech Recognition (ASR) and Machine Translation (MT) tasks. The meta-learning approach combined with synthetic data augmentation techniques improves the model performance significantly and achieves BLEU scores of 24.58, 27.51, and 27.61 on IWSLT test 2015, MuST-C test, and Europarl-ST test sets respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lakumarapu-etal-2020-end">
<titleInfo>
<title>End-to-End Offline Speech Translation System for IWSLT 2020 using Modality Agnostic Meta-Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikhil</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Lakumarapu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beomseok</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sathish</namePart>
<namePart type="given">Reddy</namePart>
<namePart type="family">Indurthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hou</namePart>
<namePart type="given">Jeung</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohd</namePart>
<namePart type="given">Abbas</namePart>
<namePart type="family">Zaidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sangha</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Conference on Spoken Language Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe the system submitted to the IWSLT 2020 Offline Speech Translation Task. We adopt the Transformer architecture coupled with the meta-learning approach to build our end-to-end Speech-to-Text Translation (ST) system. Our meta-learning approach tackles the data scarcity of the ST task by leveraging the data available from Automatic Speech Recognition (ASR) and Machine Translation (MT) tasks. The meta-learning approach combined with synthetic data augmentation techniques improves the model performance significantly and achieves BLEU scores of 24.58, 27.51, and 27.61 on IWSLT test 2015, MuST-C test, and Europarl-ST test sets respectively.</abstract>
<identifier type="citekey">lakumarapu-etal-2020-end</identifier>
<identifier type="doi">10.18653/v1/2020.iwslt-1.7</identifier>
<location>
<url>https://aclanthology.org/2020.iwslt-1.7</url>
</location>
<part>
<date>2020-jul</date>
<extent unit="page">
<start>73</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End-to-End Offline Speech Translation System for IWSLT 2020 using Modality Agnostic Meta-Learning
%A Lakumarapu, Nikhil Kumar
%A Lee, Beomseok
%A Indurthi, Sathish Reddy
%A Han, Hou Jeung
%A Zaidi, Mohd Abbas
%A Kim, Sangha
%S Proceedings of the 17th International Conference on Spoken Language Translation
%D 2020
%8 jul
%I Association for Computational Linguistics
%C Online
%F lakumarapu-etal-2020-end
%X In this paper, we describe the system submitted to the IWSLT 2020 Offline Speech Translation Task. We adopt the Transformer architecture coupled with the meta-learning approach to build our end-to-end Speech-to-Text Translation (ST) system. Our meta-learning approach tackles the data scarcity of the ST task by leveraging the data available from Automatic Speech Recognition (ASR) and Machine Translation (MT) tasks. The meta-learning approach combined with synthetic data augmentation techniques improves the model performance significantly and achieves BLEU scores of 24.58, 27.51, and 27.61 on IWSLT test 2015, MuST-C test, and Europarl-ST test sets respectively.
%R 10.18653/v1/2020.iwslt-1.7
%U https://aclanthology.org/2020.iwslt-1.7
%U https://doi.org/10.18653/v1/2020.iwslt-1.7
%P 73-79
Markdown (Informal)
[End-to-End Offline Speech Translation System for IWSLT 2020 using Modality Agnostic Meta-Learning](https://aclanthology.org/2020.iwslt-1.7) (Lakumarapu et al., IWSLT 2020)
ACL