
Proceedings of the LREC 2020 Workshop Games and Natural Language Processing, pages 17–25
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

17

Cipher: A Prototype Game-with-a-Purpose for Detecting Errors in Text

Liang Xu & Jon Chamberlain
University of Essex, Wivenhoe Park, Colchester, Essex, UK

{lx18921,jchamb}@essex.ac.uk

Abstract
Errors commonly exist in machine-generated documents and publication materials; however, some correction algorithms do not perform
well for complex errors and it is costly to employ humans to do the task. To solve the problem, a prototype computer game called Cipher
was developed that encourages people to identify errors in text. Gamification is achieved by introducing the idea of steganography
as the entertaining game element. People play the game for entertainment while they make valuable annotations to locate text errors.
The prototype was tested by 35 players in a evaluation experiment, creating 4,764 annotations. After filtering the data, the system de-
tected manually introduced text errors and also genuine errors in the texts that were not noticed when they were introduced into the game.

Keywords: Game with a purpose, error detection, gwap, distributed knowledge acquisition, text correction

1. Introduction
Text error detection techniques have been widely used in
a variety of applications, e.g., spell checkers and Optical
Character Recognition (OCR) readers. Studies have ex-
plored methods to improve the accuracy of word correc-
tion, with several techniques commonly used for solving
the problem. Dictionary-matching, common error list anal-
ysis and targeted error detection approaches have been em-
ployed to address general and simple errors like misspelling
and non-word mistakes in articles (Kukich, 1992). For
more complex errors, e.g., grammar errors and errors which
rely on context, there are computational models for detec-
tion and correction of errors, such as the Statistics Lan-
guage Model (SLM) (Kukich, 1992). It is still challenging
to detect complex errors and the above methods might not
detect them all. To solve the problem there are applications
which use human effort that is to say, people who have high
proficiency in the language are employed to do the proof-
reading task. They are paid to find all the errors in the text,
especially those errors that computers cannot detect. The
disadvantage of this approach is the cost of annotators.
Computers outperform humans in many tasks; however,
they are still not powerful enough to beat humans in fields
such as creative work, emotion detection, context-based
analysis and so on. Therefore, we use human processing
abilities to solve the problems that machines are not good
at (Quinn and Bederson, 2011; Chamberlain et al., 2013).
In our project, a computer game was designed to motivate
people to find text errors, which is based on the idea of a
Game With A Purpose (GWAP) (Von Ahn, 2006). GWAPs
are able to reduce the cost of human effort to solve com-
putational problems through gamification. In this research
steganography is used as part of the game design to im-
prove enjoyment and help to achieve the data collection
goal. The purpose of the prototype was to evaluate human
performance in text error detection through an entertaining
game. In the game, every decision of error detection from
a player is an annotation, whether it is correct or not.
This research aims to answer two questions: 1) How good
are humans at identifying errors in text? and 2) Is it pos-
sible to build a game to motivate people to detect errors in
text? First, this paper summarises related work in the field

of text error detection and correction, as well as notable
games used for language annotation. Section 3 presents the
methodology and design of the prototype game called Ci-
pher, developed to detect errors in text. Game implementa-
tion is explained in Section 4. Section 5 presents the results
from a lab-based evaluation of players using the game, fol-
lowed by discussion of the applications of the game and its
limitations.

2. Related Work
2.1. Error detection and correction
Text error detection and correction techniques have three
common problems. The first problem is non-word error de-
tection. Any word or string that cannot be found in the
dictionary might be a non-word error. The most common
instances are spelling mistakes, for example, “anatomy” is
misspelled as “anonomy”. The second problem is isolated-
word error correction that is to correct the detected non-
word errors in text. The third problem is context-based
word correction. The errors which rely on the context are
difficult to detect, because they are correctly spelled words
which are not correctly used in the context, for example,
“off” when it should be “of”. Both words are spelled cor-
rectly but the former will not fit the specific context. The
research (Kukich, 1992) is a gist of some of the techniques
used in the detection of text errors in research as summa-
rized by Kukich:

2.1.1. Non-word detection techniques
Dictionary lookup is the most common and direct spelling
error detection approach. Every target word is compared
to the word in the dictionary, one by one, to check if they
match. A correct word will find a counterpart in the dic-
tionary while a wrong word will not. To achieve this, a
hash table is used to compare the hash address of the target
word with the address of the word in the dictionary (Knuth,
1973). However, the size of the dictionary for comparison
might influence the dictionary access speed and efficiency.
A solution is that the category of the dictionary chosen to
match the target word is related to its application or do-
main, which narrows down the range of search vocabulary
(Mishra and Kaur, 2013).



18

N-gram analysis can also be used. The value of n is often
1, 2, or 3, which represents the n-letter subsequence of the
target word. This approach is a comparative analysis of
each n-gram with the corresponding word in a preprocessed
n-gram table which is metamorphosed from a dictionary or
a specific corpus. The related applications perform well
in detecting errors in machine-produced text, for example,
electronic-documents generated by OCR devices, but they
are not good at detecting hand-written errors (Riseman and
Hanson, 1974).

2.1.2. Isolated-word correction techniques
The process of word correction is more difficult than error
detection. In most situations, text errors require not only to
be found but also correctly modified. Thus, there are some
techniques for non-word error correction (Kukich, 1992;
Mishra and Kaur, 2013):
The Minimum Edit Distance Algorithm was first intro-
duced to explain the minimum steps to modify a word from
its wrong form to its correct form (Wagner, 1974). The
ways of modification include insertion, deletion, and re-
placement. There are several useful algorithms based on
this idea that compute the minimum edit distance between
a text error and its correspondent correct counterpart .
The Similarity Key Algorithm assigns a key to those
words that look alike (e.g. far, for, form, from, fool). There-
fore, all similar words have the same key and those corre-
sponding words are the values of the key. When a spelling
mistake is detected, according to the key of this error, all
the similar words which have the same key will be attached
as correcting candidates. The advantage of the method is
that there is no need to compare the error to every word
in the lexicon or corpus one by one, which saves process-
ing time and promotes the efficiency of correction process
(Odell and Russell, 1918).
A Rule Based Algorithm is a process of collecting the
features of common spelling mistakes compared to their
correct forms and turning the features into different rules.
For example, the word “gracefull” is an error because the
last letter of its correct form “graceful” has been repeated,
which is a feature of the error. According to the rules which
can be applied, text errors can be detected and corrected
(Yannakoudakis and Fawthrop, 1983).
When it comes to probability for text recognition and error
correction, there are two different probabilities which can
be applied: transition probability and confusion prob-
ability. Transition probabilities are the probabilities of a
letter followed by another letter correctly. Confusion prob-
abilities are the probabilities of a wrong letter appearing
after a correct letter. Algorithms based on the two probabil-
ities are useful in text recognition preprocessing and word
correction (Bledsoe and Browning, 1959).
Neural Networks (NNs) play an important role in spelling
error correction. The correction ability of NNs becomes
more accurate with large scale spelling error data for train-
ing. Some spelling correction applications record users’
spelling mistakes as the training data to train the Neural
Networks, then those frequent spelling errors associated
with the user’s misspelling habits can be easily corrected
and even predicted (Rumelhart et al., 1986).

2.1.3. Context-based correction techniques
For this type of error (the hardly detectable errors), the per-
formance for real-word error correction achieved by exist-
ing empirical studies is not as promising as the performance
for isolated-word error correction. Real-word errors could
be syntactic errors or semantic errors, thus, it is more diffi-
cult to detect or correct this type of error. It has been sug-
gested that around 40% of all text errors are context-based
errors (Mitton, 1987).

2.1.4. Summary
The core of these techniques is based on algorithms. Fur-
thermore, different types of errors have different detection
and correction techniques. The model built for this project
uses human effort through a game and deals with all kinds
of errors in text. For context-based errors particularly, this
model is expected to find those errors that computer algo-
rithms cannot find because humans are better than machines
at understanding context and finding hard to detect errors.

2.2. Games with a Purpose
Computers are able to replace humans in many fields; how-
ever, there are still some tasks that human perform at bet-
ter than computers. The idea of a Game With A Purpose
(GWAP), proposed by Luis von Ahn, was to design an en-
tertaining game that motivates people to solve a compu-
tational problem (Von Ahn, 2006). The problem is typi-
cally one which computers cannot solve it yet. The GWAP
idea benefits from three conditions (Von Ahn and Dab-
bish, 2008): Firstly, the ubiquity of the Internet to pro-
vide a connected workforce is an important factor. There
are more people who use the Internet every day and al-
most everything in daily life is involved with it. Sec-
ondly, some computational problems are challenging for
computer algorithms but not complicated for human beings,
such as syntax annotation, labelling objects within an im-
age, common-sense collection and so on. Lastly, computer
games are popular and an increasing number of individu-
als spend considerable time playing them. The approach
has been increasingly applied to many fields such as text
analysis, image recognition, Internet search reinforcement,
security monitoring, information filtering, etc (Lafourcade
et al., 2015).

2.2.1. The ESP Game & Peekaboom
The ESP Game is a web-based game focusing on labelling
images (Von Ahn and Dabbish, 2008). In the game, two
players are given the same image and both players use a
word to describe the picture. If the outputs of the two play-
ers are identical, they win the game. In total, more than
200,000 people played the game and it collected 50 million
image labels. Peekaboom is another example in which the
goal of the game is to not only label the image contents
generally but also locate specific image objects within each
image, based on the data from the ESP game (Von Ahn et
al., 2006). According to the usage statistics, Peekaboom
collected 1,122,998 pieces of data with 14,153 players in
one month. The ESP Game and Peekaboom were used to
improve Internet search performance, especially for search-
ing pictures which contain noisy information (Von Ahn



19

and Dabbish, 2008). Additionally, CAPTCHA, an auto-
mated cryptographic program introduced by Luis von Ahn,
is a successful example of the recognition competition be-
tween humans and computers, although it is not a GWAP
(Von Ahn et al., 2003). The test result differentiates humans
from computers.

2.2.2. Phrase Detectives
GWAPs are also used in language annotation. Phrase De-
tectives is an online game with the purpose for identifying
semantic connections in vocabulary under a certain context
(Chamberlain et al., 2008). More specifically, the goal of
the game is to encourage people to detect anaphoric coref-
erence (the word or phrase used to replace the former men-
tioned object in the text). For example, in the sentence:
“Tom and Mike are friends and they study in the same uni-
versity”, the players need to annotate “they” as reference to
the earlier mentioned entity “Tom and Mike”. Phrase De-
tectives used players to annotate the text, as well as validate
the decisions of other players in order to optimise the data
collection process (Chamberlain et al., 2018).

2.2.3. Digitalkoot
OCR devices are able to achieve recognition accuracy of
a character as high as 99% for documents with high scan
quality; however, word recognition accuracy decreases with
word length to around 95% for a five-letter word (Kukich,
1992). Digitalkoot is designed to minimise the effort to
detect and correct OCR errors in old Finnish newspapers.
Digitalkoot is divided into 2 parts: verifying OCR out-
comes and using human OCR (humans reading the text).
In the first part, several words generated by OCR devices
are shown to players. They need to decide whether those
words are correctly recognised compared to the original
text within the images. The second part is to encourage
players to type each word with a given word image to build
a bridge to make the game character cross successfully. In
51 days, 4,768 players played the game. They spent 2,740
hours on the game and finished 2.5 million tasks. Com-
pared with 85% recognition accuracy by using OCR de-
vices, the game players achieved 99% accuracy for recog-
nising the text (Chrons and Sundell, 2011).

2.2.4. Designing GWAPs
GWAPs can be an effective method to collect data. GWAPs
are less expensive in the long term than other approaches
for using human power to solve problems, such as Ama-
zon Mechanical Turk. To design a GWAP, there are some
suggestions according to the reviewed games (Von Ahn
and Dabbish, 2008; Chamberlain et al., 2013). First of
all, the key to developing such games is enjoyability. It
is important that people enjoy playing the game and we
obtain the data as a side effect. Furthermore, GWAPs at-
tempt to solve computational problems which are divided
into smaller tasks. Designing a successful GWAP relies on
how to introduce those tasks without influencing the game-
design mechanics (Chrons and Sundell, 2011). Engaging
game elements can be added to increase player enjoyment
such as time limit, score rewarding, rankings, level setting
and so on. Moreover, it is essential to apply some eval-
uation metrics to GWAPs and make sure the obtained re-

Figure 1: A screenshot from the gameplay of Cipher

sults are correct. The performance of GWAPs can be eval-
uated by metrics, such as Cost per Acquisition, Monthly
Active Users, and Average Lifetime Play (Chamberlain et
al., 2017).

2.2.5. Summary
In the context of the ESP Game and Peekaboom, the object
recognition competition between humans is to help com-
puters improve the ability of image labelling. The model
built for this project tries to solve the error detection prob-
lem with the help of humans. The idea of making annota-
tions of text errors is inspired by Phrase Detectives which
makes annotations of anaphoric coreference. The evalua-
tion metrics that apply to Phrase Detectives are also used
in the project, which help in optimising the data collection
process. When compared to Digitalkoot, the game which
detects OCR errors, our project has the potential for detect-
ing context-based errors.

3. Methodology

How good are humans at identifying errors in text? This is
the over-arching question for the project. In order to answer
the question, artificial errors are generated in texts which
players must detect and the average correction accuracy
achieved by players used as a benchmark. The assumption
is that humans can detect most errors in a given text and
based on this assumption, the second research question is:
is it possible to build a game to encourage people to detect
errors in text? Errors commonly exist in printed materials
and electronic documents, but humans can detect them and
thus we build a game to identify errors in text with the help
of game participants who are entertained to play the game
while we collect useful data. We combine the two research
questions and explore if a game can improve the perfor-
mance at the correction task. When we analyse the data,
we are also identifying errors we did not know. With more
people playing the game, more errors can be identified and
the error detecting performance improved overall.



20

Figure 2: An example of cipher and common errors in a
round of the game.

3.1. Cipher: A game to detect errors in text
Cipher is a single-player game that focuses on a text-based
problem. Inspired by Phrase Detectives, the game is a
text analysis game and collects data from players about an-
notation of words or phrases (Figure 1). Cipher encour-
ages people to detect errors in text and was experimentally
tested following a previously published strategy (Pearl and
Steyvers, 2010) by inviting people to play the game offline
to simulate an online GWAP. The participants include uni-
versity students and friends of the authors, mostly in the
18-21 age range with English as a second language. The
idea of steganography is used as an interesting game ele-
ment for gamification. This turns the error detection task
to cipher seeking. Ciphers create simple errors with cer-
tain features which would be found easily while more com-
plex errors are also introduced as distractors for motivation,
which would challenge players. The methodology for data
collection and analysis combines qualitative and quantita-
tive approaches. We focus not only data quantity, but also
data quality, filtering the data according to players’ perfor-
mance and the number of players. It is also important to
get players’ opinions on the game as one of the essential
evaluation metrics. By the experimental strategy, players
are asked to play Cipher for at least 30 minutes. Their data
are processed by filtering out data generated by those play-
ers whose correction accuracy and annotation accuracy are
less than a threshold value.
There are also errors assumed to be the real errors in the
text, we term as unknown errors, that must be distin-
guished from a mistake made by the player. The number
of players who detect the same unknown error is also used
as a filter to process the data.

3.2. Artificial error distractors
Automatically generated error data has been used to im-
prove the performance of error detection and correction in
previous studies. Artificial error data are easy to produce
and can be applied to train and evaluate error detection
systems, evaluate the robustness of Natural Language Pro-
cessing techniques and be negative evidence in the form
of automatically distorted sentences in unsupervised learn-
ing (Foster and Andersen, 2009). This approach was used
in Cipher where, in each round, 10 artificial errors con-

sist of 6 cipher-generated errors (3 similar errors generated
by each cipher) and 4 common errors. Common errors are
chosen from 3 common error corpora (Aspell, Birkbeck,
and Wikipedia)1 and then are introduced by replacing the
correct counterparts in the game text. They can be non-
word errors or real-word errors. Figure 2 is an example of
errors in the text in the game. In the picture, “acordingly”,
“aray”, “loks”, “roundd”, “hiss”, and “clothess” are cipher
errors. “They”, “brtende”, “befro”, and “louk” are common
errors. The cumulative correction accuracy (detected errors
/ round*10) of a player demonstrates how good the player is
at error detection. Moreover, a total of 15 errors (5 in each
article) were manually added into 3 articles from which the
short text in each round is chosen from. They are used to
evaluate the game’s ability in error detection as a system on
the assumption there were no genuine unknown errors in
the articles.

3.3. Cipher mechanism
The idea of introducing cipher-generated errors is to turn
the error checking task to cipher deducing, which is to make
the serious game task entertaining for gamification purpose.
To define ciphers, we make certain rules to alter the correct
words in the text. In fact, these rules are the actual ”ci-
phers”. In each round, a piece of short text was encoded
by two ciphers. Each cipher generates 3 similar errors, i.e.,
they have the same error feature (Figure 2). Ciphers that
were used in the game were:

• Vowel killer All lowercase vowels in the word have
been deleted (e.g., “th” from the, “hr” from her, “bk”
from book);

• Double head The first letter has been repeated (e.g.,
“tthe” from the, “yyou” from you, “dday” from day);

• Double tail The last lowercase letter in the word has
been repeated (e.g., “roundd” from round, “hiss” from
his, and “clothess” from clothes);

• Bottom up The first letter in the word has been
swapped with the last (e.g., “eids” from side, “mot-
tob” from bottom , “tuis” from suit);

• Single One of two consecutive identical letters in the
word has been deleted (e.g., “acordingly” from ac-
cordingly, “aray” from array, “loks” from looks);

• Half half The first half part of the word has been
swapped with the rest (e.g., “itsu” from suit, “ndid-
sple” from splendid, “typem” from empty);

• Reverse The word has been reversed (e.g., “drow”
from word, “hctam” from match, “thgil” from light).

As cipher-generated errors are rule-based and do not often
occur in the real world, we also introduce errors from the
common error corpora to simulate common typographical
errors. There are 4 common errors (random error features)

1https://www.kaggle.com/bittlingmayer/spelling, accessed
13/2/2020



21

Figure 3: Cipher panel.

Figure 4: Player’s performance panel.

besides 6 cipher errors making 10 known errors that have
been introduced by the game per round.
Players have two tasks: At first, they need to find all the
errors in the text and click them; Then they need to identify
the ciphers according to the errors they have found and the
descriptions of ciphers (Figure 3). The aim of the game
is to find all the errors and then deduce the ciphers with
according error features. Players’ performance (correction
accuracy, ciphers detected, and scores) was given at the end
of the game after players confirmed and selected the ciphers
according to the errors they found (Figure 4).
About text in the game, short text was randomly chosen
from 3 articles in each round. In each article, there were
5 errors which have been manually added to determine the
performance of the system. The 10 known errors in each
game round were randomly generated by algorithms after
the piece of text has been chosen and were intended to
make the game fun and for appropriate rewards to be given
to the players for correctly detecting an error. Although
all texts were previewed by the authors before being used
in the game, there may be some genuine errors in the text
which was assessed in posthoc analysis.

4. Implementation
Cipher was developed in Unity game engine. Game graph-
ics resources mostly come from Unity Asset Store2 and the
logo was a picture of the fictional character Bill Cipher
from Cleanpng.3 The implementation was divided into 4

2https://assetstore.unity.com/, accessed 13/2/2020.
3https://www.cleanpng.com/, accessed 13/2/2020.

parts: login & registration panel, text display panel, cipher
panel and performance panel.
Login & registration panel When a player registered an
account, a piece of player information data is created in the
database. The players are required to login to the game
so that their game information data can be updated in the
database while they are playing the game.
Text display panel A short piece of text was randomly cho-
sen from one of 3 xml documents. 10 errors are introduced
into the text including 6 cipher errors and 4 common errors.
More precisely, 4 correct words are replaced by 4 common
mistaken words from common error corpus. There are 2 ci-
phers each round which encode the text by adding 6 errors
randomly (3 errors with the same feature generated by each
cipher algorithm). Finally, the modified text is shown to the
players. Every word in the text is clickable.
Cipher panel A player needs to find all the errors in the
given text by clicking them. When the player clicks an er-
ror, a piece of annotation data is created in the database.
After the player finds all the errors and presses the “done”
button, the cipher panel which contains 7 different ciphers
is shown to the player. If the player finds the 2 ciphers ,
he will win the game and be rewarded with the score. The
description of the cipher pops up when the mouse hovers
over each cipher.
Performance panel The player is rewarded with 3 points
for correctly identifying an error and 7 points for finding a
cipher. After the player chooses 2 ciphers (whether correct
or not), the result panel will pop out, which displays correc-
tion accuracy (correctly detected errors / 10), the number of
ciphers found, and scores obtained in the round. Scores are
accumulated each round. The player’s information is up-
dated in the database.

4.1. Data storage
Data collection is divided into three parts, stored in a ta-
ble in MySql database. When a player detects and clicks
an error, it is considered as an annotation. This annotation
information includes the word Id, the name of the article
where the word comes from, the correct form (plus wrong
form as comparison if it is a game-introduced error) of the
word, a Boolean flag representing if it is a known error (‘Y’
is Yes and ‘N’ is No), and the username of the player who
clicked the word. This piece of annotation information is
recorded in the table “annotation”. The table “player” in
the database has all the players’ usernames and passwords.
The table “playerinfo” stores the game information of the
players including the scores the player has obtained, the
number of rounds the player played, time the player spent
in the game, the number of annotations the player made,
the number of known errors the player detected, average
correction accuracy (number of found errors / number of
rounds*10), and annotation accuracy (number of found er-
rors / number of annotations).

5. Results
The purpose of the game is to collect useful data while peo-
ple are playing the game. The prototype game was tested
by asking experimental participants to play the game. Par-
ticipants were all unpaid volunteers and the experimental



22

Table 1: Unknown errors detected (CP=1, AA=0.2, and
CA=0.2).

Word id Story Word # clicked
players

w473 Little
match girl

Rischt 14

w482 Little
match girl

burnt 4

w396 Emperor’s
new
clothes

unft 3

w1942 Emperor’s
new
clothes

exmating 2

w910 Little
match girl

grandthern 2

w405 Swineherd ill-
humored

2

w570 Swineherd cub 2
w115 Emperor’s

new
clothes

wardrob 1

w823 Emperor’s
new
clothes

atternd 1

w151 Swineherd thad 1
w381 Swineherd hummon 1
w708 Swineherd mology 1
w1675 Swineherd tecking 1

play time for each participant was at least 30 minutes. In
2 weeks, there were 35 participants who played the game
and 25 of them played for more than 30 minutes. In total,
players spent around 24 hours and 50 minutes playing the
game. The game generated 4,764 pieces of annotation data,
i.e., a click from the player who believes they have found
an error, whether it is correct or not.
3 parameters were used as filters for the results: correc-
tion accuracy (number of found known errors by a player
/ number of rounds*10); annotation accuracy (number of
found known errors by a player / total number of annota-
tions from the player); and the number of clicked players
(the number of players who made annotations on the same
unknown word error). The difference between correction
accuracy and annotation accuracy is that the former repre-
sents how accurate a player is at error correction while the
latter shows how effective the player is at error correction.
While players were detecting errors, the game also recorded
unknown errors. An unknown error can be either a genuine
error in the text (or an error manually introduced into the
text) or a mistake made by the player. The former is the
target error (true positive) and the latter is considered as
noise (false positive). Based on the collected data, we mea-
sure the variables: the number of true positives, the number
of false positives, and thus recall and precision, were anal-
ysed by tuning 3 parameters: clicked player (CP), annota-
tion accuracy (AA) and correction accuracy (CA). Initially,

the values of all parameters were very low (CP=2, AA=0.2,
and CA=0.2), which could be considered as no filter ap-
plied, because there was no player whose correction accu-
racy or annotation was below 20%. Then we changed each
parameter gradually and observed the measure variables.
Lastly, the relationships between parameters and measured
variables were plotted to see which parameters were impor-
tant for improving correction performance of the system.
Of the 35 experimental participants, 28 of them achieved
correction accuracy of more than 70% and 29 of them
achieved annotation accuracy of more than 70%. There
were 20 players whose correction accuracy was more than
80% and 15 players whose annotation accuracy was more
than 80%.
Based on the collected data, the number of true positives,
the number of false positives, recall, and precision were
analysed with tuning 3 parameters: clicked player (CP),
annotation accuracy (AA) and correction accuracy (CA).
With parameters (CP, AA and CA) tuning, the relationship
between the filters and the measure variables (number of
target error and noise, recall and precision) were plotted in
Figure 5 - 10. When the number of clicks from players
is used as a filter we observe that noise is effectively re-
duced with filter at 4 player clicks, similar to the findings
in the validation analysis in Phrase Detectives (Chamber-
lain et al., 2018), see Figure 5. We also observe an increase
in precision when more player clicks are used but a lower
recall due to the low number of players in the game exper-
iment, see Figure 6. A similar effect is observed with the
reduction of noise by using annotation and correction accu-
racy as a filter, i.e., by increasing the requirement for player
ability, the number of incorrect judgements is reduced, see
Figures 7 and 9. Likewise, we observe recall significantly
drop when annotation and correction accuracy is used as a
filter due to player exclusion and the low number of players
in the experiment, see Figures 8 and 10.
Table 1 shows the unknown error detected results when the
values of all parameters were very low, which can be con-
sidered as no filter applied. In this case, the values for
CP, AA, and CA are 1, 0.2, and 0.2 respectively. 13 un-
known errors were detected by players. 10 of them are
manually added errors: “unft” (unfit), “grandthern” (grand-
mother), “exmating” (examining), “cub” (cap), “wardrob”
(wardrobe), “atternd” (pattern), “thad” (that), “hummon”
(humor), “mology” (melody) and “tecking” (taking). In to-
tal, there were 15 (5 in each story) manually introduced er-
rors (66.6% detection rate). All 5 added errors in the story
Swineherd were detected. Three unknown errors not intro-
duced into the texts but were detected by players include:

“Rischt”, or “R-r-ratch” in a different version of
the story Little match girl, represents the sound
of striking a match;

“burnt” is past tense in American English;

“ill-humored” is commonly used in American
English.

In addition, old English words such as “hitherto”, “Fie”
and “swineherd” were also detected, which are rarely used
nowadays (noted by player 3, 4 and 13 respectively.



23

Figure 5: The number of target error and noise change
when the number of clicked player is the filter.

Figure 6: Recall and precision change when the number of
clicked player is the filter.

Figure 7: The number of target error and noise change
when annotation accuracy is the filter.

6. Discussion
Correction accuracy represents how accurate each player is
in word correction. By calculating correction accuracy of
each player, we can answer the first research question. 29 of
35 players’ correction accuracy is higher than 70% and 20
players achieved more than 80%. 3 players reached more
than 90% correction accuracy. These values suggested high

Figure 8: Recall and precision values with tuning parame-
ter annotation accuracy.

Figure 9: Number of target error and noise change when
correction accuracy is the filter.

Figure 10: Recall and precision values with tuning param-
eter correction accuracy.

performance of humans in error detection.
Initially we set the values of the 3 parameters, clicked
player (CP), annotation accuracy (AA), and correction ac-
curacy (CA) 2, 0.2 and 0.2 respectively in case there was
too much noise (false positives). From the results, “unft”,
“grandthern” and “exmating” (manually added errors) were
detected by players. Furthermore, there were some errors



24

which we did not introduce into the documents. “Rischt” is
the noise of striking a match in the context and its correct
form is “R-r-ratch” in a version of the original text. The
latter makes more sense in the context. We found that some
players got confused between “burnt” and “burned” and
“humored” and “humoured”. In fact, “burnt” and “humor”
are preferred in American English, therefore, some play-
ers considered them as errors. Players also detected that
the types of English for some words used in the documents
were not standard English because they annotated some old
English words such as “Fie” (meaning “for shame” in other
versions of the text), “hitherto” and “swineherd”, which are
uncommon. Figure 11 indicates the frequencies of the 3 old
English words mentioned over time.
We did not know these errors until we looked at the data
from the game. When players were finding errors in the
text, they did find genuine errors and detected some prob-
lems we did not previously know.
We wanted to know if the game was engaging for players
to encourage them to help us solve the problem. For the
experiments, participants needed to play for over 30 min-
utes; however, many players played for more than 1 hour
because they enjoyed the game. Verbatim comments from
participants during the experiments include:

“This game is a bit addictive. I really would like
to play the game if it is released online.”

“It is an interesting game. Moreover, this game
has some educational meaning. I think it will be
really helpful for school students to play this type
of game.”

“The game UI combined with the ear worm of the
background music makes the text-based game a
bit fun.”

When evaluating the effectiveness of the system in detect-
ing errors, we used 3 parameters (CP, AA, and CA) to try
to improve the performance. From the graphs (Figure 5 –
10), we found precision overall would ascend but would
fall to 0 if the parameter reached a certain value. As the
parameter value goes up, the system keeps better players
while eliminating bad players. There were fewer answers
gradually, but the obtained results were more likely to be
true positives. However, when the parameter value was too
high, all players were excluded, which causes the decline of
precision. When it comes to recall, it was always declining
with each parameter increasing. The result explained that
noise was generated while players were finding true posi-
tives. If we would like to get more true positives, we would
get more noise as well. In conclusion, the performance of
the system in word correction depends on how we tune the
parameters.
There are some limitations with the project. The game was
running offline on a small scale. The number of people who
tested the game was sufficient for a prototype test but more
would be needed for large-scale data collection. Enough
participants played the game and created useful data which
allowed us to explore the documents and find out new in-
formation. Furthermore, this is an English language game

Figure 11: “fie”, “hitherto” and “swineherd” used over time
from Google dictionary.

but most participants were English learners rather than na-
tive speakers. This is partly because English learners are
more interested in this language game for the motivation of
practicing their English skills while playing the game and
partly because of the limited number of participants. There-
fore, there was more noise (false positives) detected, which
influences the detection results. However, we defined fil-
ters to improve the outcomes. Even though most of the
participants were non-native speakers, they still achieved
high performance in error detection and found genuine er-
rors and problems which we did not know.

7. Conclusion
It is common that some errors are found in publication
materials and electronic documents. Existing commercial
spelling-checking applications struggle to detect compli-
cated text errors and it is expensive to employ humans to
find errors. In this paper, we described a GWAP method-
ology for error detection. We found that people are able to
easily identify errors in text and they were encouraged to
do the tasks by playing an enjoyable game. Several gen-
uine errors were detected, indicating the GWAP approach
is useful to identify novel errors in text already checked by
a proofreader. Parameters such as clicked players (num-
ber of players who detected the error), correction accuracy
(detected errors / rounds*10), and annotation accuracy (de-
tected errors / the total number of annotations) can be used
to measure game performance. In addition, we found that
the game has the potential for helping language learners.
Participants reported that they enjoyed the game and found
the unusual language interesting. A GWAP approach to er-
ror detection and correction would be useful as a support
tool for OCR software, or as part of a wider pipeline look-
ing to build fully corrected and annotated documents for
large, collaboratively-produced language resources.



25

8. Bibliographical References
Bledsoe, W. W. and Browning, I. (1959). Pattern recog-

nition and reading by machine. In Papers presented at
the December 1-3, 1959, eastern joint IRE-AIEE-ACM
computer conference, pages 225–232.

Chamberlain, J., Poesio, M., and Kruschwitz, U. (2008).
Phrase detectives: A web-based collaborative annotation
game. In Proceedings of the International Conference
on Semantic Systems (I-Semantics’ 08), pages 42–49.

Chamberlain, J., Kruschwitz, U., and Poesio, M. (2013).
Methods for engaging and evaluating users of human
computation systems. In Handbook of Human Compu-
tation. Springer.

Chamberlain, J., Bartle, R., Kruschwitz, U., Madge, C.,
Poesio, M., et al. (2017). Metrics of games-with-a-
purpose for nlp applications.

Chamberlain, J., Kruschwitz, U., and Poesio, M. (2018).
Optimising crowdsourcing efficiency: Amplifying hu-
man computation with validation. it - Information Tech-
nology, 60:41–49.

Chrons, O. and Sundell, S. (2011). Digitalkoot: Making
old archives accessible using crowdsourcing. In Work-
shops at the Twenty-Fifth AAAI Conference on Artificial
Intelligence.

Foster, J. and Andersen, O. (2009). Generrate: generat-
ing errors for use in grammatical error detection. In Pro-
ceedings of the fourth workshop on innovative use of nlp
for building educational applications, pages 82–90.

Knuth, D. E. (1973). The art of computer programming,
vol. 3, addison-wesley. Reading, MASS.

Kukich, K. (1992). Techniques for automatically correct-
ing words in text. Acm Computing Surveys (CSUR),
24(4):377–439.

Lafourcade, M., Joubert, A., and Le Brun, N. (2015).
Games with a Purpose (GWAPS). John Wiley & Sons.

Mishra, R. and Kaur, N. (2013). A survey of spelling error
detection and correction techniques. International Jour-
nal of Computer Trends and Technology, 4(3):372–374.

Mitton, R. (1987). Spelling checkers, spelling correctors
and the misspellings of poor spellers. Information pro-
cessing & management, 23(5):495–505.

Odell, M. K. and Russell, R. (1918). Patent numbers
1261167 (1918) and 1435663 (1922). Washington, DC:
US Patent Office.

Pearl, L. and Steyvers, M. (2010). Identifying emotions,
intentions, and attitudes in text using a game with a pur-
pose. In Proceedings of the naacl hlt 2010 workshop on
computational approaches to analysis and generation of
emotion in text, pages 71–79. Association for Computa-
tional Linguistics.

Quinn, A. J. and Bederson, B. B. (2011). Human compu-
tation: A survey and taxonomy of a growing field. In
Proceedings of the 2011 SIGCHI Conference on Human
Factors in Computing Systems (CHI’11), pages 1403–
1412.

Riseman, E. M. and Hanson, A. R. (1974). A contextual
postprocessing system for error correction using binary
n-grams. IEEE Transactions on Computers, (5):480–
493.

Rumelhart, D., Hinton, G., and Williams, R. (1986).
Learning internal representations by error propagation in
parallel distributed processing”, de rumelhart, jl mcclel-
land eds.

Von Ahn, L. and Dabbish, L. (2008). Designing games
with a purpose. Communications of the ACM, 51(8):58–
67.

Von Ahn, L., Blum, M., Hopper, N. J., and Langford, J.
(2003). Captcha: Using hard ai problems for security.
In International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 294–311.
Springer.

Von Ahn, L., Liu, R., and Blum, M. (2006). Peekaboom:
a game for locating objects in images. In Proceedings of
the SIGCHI conference on Human Factors in computing
systems, pages 55–64. ACM.

Von Ahn, L. (2006). Games with a purpose. Computer,
39(6):92–94.

Wagner, R. A. (1974). Order-n correction for regular lan-
guages. Communications of the ACM, 17(5):265–268.

Yannakoudakis, E. J. and Fawthrop, D. (1983). The rules
of spelling errors. Information Processing & Manage-
ment, 19(2):87–99.


	Introduction
	Related Work
	Error detection and correction
	Non-word detection techniques
	Isolated-word correction techniques
	Context-based correction techniques
	Summary

	Games with a Purpose
	The ESP Game & Peekaboom
	Phrase Detectives
	Digitalkoot
	Designing GWAPs
	Summary


	Methodology
	Cipher: A game to detect errors in text
	Artificial error distractors
	Cipher mechanism

	Implementation
	Data storage

	Results
	Discussion
	Conclusion
	Bibliographical References

