
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4129–4140
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

4129

Connecting the Dots: A Knowledgeable Path Generator
for Commonsense Question Answering

Peifeng Wang1,3, Nanyun Peng1,2,3, Filip Ilievski3, Pedro Szekely1,3, Xiang Ren1,3

1Department of Computer Science, University of Southern California
2Department of Computer Science, University of California, Los Angeles

3Information Sciences Institute, University of Southern California
{peifengw,xiangren}@usc.edu, violetpeng@cs.ucla.edu

{ilievski,pszekely}@isi.edu

Abstract

Commonsense question answering (QA) re-
quires background knowledge which is not ex-
plicitly stated in a given context. Prior works
use commonsense knowledge graphs (KGs) to
obtain this knowledge for reasoning. How-
ever, relying entirely on these KGs may not
suffice, considering their limited coverage and
the contextual dependence of their knowledge.
In this paper, we augment a general common-
sense QA framework with a knowledgeable
path generator. By extrapolating over exist-
ing paths in a KG with a state-of-the-art lan-
guage model, our generator learns to connect
a pair of entities in text with a dynamic, and
potentially novel, multi-hop relational path.
Such paths can provide structured evidence for
solving commonsense questions without fine-
tuning the path generator. Experiments on two
datasets show the superiority of our method
over previous works which fully rely on knowl-
edge from KGs (with up to 6% improvement in
accuracy), across various amounts of training
data. Further evaluation suggests that the gen-
erated paths are typically interpretable, novel,
and relevant to the task.1

1 Introduction

Solving commonsense QA tasks requires filling
gaps with external knowledge. For instance, given
the multiple-choice question in Figure 1, a system
needs to know that fungus grows in moist envi-
ronments, such as caves, and that a cave is a type
of geological feature. Such commonsense knowl-
edge is obvious for humans but most existing QA
systems do not have it or cannot reason with it.

Although recent advances in pre-trained lan-
guage models (LMs) have resulted in impres-
sive performance on commonsense-related bench-
marks (Zellers et al., 2018; Bhagavatula et al., 2019;

1The code is available at https://github.com/
wangpf3/Commonsense-Path-Generator.
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Q: In what geological feature will you find fungus growing?
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Figure 1: Our path generator learns to connect the ques-
tion entities (in red) and choice entities (in blue). The
dashed arrow indicates a missing link in a static KG.

Huang et al., 2019), it is unclear whether this is due
to commonsense reasoning or to capturing spuri-
ous correlations in the data (Niven and Kao, 2019).
Pre-trained LMs may answer a question correctly
for wrong reasons, making them highly uninter-
pretable (Mitra et al., 2019).

Alternatively, a set of systems retrieve external
knowledge either from large text corpora or knowl-
edge graphs (KGs). A corpus, however, might not
be an ideal source of commonsense knowledge,
as such knowledge is seldom stated explicitly in
text (Storks et al., 2019). In contrast, common-
sense KGs, like ConceptNet (Speer et al., 2017)
and ATOMIC (Sap et al., 2019), provide structured
evidence about the relevant entities, thus enabling
effective reasoning and higher interpretability. Ex-
isting systems retrieve knowledge from a KG in the
form of: triplets (Mihaylov and Frank, 2018), multi-
hop paths (Lin et al., 2019; Bauer et al., 2018), or
subgraphs (Kapanipathi et al., 2019).

Despite the aforementioned benefits, exploiting
these KGs poses the following challenges. Firstly,
as KGs are known to suffer from sparsity (Li
et al., 2016), they might not contain the knowledge
needed to fill the gaps between the question and the
answer. For example, a missing link (cave, IsA, ge-
ological feature) in Figure 1 might prevent the QA
system from choosing the correct answer. Recent

https://github.com/wangpf3/Commonsense-Path-Generator
https://github.com/wangpf3/Commonsense-Path-Generator
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work on commonsense KG completion (Li et al.,
2016; Bosselut et al., 2019; Bosselut and Choi,
2019) is limited to predicting the tail of a statement
with known head and relation, or a single-hop re-
lation between entities. Secondly, due to the large
size and heterogeneity of modern KGs, contextual-
ization—i.e., identifying a set of KG facts which
are relevant or needed to answer a question—is
also difficult (Fadnis et al., 2019). Simply retriev-
ing all paths could introduce noisy information and
potentially harm reasoning.

To address this gap between LMs and KGs, we
propose a knowledgeable path generator (PG) that
generalizes over the facts stored in a KG, rather
than only retrieving them. We call our method neu-
ral KG due to its neural generalization over struc-
tured KGs, and, in contrast, we use the term static
KG for methods which rely exclusively on existing
facts in a KG. Our PG connects a pair of ques-
tion and answer entities with a (novel) multi-hop
path, which may not exist in the KG, allowing for
missing facts like (cave, IsA, geological feature) in
Figure 1 to be considered during inference.

To learn such a generator, we: (1) sample a set of
random walk instances from a static commonsense
KG based on rules and constraints for informa-
tiveness and relevance (§3.1); (2) fine-tune a pre-
trained language model — GPT-2 (Radford et al.,
2019) on the sampled paths (§3.2). By doing so, we
transfer the rich knowledge encoded in GPT-2 to
our PG. This is expected to both enhance the gener-
alization ability of the PG and combat the sparsity
of KGs. Also, by generating high-quality missing
links between the question and answer entities, we
contextualize the task with relevant commonsense
knowledge. To understand the impact of our multi-
hop PG on downstream commonsense QA tasks,
we integrate the PG in an augmented version of a
general QA framework (§3.3).

We run experiments on two benchmark datasets
CommonsenseQA (Talmor et al., 2018) and Open-
BookQA (Mihaylov et al., 2018). The results show
that out method performs better than previous sys-
tems augmented with static KGs by up to 6% in ac-
curacy, which also reveals its potential as a plug-in
module for various datasets and as a vital comple-
ment to existing KG structures. In the low-resource
setting, the accuracy gain over the baselines grows
as the training data decreases, indicating a larger
inductive bias of our generator. We also assess the
quality and interpretability of our paths through
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Figure 2: Our KG-augmented QA Framework. The rea-
soning module leverages both the unstructured context and
structured knowledge to answer a question.

both automatic and human evaluation.
To summarize, our key contributions are:

1. We propose a method to generate task-relevant
knowledge paths that may not exist in the orig-
inal KG, thus addressing the contextualization
and sparsity challenges of KGs.

2. We design and implement a framework with
three variants of our PG, to understand the
role of local and global graph information.

3. Extensive experiments on two benchmark
datasets demonstrate the effectiveness of our
method compared to previous methods, as
well as its robustness to limited training data.

2 Preliminaries

Our multiple-choice commonsense QA setup fol-
lows prior work (Talmor et al., 2018; Mihaylov
et al., 2018; Bisk et al., 2020): given a question
q, a system selects exactly one of the choices a
as an answer. To experiment with contextualized
background knowledge, we adopt a general frame-
work (Figure 2) consisting of a context module, a
knowledge module and a reasoning module. The
context module encodes both the question q and a
choice a as unstructured evidence, while the knowl-
edge module encodes external facts as structured
evidence. Both the unstructured and the structured
evidence are fed to the reasoning module, which
produces a score for a question-choice pair. The
choice with a highest score would be the predicted
answer. Next, we introduce each module in detail.
Context Module We concatenate a question q and
one of its choices a with a special token, and feed
the sequence into a contextual encoder. This en-
coder generates an embedding c, which serves as
an unstructured evidence to our system. As com-
monly done for textual input, we consider a bidi-
rectional pre-trained language model (Devlin et al.,
2018; Liu et al., 2019) as a contextual encoder.
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Knowledge Module Given a commonsense KG
G = (E ,R), where E is the entity set and R is the
relation set, we seek a set of relevant knowledge
facts for a question-choice pair {q, a}, which would
serve as structured evidence to support reasoning.
We employ an entity recognition system to extract
relevant entity mentions in the question (denoted by
Eq = {eq}) and one of the choices (Ea = {ea}). We
connect each pair of question-choice entities with a
multi-hop path, which can be done either by retriev-
ing existing paths for now (as in previous methods)
or by generating paths (see §3.3). Formally, a path
is p(eq, ea) = {eq, r0, e1, r1, ..., rT−1, ea} where
T is the number of hops. Note that when T = 1,
the path is a single triplet. The set of paths is de-
noted by P = {p(eq, ea)∣eq ∈ Eq, ea ∈ Ea}.

Naturally, we employ a Relational Network
(RN) (Santoro et al., 2017) to aggregate the re-
trieved paths into a static knowledge embedding k,
which serves as structured evidence. In essence, a
RN is a composite function over the set P:

k = fφ({gθ(p)∣p ∈ P}), (1)

where fφ could be any aggregation function and gθ
could be any neural network which projects a dis-
crete path p into a fixed-size continuous embedding
p. We expect that not all paths contribute equally to
choosing the right answer. Therefore, we construct
the function fφ as an attention network:

k = ∑
p∈P

αpp. (2)

We compute the attention weight αp by using the
context embedding c as a query:

αp =
exp(α̂p)

∑
p
′ exp (α̂

p
′ ) , (3)

where the context embedding c guides (as an atten-
tion query) the encoding of the structured evidence:

α̂p = c
⊤tanh(Watt ⋅ p + batt). (4)

Here, the attention network is parameterized by
(Watt,batt) and tanh(⋅) is a nonlinear activation
function. Regarding the function gθ, we employ its
original formulation:

gθ(p) = MLP[eq; (r0 ◦ ... ◦ rT−1); ea], (5)

where [; ] is vector concatenation and ◦ stands
for element-wise multiplication. The components

(entities and relations) of a path are represented by
their feature vectors.
Reasoning Module This module leverages the un-
structured evidence (the context embedding c) and
the structured one (the knowledge embedding k),
to compute the plausibility of a question-choice
pair. We concatenate c with k and feed them to
the final classification layer, which is a linear trans-
formation that scores a question-choice pair {q, a}:

f(q, a) =Wcls ⋅ [c;k] + bcls, (6)

The linear classification layer is parameterized by
(Wcls,bcls). We get the final probability over all
choices by normalizing with softmax.

3 Knowledgeable Path Generator

Extracting the structured evidence by retrieving
paths (or subgraphs) from a static KG, as in prior
work (Mihaylov et al., 2018; Lin et al., 2019; Kapa-
nipathi et al., 2019), faces two key challenges: spar-
sity and contextualization (§1). We thus propose a
knowledgeable path generator (PG), which learns
to connect a question-choice entity pair (eq, ea)
with a multi-hop path. The generated paths are
used as structured evidence in the knowledge mod-
ule. Next, we detail the construction of training
data (§3.1), the learning of our path generator over
this data (§3.2), and the integration of the generator
into the reasoning module (§3.3). Figure 3 presents
an overview of our adapted knowledge module.

3.1 Knowledge Path Sampling

We sample paths from a commonsense KG us-
ing random walks, in order to provide training
data for our PG. Such paths are expected to con-
tain useful knowledge for commonsense QA tasks.
Given a KG G = (E ,R), each sampled path
p = {e0, r0, e1, r1, ..., rT−1, eT } is a random walk
on the graph, where et ∈ E and rt ∈ R. The
number of hops, T , is a hyperparameter in our
method. To improve the quality of the paths, we
adopt two heuristic strategies. For relevance, we
define a subset of relation types that are useful for
answering commonsense questions, e.g., AtLoca-
tion and IsA, and filter out the remaining ones, e.g.,
RelatedTo, prior to sampling (see Appendix B for
the discarded relations). For informativeness, we
require all relation types in a path to be distinct.

We explore two sampling strategies in order to
select the starting node of the random walks:
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organism	-->	IsA	-->	ecosystem	-->	HasContext	-->	resources

overpopulation	-->		_Causes	-->	reproducing	-->	HasPrerequisite	-->	resource

overpopulation	-->	IsA	-->	ecosystem

organism	-->	PartOf	-->	ecosystem

Attention

Context Encoder

Q: Overpopulation	of	an	organism	can?

A: strain	the	resources	of	an	ecosystem

GPT-2

resources			<SEP>				organism										is														a							ecosystem		...		resources

<MASK>			<MASK>								is														a								ecosystem								...														<END>

(1) Entity Recognition in question and choice. (2) Paths Generation for Connecting Each QA-Entity Pair

(2.1) Generation Process for Connecting One QA-Entity Pair (the shaded part is given as input during inference).

(3) Knowledge Path Aggregation

Context Embedding

Knowledge Embedding

[CLS] Question [SEP] Choice [SEP]

Figure 3: Overview of our adapted knowledge module. (1) Extraction of entities from a question and its answer choices. (2)
Generation of a multi-hop knowledge path with our PG to connect each pair of question and answer entities. (3) Aggregation of
the generated paths into a knowledge embedding.

Local Sampling. The random walks start from
the entities that appear in the questions and answer
choices of the training set of a benchmark. This
strategy is expected to favor generation of paths
that are tailored to the task.

Global Sampling. We conduct random walks start-
ing from each entity in E . This may divert our PG
away from biasing on the local structure of the KG
and enhance its generalizability to unseen data.

To include entities that are connected only with
inverse triplets in a path, we add a reverse relation
r
−1 for each relation r. We also sample paths with a

mixed number of hops T , so our generator can learn
to connect entities using paths of variable length,
when needed. The full path sampling procedure is
described by Algorithm 1 in the Appendix.

3.2 Generating Paths to Connect Entities
We employ GPT-2 (Radford et al., 2019) as the
backbone of our path generator. GPT-2 is a pre-
trained language model that encodes rich unstruc-
tured knowledge from large text corpora. We fore-
see two benefits of combining a pre-trained model
such as GPT-2 and a static KG: (1) the language
model would be able to generate commonsense
knowledge paths, by being enriched with relevant
structured knowledge; (2) the unstructured knowl-
edge encoded in the language model would help to
alleviate the sparsity challenge of the static KGs.

Unlike COMET (Bosselut et al., 2019) which
fine-tunes GPT (an earlier version of GPT-2)
with independent triplets, we fine-tune GPT-2
with consecutive triplets that form paths (see Sec-
tion 3.1). To do so, we first use GPT-2’s Byte-
Pair Encoding (Sennrich et al., 2016) to convert
each symbolic path p to its textual form as a se-
quence {x0,y0,x1,y1, ...,yT−1,xT }, where xt =

{x1t , x2t , ..., x
∣et∣
t } are phrase tokens of the entity et

and yt = {y1t , y2t , ..., y
∣rt∣
t } are phrase tokens of the

Table 1: Example Transformation of a Symbolic Path
into Text.

{predator, DistinctFrom, prey, IsA, animal}
→ { animal, [SEP], predator , distinct, from, prey, is, a, animal}

relation rt. The reverse relations are represented
by adding a special prefix token “ ”. The resulting
paths mimic natural language sentences to facili-
tate optimal usage of the knowledge encoded in the
pre-trained language model. At inference time, in
order to connect the question-choice entities, we
also add the last entity phrase tokens xT together
with a separate token [SEP] at the beginning of
each path sequence, which produces the final trans-
formation s

p. This informs the generator about the
last entity it should output when generating a path.
Table 1 provides an example path transformation.

The PG learns to maximize the probability of the
observed paths given the entity pairs. We use neg-
ative conditional log likelihood as a loss function:

L = −
∣sp∣
∑

t=∣x0∣+∣xT ∣+1
logP (spt ∣ sp<t), (7)

where the conditional probability is defined as:

P (spt ∣ sp<t) = softmax(Wvocab ⋅ ht). (8)

Here ht denotes the final GPT-2 representation for
s
p
t . Wvocab is the embedding matrix for the token-

based vocabulary used by GPT-2, which general-
izes well to unseen words.2 During the inference,
the target entity (ea), the [SEP] token, and the start-
ing entity (eq) are fed to our generator (the shaded
part in Table 1), and greedy decoding is used to
generate a path connecting the two entities. Other
constrained decoding strategies would be left as
future work.

2This is because an unseen word of an entity or a relation
may be split into several tokens that exist in the vocabulary.
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3.3 Adapted Commonsense QA Framework

To facilitate integration of the structured evidence
from our path generator instead of a static KG, we
adapt the knowledge module from §2 slightly.

We construct the path set P by generating a
multi-hop path p(eq, ea) for each pair of a ques-
tion entity eq and a choice entity ea with our PG
and greedy decoding. To represent each path with
an embedding, we perform mean pooling of the
hidden states from the last layer of GPT-2 (before
the softmax layer in Eq. 8) as a new formulation
for the function gθ:

gθ(p) = MEAN({h1,h2...,h∣sp∣}). (9)

Since GPT-2 has been pre-trained on a large corpus,
we believe such representation should be sufficient
for preserving the information of the paths. Then,
the knowledge embedding obtained with the func-
tion fφ of the RN (Eq. 2-4) is concatenated with the
original static knowledge embedding as our new
definition of k.

The whole pipeline is optimized by minimizing
its cross-entropy loss. The set of learnable parame-
ters excludes the parameters of our proposed PG,
because we observed that fixing their values yields
optimal performance. This points to another ad-
vantage of our PG: after being fine-tuned on the
sampled random walks from a KG, the PG could
be integrated within an existing QA system with
no further training.

4 Experiments

4.1 Datasets

We evaluate our method on two commonsense
QA benchmarks: CommonsenseQA (Talmor et al.,
2018) and OpenBookQA (Mihaylov et al., 2018).
As the test set of CommonsenseQA is not publicly
available, the predictions for it can only be evalu-
ated once every two weeks via the official leader-
board. Thus, we report our test score on the leader-
board, and perform more extensive comparisons
on the data split used in Lin et al. (2019). Besides
questions and answers, OpenBookQA provides a
collection of background facts in a textual form.
We use the correspondence between these facts and
their questions, prepared by Clark et al. (2019), as
an additional input to the context module for all
methods, except RoBERTa-large (see §4.5).

4.2 KG and Path Data Preparation

Entity Recognition We employ Concept-
Net (Speer et al., 2017), a popular commonsense
KG. As stated in §3.1, we disregard triplets that be-
long to a predefined set of relations (see Appendix).
Similar to previous work (Lin et al., 2019), we
use lexical matching to ground the entities men-
tioned in the question and the answer choices to
our KG. One exception is that each answer choice
in CommonsenseQA is treated as a single entity,
as these tend to correspond directly to concepts in
ConceptNet.

Path Sampling We sample a set of paths with vary-
ing lengths, ranging from 1 to 3 hops. Global
sampling generates 2,825,692 paths, while local
sampling results in 133,612 paths for Common-
senseQA and 105,155 for OpenBookQA. We split
them into training/dev/test sets at a 90 ∶ 5 ∶ 5 ratio.

4.3 Baselines

As baselines, we consider a fine-tuned LM, static
KG-augmented models, and a 1-hop link predictor
on the question and the answer entities.

Fine-tuned LM. To examine the role of the ex-
ternal knowledge, we compare to a “Fine-tuned
LM” ablation of our QA framework without the
knowledge module (§2).

Static KG Models. We compare to three static
KG variants of our QA framework that model the
knowledge module with path/graph encoders: (1)
a RN degenerate version of our system, which
computes a knowledge embedding by an atten-
tion mechanism over the retrieved paths for each
question-choice entity pair; (2) Relational Graph
Convolutional Networks (RGCN) (Schlichtkrull
et al., 2018) which encode local graphs by using
graph convolutional networks with relation-specific
weight matrices; (3) GconAttn (Wang et al., 2019)
which models the alignment between entities via
attention and pools over all entity embeddings.

Link Prediction Model. This baseline predicts
the relation between question and answer entities
instead of creating or finding knowledge paths.
Namely, we employ TransE (Bordes et al., 2013) to
learn a representation for every entity and relation
in ConceptNet, which is then leveraged to predict
a 1-hop relation for each pair of question and an-
swer entities. The representations for each resulting
triplet are used as 1-hop path embeddings. The rest
of this baseline is identical to our QA framework.



4134

Table 2: Test accuracy with varying proportions of CommonsenseQA (using the data split in (Lin et al., 2019)). Results (as
mean and standard deviation) are computed over 4 experimental runs with different random seeds (top score in boldface, second
score underlined). Parts of the results for baselines are reported from our another work (Feng et al., 2020).

Methods BERT-large RoBERTa-large

20% Train 60% Train 100% Train 20% Train 60% Train 100% Train

Fine-tuned LM (w/o KG) 46.25 (±0.63) 52.30 (±0.16) 55.39 (±0.40) 55.28 (±0.35) 65.56 (±0.76) 68.69 (±0.56)
+ RN 45.12 (±0.69) 54.23 (±0.28) 58.92 (±0.14) 61.32 (±0.68) 66.16 (±0.28) 69.59 (±3.80)
+ RGCN 48.67 (±0.28) 54.71 (±0.37) 57.13 (±0.36) 58.58 (±0.17) 68.33 (±0.85) 68.41 (±0.66)
+ GconAttn 47.95 (±0.11) 54.96 (±0.69) 56.94 (±0.77) 57.53 (±0.31) 68.09 (±0.63) 69.88 (±0.47)
+ Link Prediction 47.10 (±0.79) 53.96 (±0.56) 56.02 (±0.55) 60.84 (±1.36) 66.29 (±0.29) 69.33 (±0.98)
+ PG-Local 50.20 (±0.31) 55.68 (±0.07) 56.81 (±0.73) 61.56 (±0.72) 67.77 (±0.83) 70.43 (±0.65)
+ PG-Global 49.89 (±1.03) 55.47 (±0.92) 57.21 (±0.45) 62.93 (±0.82) 68.65 (±0.02) 71.55 (±0.99)
+ PG-Full 51.97 (±0.26) 57.53 (±0.19) 59.07 (±0.30) 63.72 (±0.77) 69.46 (±0.23) 72.68 (±0.42)

Table 3: Test accuracy on OpenBookQA. Methods with
AristoRoBERTa leverage the textual evidence by Clark et al.
(2019) as an additional input to the context module.

Methods RoBERTa-large AristoRoBERTa

Fine-tuned LMs (w/o KG) 64.80 (±2.37) 78.40 (±1.64)
+ RN 65.20 (±1.18) 75.35 (±1.39)
+ RGCN 62.45 (±1.57) 74.60 (±2.53)
+ GconAtten 64.75 (±1.48) 71.80 (±1.21)
+ Link Prediction 66.30 (±0.48) 77.25 (±1.11)
+ PG-Local 70.05 (±1.33) 79.80 (±1.45)
+ PG-Global 68.40 (±0.31) 80.05 (±0.68)
+ PG-Full 71.20 (±0.96) 79.15 (±0.78)

4.4 Model Variations
We experiment with three variants of our method
which differ in terms of the knowledge embedding:
(1) PG-Full: combination of our global PG and
a static RN as detailed in §3.3; (2) PG-Local: a
local PG which is trained on both local and global
paths; (3) PG-Global: a global, data-independent
PG which is trained on global paths only. We note
that PG-Local and PG-Global do not include the
static knowledge embedding.

4.5 Results

Main Results For all systems, we experiment
with several encoders as a context module: BERT-
large (Devlin et al., 2018) and RoBERTa-large (Liu
et al., 2019) for CommonsenseQA, RoBERTa-large
and AristoRoBERTa (Clark et al., 2019) for Open-
BookQA. Tables 2 and 3 show the results for Com-
monsenseQA and OpenBookQA, respectively. On
both datasets, we observe consistent improvements
brought by our method with different context en-
coders. Our full model which, combines both gen-
erated and static knowledge, achieves the best per-
formance overall, suggesting these two knowledge
sources are complementary. Typically, either our
local or global variant yields second best results,
demonstrating the effectiveness of the generated

Table 4: Test accuracy on CommonsenseQA’s official
leaderboard. Note that the SOTA system, UnifiedQA is im-
practical (11B parameters) in an academic setting.

Methods Single Ensemble

RoBERTa (Liu et al., 2019) 72.1 72.5
RoBERTa+FreeLB (Zhu et al., 2019) - 73.1
RoBERTa+HyKAS (Ma et al., 2019) 73.2 -
XLNet+DREAM 73.3 -
RoBERTa+KE - 73.3
RoBERTa+KEDGN - 74.4
XLNet+GraphReason (Lv et al., 2019) 75.3 -
Albert (Lan et al., 2019) - 76.5
UnifiedQA* (Khashabi et al., 2020) 79.1 -

Albert+PG-Full 75.6 78.2

paths as structured evidence and their superiority
over the static KG methods. The comparable per-
formance of Link Prediction to the static KG meth-
ods indicates that even predicting 1-hop knowledge
paths helps to address the KG sparsity.

Furthermore, we report comparable results to the
other systems on the official test sets, accessible via
the leaderboards (Tables 4 and 5). Notably, the two
best-performing systems, UnifiedQA (Khashabi
et al., 2020) and TTTTT (Raffel et al., 2019), are
based on the T5 language model (Raffel et al.,
2019), which requires excessive computational re-
sources and is impractical in an academic setting.
Excluding these, our full method achieves the best
performance on both datasets.

Less Labeled Data To compare the robustness of
our model and the baselines to sparsity, we perform
experiments with {20%, 40%, 60%, 80%, 100%}
of the training data from both datasets. The results,
displayed in Table 2 and Figure 4, show that our
method (with RoBERTa) performs better or equal
to the baselines with any amount of training data.
The performance gain brought by either our Global
or Full model is higher when less data is used,
which shows that introducing structured evidence
as inductive bias helps in a low-resource setting.
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Table 5: Test accuracy on OpenBookQA leaderboard. All
listed methods leverage the provided science facts as addi-
tional textual input. Note that the top 2 systems, UnifiedQA
(11B parameters) and TTTTT (3B parameters) are computa-
tionally expensive and impractical in an academic setting.

Methods Test

Careful Selection (Banerjee et al., 2019) 72.0
AristoRoBERTa 77.8
KF + SIR (Banerjee and Baral, 2020) 80.0
Albert + KB 81.0
TTTTT* (Raffel et al., 2019) 83.2

UnifiedQA* (Khashabi et al., 2020) 87.2

AristoRoBERTa + PG-Full 80.2
Albert + PG-Full 81.8

20 40 60 80 100
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55.0
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Figure 4: Test accuracy on CommonsenseQA (left) and Open-
BookQA (right) with different proportions of training data.

Ablation Study We study the contribution of dif-
ferent strategies for learning our generator based
on the performance of our Global and Local vari-
ants in Tables 2-3. We also include another vari-
ant by training our path generator from scratch,
i.e. training a randomly-initialized model with
the same architecture as GPT-2 instead of fine-
tuning a pre-trained one. This Scratch variant
achieves 68.75 and 65.50 accuracy on the Com-
monsenseQA and OpenBookQA test sets, respec-
tively, with RoBERTa-large as the text encoder. Its
performance thus resembles that of the static KG
baselines while our Full method achieves 72.68
and 71.20. This demonstrates that learning paths
from scratch approximates what a static KG has al-
ready, whereas the unstructured knowledge stored
in a pre-trained GPT-2 helps to complement miss-
ing knowledge in a static KG. When coupled with
a more powerful encoder like RoBERTa or Albert,
our Global variant achieves comparable or better
results than our Local variant, without fitting the
paths to the task, and thus holds a promise to en-
hance generalization on a wider range of datasets.

4.6 Study of Path Quality & Interpretability
Automatic Evaluation We perform automatic
evaluation of the validity and novelty of the gener-

Table 6: Automatic and Human Evaluation of the gener-
ated Paths on the task testset. All scores are scaled to be
percentage-based.

Metric CommonsenseQA OpenBookQA

Global Scratch Global Scratch

Connection 97.33 91.16 96.03 96.01
Valid Entity 98.64 97.78 99.21 97.97
Valid Relation 100.00 100.00 100.00 100.00
Score 59.31 53.27 57.74 50.62
Novelty 75.82 58.18 78.93 53.81

H-Valid 89.20 60.13 84.93 53.73
H-Relevance 87.53 70.53 88.13 74.00

ated paths from our Global and Scratch PG variants.
To automatically measure validity, we analyze (1)
the proportion of paths which successfully connect
the head and the tail entities (Connection), (2)
the proportion of entities/relations found in Con-
ceptNet (Valid Entity / Relation). We
also leverage a commonsense knowledge base com-
pletion model, Bilinear AVG (Li et al., 2016), which
produces a score for a given triplet. This model
reportedly achieves 92.5% accuracy on common-
sense knowledge completion and has been used in
previous work (Bosselut et al., 2019). We average
the scores of all the triplets in a path which are miss-
ing in ConceptNet as its Score. We compute nov-
elty as the proportion of paths which contain at least
one triplet missing in ConceptNet (Novelty).

The results are presented in Table 6. Firstly, our
two generator variants are able to connect a vast
majority of the entity pairs with a valid path (over
90% Connection). For this purpose, our gen-
erators only use the relations in the relation set
instead of other, out-of-KG phrases (100% Valid
Relation). In addition, the novel paths from the
Global generator are of higher quality compared
with the ones from the Scratch generator, given
that any fact with a score over 0.5 is classified as
positive by Bilinear AVG, which is later confirmed
by our human evaluation as well. The Global gen-
erator also has a higher Novelty, indicating the
necessity of transferring knowledge from a pre-
trained GPT-2 to complement a static KG.

Human Evaluation We also conduct human eval-
uation on two dimensions of the generated paths:
(1) validity (How valid are the paths?) (2) rele-
vance (How relevant are the paths to the question?).
We randomly sample 50 paths from our Global and
Scratch generator for different question-choice en-
tity pairs in the test datasets. For each path, we
provide the corresponding question and answer
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Table 7: Paths from question to gold answer entities,
with novel and valid triplets in boldface.

Q1: Where would you find magazines along side many other printed works?
A: doctor. B∗ ∶ bookstore. C: market. D: train station. E: mortuary.
PG-Global (2-hop): {magazine, IsA, book, AtLocation, bookstore}
PG-Scratch: {magazine, IsA, magazine, AtLocation, bookstore}

Q2: If you want harmony, what is something you should try to do with the world?
A: take time. B: make noise. C: make war. D∗ ∶ make peace. E: make haste.
PG-Global (2-hop): {harmony, MotivatedByGoal, make better world,
HasPrerequisite, make peace}
PG-Scratch: {harmony, UsedFor, committing perjury, Causes, make peace}

Q3: Janet was watching the film because she liked what?
A: rejection. B: laughter. C∗ ∶ being entertained. D: fear. E: bordem.
PG-Global (1-hop): {film, CausesDesire, being entertained}
PG-Scratch: {film, HasContext, being entertained}

choices as the context. We ask three annotators to
score each path from 1 (Not at all) to 5 (Very), re-
sulting in a total of 150 scores for each dimension/-
generator/dataset. The averages of these scores
are reported as H-Valid and H-Relevance in
Table 6. For both dimensions, our Global genera-
tor achieves higher scores, showing the ability of
fine-tuning a pre-trained GPT-2 as our generator to
learn the path distribution which is of high quality
and relevant to commonsense QA.

Path Interpretability. In Table 7, we compare ex-
ample paths generated by our Global and Scratch
variants to connect the question entities to the gold
answer entities. In Q1, our Global generator pro-
vides knowledge about the location of an entity
with a 2-hop path, which helps with answering
such “Where” questions. Although the path from
our Scratch generator also contains the AtLocation
relation, its first generated hop ( IsA) is less in-
formative. In Q2, our Global generator is able to
connect complex ideas about harmony and mak-
ing peace with a 2-hop path, while the path from
the Scratch variant contains incorrect information:
peace is caused by committing perjury. In Q3, the
path from our Global generator is able to predict
the relevant property of an entity and realizes that
a 1-hop relation suffices in this case. Our Scratch
variant, however, predicts a less precise relation
( HasContext). These cases show the path general-
ization ability of the fine-tuned pre-trained GPT-2,
owed to its unstructured knowledge. We refer read-
ers to Table 12 in Appendix for more cases.

5 Related Work

Multi-hop Reasoning on KGs. Recent bench-
marks for commonsense QA and related tasks like
open domain QA (Yang et al., 2018) and reading
comprehension (Welbl et al., 2018), require sys-
tems to conduct multi-hop reasoning. Existing sys-
tems typically employ entity linking to recognize

the relevant entities, ground them to a KG, and
retrieve the paths from the local graph neighbor-
hood around the entities. The retrieved paths are
scored or ranked using graph-based metrics (e,g.,
PageRank, centrality) (Paul and Frank, 2019; Fad-
nis et al., 2019; Bauer et al., 2018), handcrafted
rules (Kapanipathi et al., 2019) or neural methods
(e.g., attention mechanisms) (Kundu et al., 2018;
Lin et al., 2019). Rather than relying on a static
KG, our PG is able to generate knowledge paths
dynamically, even when these are absent in the KG.
Dynamic Knowledge Path Generation. Several
methods generate knowledge paths instead of ex-
tracting them from static KGs. Asai et al. (2019)
learn reasoning paths by forming sequences of evi-
dence documents, however, their approach relies on
the inter-document hyperlinks to establish relations
in the constructed KG. The extractor of Fu et al.
(2019) retrieves missing facts in order to address
the sparsity of KGs. Unlike our work, their setting
is limited to knowledge graph completion, where
both a query entity and a single query relation are
given. The most similar existing work to ours is
that by Bosselut and Choi (2019), which also lever-
ages GPT-2 to dynamically generate knowledge
paths. We see two key differences between this
method and ours: (1) they expand their paths grad-
ually by predicting the next entity one at a time,
while we generate the paths in an end-to-end man-
ner; (2) their method is restricted to a setting where
the context could be treated as a single entity and
the question - as a query relation, which is not a
limitation to our method.

6 Conclusion

In this paper, we propose a generator of multi-hop
knowledge paths, which provides structured evi-
dence for answering commonsense questions. The
generator, learned by fine-tuning GPT-2 on ran-
dom walks sampled from ConceptNet, produces
a path between each pair of question and answer
entities. All generated paths are aggregated into a
knowledge embedding and fused with a context
embedding given by a text encoder for classifi-
cation. Our QA framework enhanced with this
generator outperformes both pre-trained language
models and prior KG-augmented methods on two
commonsense QA benchmarks. The accuracy gain
increases with less training data. Furthermore,
automatic- and human-based evaluations of the
generated paths yield high scores for their validity,
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novelty, and relevance. Future research should in-
vestigate how to optimally fuse the knowledge and
the context embeddings. It should also address the
ambiguity of the entity mentions in the questions,
the answers, and the lexical nodes in ConceptNet.
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A Algorithm for Path Sampling

Algorithm 1 Path Sampling
Input: G = (E ,R) and a set of all the question entities {eq}
Output: A set of triplet paths {p}.
1: repeat
2: if Do Global Sampling then
3: current node u← uniform sample(E)
4: else
5: current node u← uniform sample({eq})
6: end if
7: p← {u}
8: for t = 1 to T do
9: N ← Neighbor(u)

10: next node v ← uniform sample(N)
11: M ← All Relations(u, v)
12: while TRUE do
13: r ← uniform sample(M)
14: if r not in p then
15: BREAK
16: end if
17: end while
18: p← p ∪ {r, v}
19: u← v
20: end for
21: until Maximum number of paths achieved.

B Discarded Relations

When sampling knowledge paths, we discard some
relation types which are regarded to be uninforma-
tive and offer little help for answering the questions.
They include RelatedTo, Synonym, Antonym, De-
rivedFrom, FormOf, EtymologicallyDerivedFrom
and EtymologicallyRelatedTo.

Table 8: QA Dataset Statistics.

Train Dev Test

CommonsenseQA (official) 9,741 1,221 1,140
CommonsenseQA (Lin et al.) 8,500 1,221 1,241
OpenBookQA 4,957 500 500

C Datasets Split

Both CommonsenseQA3 and OpenbookQA4 have
their datasets available on their leaderboard pages.

3https://www.tau-nlp.org/commonsenseqa
4https://leaderboard.allenai.org/open_

book_qa/submissions/public

The dataset split used in (Lin et al., 2019) is also
available by request and we have included it as a
supplementary material.

Table 9: Learning rate of different context modules for
CommonsenseQA.

Learning Rate Batch Size

BERT-large 2e-5 32
RoBERTa-large 2e-6 16
Albert-xxlarge-v2 1e-5 16

Table 10: Learning rate of different context modules
for OpenBookQA.

Learning Rate Batch Size

Roberta-large 1e-5 32
AristoRoBERTa 2e-5 16
Albert-xxlarge-v2 1e-5 16

D Implementation Details

Path Generator Training We employ a pre-
trained GPT2-base model (Radford et al., 2019)
to initialize our generator. Then we fine-tune the
generator with an initial learning rate of 1e− 5 and
a batch size of 64. The learning rate is changed
with a warm-up period of 500 mini batches and
then linearly decayed. The training lasts until the
loss on the development set no longer decreases for
2 epochs.

Training on the Task Datasets We search for the
optimal hyper-parameters based on the classifica-
tion accuracy on the development set. The learn-
ing rate for the context module is chosen from
{2e− 6, 5e− 6, 1e− 5, 2e− 5, 5e− 5}. The learn-
ing rate for the rest of the parameters is set to 1e−3.
The batch size is chosen from {8, 16, 32, 64, 128}.
A large batch size is achieved by accumulating gra-
dient through several small batches. The training
lasts until the accuracy on the development set no
longer increases for 2 epochs. The optimal hyper-
parameters for both datasets are listed in Tables 9-
10.

Model Size We list the model size of the major
modules in our QA framework in Table 11. These
include the different pre-trained LMs used as a
context module, the backbone of our PG (GPT-2),
and the RN used for the static knowledge module.

https://www.tau-nlp.org/commonsenseqa
https://leaderboard.allenai.org/open_book_qa/submissions/public
https://leaderboard.allenai.org/open_book_qa/submissions/public
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Table 11: Number of parameters of the major modules in our QA framework.

# Parameters

BERT-large 340M
RoBERTa-large 355M
AristorRoBERTa 355M
Albert-xxlarge-v2 223M
GPT2-base 117M
RN 399K

Table 12: More Paths from questions to gold answer entities, with novel and valid triplets in boldface.

Q1: He spent all summer in his room playing video games, because of this it wasn’t surprising
for Mother to find a stack of dirty dishes in her what?
A
∗: son’s room. B: party. C: dishwasher. D: restaurant kitchen. E: shoes

PG-Global: {play video, UsedFor, computer, AtLocation, son’s room}
PG-Scratch: {play video, UsedFor, machine, IsA, son’s room}

Q2: What do people typically do while playing guitar?
A: cry. B: hear sounds. C∗: singing. D: arthritis. E: making music.
PG-Global: {guitar, Usedfor, playing music, HasSubevent, singing}
PG-Scracth: {guitar, HasContext, music, Causes, singing}

Q3: Blue read material outside of his comfort zone because he wanted to gain what?
A
∗: new perspective. B: entertained. C: understanding. D: hunger. E: tired eyes.

PG-Global: {reading material, HasPrerequisite, learning about subject, Causes, new perspective}
PG-Scratch: {reading material, HasSubevent, reading, Causes, new perspective}

Q4: Bob the lizard lives in a warm place with lots of water. Where does he probably live?
A: rock. B∗: tropical rainforest. C: jazz club. D: new mexico. E: rocky places.
PG-Global: {warm place, AtLocation, forest, IsA, tropical rainforest}
PG-Scracth: {warm place, AtLocation, tropical rainforest}

Q5: She was always helping at the senior center, it brought her what?
A: satisfaction. B: heart. C: feel better. D: pay. E: happiness.
PG-Global: {help, UsedFor, giving assistance, Causes, happiness}
PG-Scratch: {help, HasSubevent, giving assistance, MotivatedByGoal, happiness}

Q6: What is likely to satisfy someone’s curiosity?
A
∗: hear news. B: read book. C: see favorite show. D: comedy show. E: go somewhere.

PG-Global: {curiosity, CausesDesire, find information, HasSubevent, read, Hasprerequisite, hear news}
PG-Scratch: {curiosity, CausesDesire, hear news}

Q7: Where would a person be doing when having to wait their turn?
A: have patience. B: get in line. C: sing. D∗: stand in line. E: turn left.
PG-Global: {wait, HasPrerequisite, stand in line}
PG-Scratch: {wait, HasPrerequisite, stand in line}

Q8: It’s easier for human’s to survive in:
A: a cave. B: the ocean. C∗: a town. D: alone.
PG-Global: {survive MotivatedByGoal, live, UsedFor, townhouse, AtLocation, town}
PG-Scratch: {survive, HasProperty, town}

Q9: A man wanted to find the United States on a visual, where should he look?
A: history book. B∗: atlas. C: tv channels. D: northern hemisphere. E: map.
PG-Global: {visual, HasContext, map, AtLocation, atlas}
PG-Scratch: {visual, IsA, atlas}

Q10: What leads to someone going to to bed?
A: bad dreams. B: lazyness. C: get pregnant. D∗: sleepiness. E: rest.
PG-Global: {bed, UsedFor, sleeping, Causes, sleepiness}
PG-Scratch: {bed, UsedFor, sleepiness}


