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Abstract
State-of-the-art Neural Machine Translation
(NMT) models struggle with generating low-
frequency tokens, tackling which remains a
major challenge. The analysis of long-tailed
phenomena in the context of structured predic-
tion tasks is further hindered by the added com-
plexities of search during inference. In this
work, we quantitatively characterize such long-
tailed phenomena at two levels of abstraction,
namely, token classification and sequence gen-
eration. We propose a new loss function, the
Anti-Focal loss, to better adapt model train-
ing to the structural dependencies of condi-
tional text generation by incorporating the in-
ductive biases of beam search in the training
process. We show the efficacy of the proposed
technique on a number of Machine Translation
(MT) datasets, demonstrating that it leads to
significant gains over cross-entropy across dif-
ferent language pairs, especially on the gen-
eration of low-frequency words. We have re-
leased the code to reproduce our results.1

1 Introduction

Autoregressive sequence to sequence (seq2seq)
models such as Transformers (Vaswani et al., 2017)
are trained to maximize the log-likelihood of the
target sequence, conditioned on the input sequence.
Furthermore, approximate inference (search) is
typically done using the beam search algorithm
(Reddy, 1988), which allows for a controlled explo-
ration of the exponential search space. However,
seq2seq models (or structured prediction models in
general) suffer from a discrepancy between token
level classification during learning and sequence
level inference during search. This discrepancy
also manifests itself in the form of the curse of
sentence length i.e. the models’ proclivity to gen-
erate shorter sentences during inference, which

The first author is now a researcher at Microsoft, USA.
1https://github.com/vyraun/long-tailed

has received considerable attention in the literature
(Pouget-Abadie et al., 2014; Murray and Chiang,
2018).

In this work, we focus on how to better model
long-tailed phenomena, i.e. predicting the long-tail
of low-frequency words/tokens (Zhao and Marcus,
2012), in seq2seq models, on the task of Neural
Machine Translation (NMT). Essentially, there are
two mechanisms by which tokens with low fre-
quency receive lower probabilities during predic-
tion: firstly, the norms of the embeddings of low
frequency tokens are smaller, which means that
during the dot-product based softmax operation to
generate a probability distribution over the vocab-
ulary, they receive less probability. This has been
well known in Image Classification (Kang et al.,
2020) and Neural Language Models (Demeter et al.,
2020). Since NMT shares the same dot-product
softmax operation, we observe that the same phe-
nomenon holds true for NMT as well. For example,
we observe a Spearman’s Rank Correlation of 0.43
between the norms of the token embeddings and
their frequency, when a standard transformer model
is trained on the IWSLT-14 De-En dataset (more de-
tails in section 2). Secondly, for transformer based
NMT, the embeddings for low frequency tokens lie
in a different subregion of space than semantically
similar high frequency tokens, due to the differ-
ent rates of updates (Gong et al., 2018), thereby,
making rare words token embeddings ineffective.
Since these token embeddings have to match to the
context vector for getting next-token probabilities,
the dot-product similarity score is lower for low
frequency tokens, even when they are semantically
similar to the high frequency tokens.

Further, better modeling long-tailed phenomena
has significant implications for several text gener-
ation tasks, as well as for compositional general-
ization (Lake and Baroni, 2018). To this end, we
primarily ask and seek answers to the following
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two fundamental questions in the context of NMT:

1. To what extent does better modeling long-
tailed token classification improve inference?

2. How can we leverage intuitions from beam
search to better model token classification?

By exploring these questions, we arrive at the con-
clusion that the widely used cross-entropy (CE)
loss limits NMT models’ expressivity during in-
ference and propose a new loss function to better
incorporate the inductive biases of beam search.

2 Characterizing the Long-Tail

In this section, we quantitatively characterize the
long-tailed phenomena under study at two levels
of abstraction, namely at the level of token clas-
sification and at the level of sequence generation.
To illustrate the phenomena empirically, we use a
six-layer Transformer model with embedding size
512, FFN layer dimension 1024 and 4 attention
heads trained on the IWSLT 2014 De-En dataset
(Cettolo et al., 2014), with cross-entropy and label
smoothing of 0.1, which achieves a BLEU score of
35.14 on the validation set using a beam size of 5.

Figure 1: Token F-measure bucketed by Frequency: F-
measure correlates with the tokens’ training frequency.

2.1 Token Level
At the token level, Zipf’s law (Powers, 1998) serves
as the primary culprit for the long-tail in word dis-
tributions, and consequently, for sub-word (such as
BPE (Sennrich et al., 2016)) distributions . Figure
1 shows the F-measure (Neubig et al., 2019) of the
target tokens bucketed by their frequency in the
training corpus, as evaluated on the validation set.
Clearly, for tokens occurring only a few times, the
F-measure is considerably lower for both words
and subwords, demonstrating that the model isn’t

Split
F̂S

104
BLEU ↑ METEOR ↑ TER ↓ R-BERT ↑

Highest 7.8 38.6 36.4 41.0 65.2
Medium 5.3 34.1 34.2 45.5 61.0
Least 3.4 33.0 34.1 46.2 60.6

Table 1: Sequence Level Long-Tailed Phenomena: The
performance across different metrics deteriorates with
the mean Frequency-Score F̂S .

able to effectively generate low-frequency tokens
in the output. Next, we study how this phenomenon
is exhibited at the sequence (sentence) level.

2.2 Sequence Level

To quantify the long-tailed phenomena manifest-
ing at the sentence level, we define a simple mea-
sure named the Frequency-Score, FS of a sentence,
computed simply as the average frequency of the
tokens in the sentence. Precisely, for a sequence
x comprising of N tokens [x1, . . . , xi, . . . , xN ],
we define the Frequency-Score FS as: FS(x) =∑N

i=1 f(xi)

N
, where f(xi) is the frequency of the

token xi in the training corpus. We compute FS for
each source sequence in the IWSLT 2014 De-En
validation set, and split it into three parts of 2400
sentences each, in terms of decreasing FS of the
source sequences. The splits are constructed by
dividing the validation set into three equal parts
based on the Frequency-score, so that we can com-
pare the performance between the three splits for a
given model.

Table 1 shows the model performance on the
three splits. Scores for 3 widely used MT metrics
(Clark et al., 2011): BLEU, METEOR and TER as
well as the Recall BERT-Score (R-BERT) (Zhang
et al., 2020) are reported. The arrows represent
the direction of better scores. The table shows that
model performance across all metrics deteriorates
as the mean FS value, F̂S of the split decreases. On
aggregate, this demonstrates that the model isn’t
able to effectively handle sentences with low FS .

3 Related Work

At a high level, we categorize the solutions to bet-
ter model long-tailed phenomena into three groups,
namely, learning better representations, improving
(long-tailed) classification and improvements in se-
quence inference algorithms. In this work, we will
be mainly concerned with the interaction between
(long-tailed) classification and sequence inference.
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Better Representations Many recent works (Qi
et al., 2018; Gong et al., 2018; Zhu et al., 2020) pro-
pose to either learn better representations for low-
frequency tokens or to integrate pre-trained rep-
resentations into NMT models. To better capture
long range semantic structure, Chen et al. (2019)
argue for sequence level supervision during learn-
ing.

Long-Tailed Classification A number of works,
(Lin et al., 2017; Kang et al., 2020), have focused
on designing algorithms that improve classification
of low-frequency classes. Below, we list two such
algorithms, used as baselines in section 5:

Focal Loss Proposed in (Lin et al., 2017), Fo-
cal loss (FL) increases the relative loss of low-
confidence predictions vis-à-vis high confidence
predictions, when compared to cross-entropy. It is
described in equation 1, where γ > 0 and p refers
to the probability/confidence of the prediction.

FL(p) = −(1− p)γ log(p) (1)

τ -Normalization Kang et al. (2020) link the
norms of the penultimate (pre-softmax) layer to
the frequency of the class in image classification
(also shown to be true in the context of language
models (Demeter et al., 2020)), and show that nor-
malizing their weights wi i.e. leads to improved
classification:

w̃i =
wi

||wi||τ
(2)

Here, τ is a hyperparameter. The intuition behind
τ -Normalization is based on the simple observa-
tion that the norms of the penultimate layer dictate
the feature span of the corresponding class during
prediction.

At the sequence level, a parallel line of work
has explored penalizing overconfident predictions
(Meister et al., 2020), e.g., Label smoothing has
been shown to yield consistent gains in seq2seq
tasks (Müller et al., 2019).

Sequence Inference Vijayakumar et al. (2018);
Huang et al. (2017) try to modify beam search to
allow for better exploring the output state space.

4 Modeling the Long Tail

To improve the generation of the long-tail of low
frequency tokens, it is important to study how low-
frequency tokens could appear in the candidate
hypotheses during search. Subsequently, we could

Figure 2: Beam Search Analysis: (Top) Positional
scores for Beam size = 5 and (Bottom) PDFs for differ-
ent Beam sizes. Scores aggregated over the validation
set using the IWSLT 14 De-En Model from section 2.

leverage any such biases from sequence level infer-
ence to better model token classification.

Beam Search Analysis To better establish the link
between token level classification and beam search
inference, we study the distribution of positional
scores, i.e. the probabilities selected during each
step of decoding, for the top hypothesis finally se-
lected during beam search. The top plot in Figure
2 shows the histogram of the positional scores, ag-
gregated on the validation set. A Gaussian Kernel
density estimator is fitted to the histograms as well,
and probability density functions (PDFs) for posi-
tional scores are plotted for different beam sizes in
Figure 2 (the bottom plot).

An analysis of the positional scores (Figure 2,
top) reveals that approximately 40 % of the tokens
selected in the top hypothesis have probabilities
below 0.75. Further, the bottom plot in Figure 2
shows that this distribution is consistent across dif-
ferent beam sizes. These observations show that the
approximate inference procedure of beam-search
relies significantly on low confidence predictions.
However, if low-confidence predictions are exces-
sively penalized, the conditional probability distri-
bution will be pushed to lower and lower entropy,
hurting effective search. Therefore, we argue that
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a better trade-off between token level classification
and sequence level inference in NMT could be es-
tablished by allowing low-confidence predictions
to suffer less penalization vis-à-vis cross-entropy.

Figure 3: Comparison of the Loss Functions: Focal
loss penalizes low-confidence predictions most aggres-
sively, while Anti-Focal loss relaxes the relative loss
for low-confidence predictions vis-à-vis cross-entropy.

Figure 4: Test Word F-measure bucketed by Training
Frequency: AFL leads to gains in F-measure across dif-
ferent frequency bins, especially in low-frequency bins.

Anti-Focal Loss Now, we try to establish a better
trade-off for penalizing low-confidence predictions,
which could help improve search, while being sim-
ple and automatic. Firstly, we generalize Focal loss
by introducing a new term α in equation 1:

Generalized-FL(p) = −(1 + α · p)γ log(p) (3)

Clearly, for α = −1 and γ > 0, Generalized-
FL (equation 3) reduces to the Focal loss, while
for α = 0, it reduces to the cross-entropy loss.
Since we intend to increase the entropy of the con-
ditional token classifier in NMT, we propose to use
Generalized-FL with α > 0 and γ > 0, which we

name as Anti-Focal loss (AFL). To understand how
AFL realizes the intuition derived through beam
search analysis, consider Figure 3. Figure 3 shows
the plot for CE, FL with γ = 1 and AFL with γ = 1
and α = 1. In general, AFL allocates less relative
loss to low-confidence predictions. For example,

if we compare the relative loss term
loss(p = 0.6)

loss(p = 0.9)
for the three different losses in Figure 3, then CE
has a score of 4.85, FL has a score of 19.39, while
AFL has a score of 4.08. Further, using α and γ,
we can manipulate the relative loss. Empirically,
we find that γ = 1 and α ∈ {0.5, 1.0} works well
for AFL in practice.

5 Experiments and Results

We evaluate our proposed Anti-Focal loss against
different baselines (CE, FL, τ -Norm) on the task of
NMT and analyze the results for further insights.

Datasets and Baselines We evaluate the pro-
posed algorithm on the widely studied IWSLT 14,
IWSLT 17 (Cettolo et al., 2017) and the Multilin-
gual TED Talks datasets (Qi et al., 2018) (details in
Appendix A). For model training, we replicate the
hyperparameter settings of Zhu et al. (2020), except
that we do not include label-smoothing for a fair
comparison of the loss functions (CE, FL, AFL).
γ = 1 is set for AFL. Further, τ -Normalization (τ -
Norm) was applied post-training both for CE, AFL.
Hyperparameters γ, α, τ were manually tuned.

Experimental Settings For experiments, we use
fairseq (Ott et al., 2019) (more details in Appendix
B). For each language pair, BPE with a joint token
vocabulary of 10K was applied over tokenized text.
A six-layer Transformer model with embedding
size 512, FFN layer dimension 1024 and 4 atten-
tion heads (42M parameters), was trained for 50K
updates for IWSLT datasets and 40K updates for
TED Talks datasets. A batch size of 4K tokens,
dropout of 0.3 and tied encoder-decoder embed-
dings were used. BLEU evaluation (tokenized)
for IWSLT 14 and TED talks datasets is done us-
ing multi-bleu.perl2, while for IWSLT 17 datasets
SacreBLEU is used (Post, 2018). All models were
trained on one Nvidia 2080Ti GPU and a beam size
of 5 was used for each evaluation.

Results The trends in Table 2 show that AFL
consistently leads to significant gains over cross-
entropy. Further, in Table 3 we compare CE and

2https://bit.ly/2Xyst5b
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FL CE + τ -Norm AFL AFL + τ -Norm

Dataset Pair CE γ = 1 γ = 2 τ = 0.2 τ = 0.4 α = 0.5 α = 1 α = 1, τ = 0.2

IWSLT 14 De-En 32.15 31.53 30.60 32.62 32.48 32.95 33.17 33.41
IWSLT 14 En-De 26.93 26.27 25.35 27.16 26.69 27.35 27.05 27.31
IWSLT 14 Es-En 38.95 38.30 37.41 39.29 39.28 39.33 39.47 39.86

IWSLT 17 En-Fr 34.40 34.60 32.60 34.30 33.70 35.40 34.90 34.80
IWSLT 17 Fr-En 34.60 34.00 33.30 35.10 34.60 35.00 35.00 35.30

TED Talks Ru-En 25.22 24.24 23.68 25.22 24.97 25.39 25.64 25.70
TED Talks Pt-En 34.31 32.78 31.17 34.68 34.56 34.43 35.06 35.31

TED Talks Gl-En 13.66 13.53 13.26 13.86 13.73 14.82 13.73 13.84
TED Talks Be-En 3.56 4.01 4.28 3.78 3.92 3.97 4.63 4.69

Table 2: Test BLEU Scores of the Baselines & the Proposed Method. Anti-Focal loss consistently leads to signifi-
cant gains over cross-entropy, with a p-value < 0.01 for each language pair (Clark et al., 2011). Here CE, FL, and
AFL represent cross-entropy, focal, Anti-focal loss respectively. Validation results are presented in Appendix C.

AFL (α = 1) for the three validation splits created
in section 2.2, for the IWSLT 14 De-En dataset.
Table 3 shows that AFL improves the model the
most on the split with the least F̂S , while leading
to consistent gains on all the three splits.

Further, Figure 4 shows that AFL also leads
to gains in word F-measure across different low-
frequency bins (evaluated on the test set), implying
better generation of low-frequency words. Here,
the analysis was done on semantically meaningful
word units, using the generated output after the
BPE merge operations. Figure 5 in Appendix D
shows that similar trend holds true for BPE tokens
as well. Table 2 also shows that τ -Normalization
helps improve BLEU for both CE and AFL, except
on En-Fr, providing a simple way to improve NMT
models. In general, τ -Norm + AFL leads to the
best BLEU scores in Table 2.

Discussion. The results show that AFL amelio-
rates low-frequency word generation in NMT, lead-
ing to improvements for long-tailed phenomena
both at the token and sentence level. Further, on the
two very low-resource language pairs of Be-En and
Gl-En, FL leads to improvements, suggesting that
under severely poor conditional modeling i.e to-
ken classification, explicitly improving long-tailed
token classification helps sequence generation in
NMT. However, since FL is more aggressive than
CE in pushing low-confidence predictions to higher
confidence values, in high-resource pairs (with bet-
ter token classification), FL ends up hurting beam
search. Conversely, AFL achieves significant gains
in BLEU scores by incorporating the inductive bi-

Split Loss BLEU ↑ METEOR ↑ TER ↓ R-BERT ↑

Highest CE 36.7 35.5 41.7 64.0
Highest AFL 37.1 35.7 41.4 64.3

Medium CE 32.3 33.3 46.3 59.9
Medium AFL 33.3 33.6 45.4 60.5

Least CE 31.3 33.2 46.9 59.7
Least AFL 32.1 33.5 46.4 60.4

Table 3: Sequence Level Long-Tailed Phenomena: CE
vs AFL for different MT metrics, for IWSLT 14 De-En.

ases of beam search, e.g. in the comparatively
higher-resource IWSLT-17 En-Fr dataset (237K
training sentence pairs). Here, we also hypothesize
that the long-tailed phenomena have considerably
different characteristics for low-resource and high-
resource language pairs, but leave further analysis
for future work.

6 Conclusion and Future Work

In this work, we characterized the long-tailed phe-
nomena in NMT and demonstrated that NMT mod-
els aren’t able to effectively generate low-frequency
tokens in the output. We proposed a new loss func-
tion, the Anti-Focal loss, to incorporate the induc-
tive biases of beam search into the NMT training
process. We conducted comprehensive evaluations
on 9 language pairs with different amounts of train-
ing data from the IWSLT and TED corpora. Our
proposed technique leads to gains across a range
of metrics, improving long-tailed NMT at both the
token as well as at the sequence level. In future, we
wish to explore its connections to entropy regular-
ization and model calibration and whether we can
fully encode the inductive biases of label smooth-
ing in the loss function itself.
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A Dataset Statistics

The dataset statistics are highlighted in Table 6,
while descriptions of the language pairs are pro-
vided in Table 5. The preparation of validation and
test sets for IWSLT 14 and 17 datasets is done us-
ing fairseq (Ott et al., 2019) scripts, following Zhu
et al. (2020) 3 for the corresponding datasets. The
TED talks dataset is provided with train, validation
and test sets (Qi et al., 2018). Further, the TED
talks dataset is tokenized using moses, and the data
preparation script is based on the IWSLT 14 data
preparation script in fairseq. We have provided the
data preparation scripts as well, from download to
pre-processing for each of the datasets, in the code.

B Model Details

The Transformer model is the iwslt-de-en
model architecture in fairseq 4, also used in Zhu
et al. (2020). It is a six-layer Transformer model
(6 layers in both the encoder and decoder) with
embedding size 512, FFN layer dimension 1024
and 4 attention heads. The optimizer used is Adam,
with a learning rate of 0.0005, with 4K warmup
updates a warmup initial learning rate of 1e− 07.
We have provided training as well as evaluation
scripts for each of the datasets in the code. The loss
functions are implemented by subclassing cross-
entropy in the fairseq framework and are available
in the Criterions directory.

C Validation Results

Table 4 provides the results for the Validation set,
corresponding to the test set evaluation done in
Table 2 in section 5 of the main paper. The eval-
uation settings remain the same as in Section 5,
except that, the validation results for IWSLT 17 are
obtained using multi-bleu.perl5 instead of Sacre-
BLEU (Post, 2018). In general, Validation set

3https://bit.ly/2MtV2tW
4https://bit.ly/3dxfOoB
5https://bit.ly/2Xyst5b
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FL CE + τ -Norm AFL AFL + τ -Norm

Dataset Pair CE γ = 1 γ = 2 τ = 0.2 τ = 0.4 α = 0.5 α = 1 α = 1, τ = 0.2

IWSLT 14 De-En 33.44 33.39 33.17 33.86 33.64 33.98 34.34 34.64
IWSLT 14 En-De 28.02 27.22 26.37 27.87 27.20 28.35 28.23 28.27
IWSLT 14 Es-En 41.19 40.36 39.31 41.39 41.08 41.26 41.26 41.65

IWSLT 17 En-Fr 34.60 33.67 33.67 33.98 33.41 34.81 33.93 34.12
IWSLT 17 Fr-En 32.73 32.16 31.89 33.05 32.82 32.56 33.12 33.16

TED Talks Ru-En 25.50 24.85 24.33 25.65 24.67 25.86 25.88 25.95
TED Talks Pt-En 35.34 33.42 32.47 35.47 35.09 35.68 35.71 36.05

TED Talks Be-En 4.24 5.25 5.43 4.54 4.39 5.46 5.35 5.71
TED Talks Gl-En 14.64 14.66 13.54 14.95 14.87 15.72 15.17 14.97

Table 4: BLEU Scores of the Baselines and the Proposed Method on the Validation set.

Dataset Source Target Lang-Pair

IWSLT 14 German English De-En
IWSLT 14 English German En-De
IWSLT 14 Spanish English Es-En

IWSLT 17 English French En-Fr
IWSLT 17 French English Fr-En

TED Talks Russian English Ru-En
TED Talks Portuguese English Pt-En

TED Talks Belarusian English Be-En
TED Talks Galician English Gl-En

Table 5: Dataset Language Pair Details: The abbrevia-
tions for the language pairs are used throughout.

Dataset Pairs Train Valid Test

IWSLT 14 En-De 160,239 7,283 6,750
IWSLT 14 De-En 160,239 7,283 6,750
IWSLT 14 Es-En 169,028 7,683 5,593

IWSLT 17 En-Fr 236,652 890 1,210
IWSLT 17 Fr-En 236,652 890 1,210

TED Talks Ru-En 208,106 4,805 5,476
TED Talks Pt-En 51,785 1,193 1,803
TED Talks Gl-En 10,017 682 1,007
TED Talks Be-En 4,509 248 664

Table 6: Dataset Statistics: Train, Validation and Test
Splits for each of the Language Pairs.

results also adhere to the same trend as in Sec-
tion 5. In particular, Anti-Focal, combined with
τ -Normalization (AFC + τ -Norm) leads to gains
in cross-entropy over each of the datasets.

D F-Measure Comparison

Figure 5 presents the token-level comparison on the
generated output without merging the BPE tokens,
i.e. Figure 5 is the BPE token analogue of Figure 4
in Section 5. Here also, we observe similar trend
for AFL, i.e. AFL leads to considerable gains in
F-measure in the lower frequency buckets (e.g. [5-
10)), when compared to cross-entropy.

Figure 5: Test F-measure for BPE tokens bucketed
by Training Frequency: AFL leads to gains in F-
measure across different frequency bins, especially in
low-frequency bins.


