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Abstract

We consider the task of cross-lingual adapta-
tion of dependency parsers without annotated
target corpora and parallel corpora. Previous
work either directly applies a discriminative
source parser to the target language, ignoring
unannotated target corpora, or employs an un-
supervised generative parser that can leverage
unannotated target data but has weaker repre-
sentational power than discriminative parsers.
In this paper, we propose to utilize unsuper-
vised discriminative parsers based on the CRF
autoencoder framework for this task. We train
a source parser and use it to initialize and reg-
ularize a target parser that is trained on unan-
notated target data. We conduct experiments
that transfer an English parser to 20 target lan-
guages. The results show that our method sig-
nificantly outperforms previous methods.1

1 Introduction

Supervised learning of dependency parsing is dif-
ficult for low-resource languages because of the
lack of large treebanks. On the other hand, cross-
lingual adaptation of dependency parsers from rich-
resource languages to low-resource languages has
shown a lot of promise (Hwa et al., 2005; Zeman
and Resnik, 2008; McDonald et al., 2011; Xiao
and Guo, 2014; Tiedemann, 2015; Schlichtkrull
and Søgaard, 2017; Ahmad et al., 2019), especially
with the help of cross-lingual word representation
(Wu and Dredze, 2019) or part-of-speech (POS)
tags (Guo et al., 2015).

In this paper, we consider the scenario in which
there is only unannotated data for the target lan-
guage that is not parallel to the source language
treebank. A simple strategy is zero-shot transfer or
direct transfer, which trains a parser on the source

∗Corresponding Author
1Code is available at https://github.com/livc/

cross-crfae.

treebank and then directly applies it to the target
language (Schuster et al., 2019; Wang et al., 2019).
In order to leverage unannotated target data, He
et al. (2019) propose to employ an unsupervised
generative parser that can be trained on the target
data while also regularized via soft parameter tying
by a source parser. However, generative parsers are
known to underperform discriminative parsers in
rich-resource scenarios, mostly because of the un-
realistic independence assumptions typically made
by generative parsers. In fact, He et al. (2019)
show that when they use multilingual BERT (Ken-
ton and Toutanova, 2019) as the cross-lingual word
representation, their method underperforms direct
transfer of a strong discriminative parser.

In this paper, we propose to instead use an un-
supervised discriminative parser based on the CRF
autoencoder framework (Ammar et al., 2014; Cai
et al., 2017) for cross-lingual parser adaptation. We
perform supervised training of the source parser
with the source treebank and then use it to ini-
tialize the target parser. The target parser is then
trained on the unannotated target data in an unsu-
pervised way while being regularized by the source
parser. We employ three regularization methods
proposed by Jiang et al. (2019) that encourage sim-
ilarity between model parameters and edge scores
respectively of the source and target parsers. Our
experiments of transferring from English to 20 tar-
get languages show that our method significantly
outperforms previous methods.

2 Method

2.1 CRF Autoencoder

The CRF autoencoder is a framework of unsuper-
vised structured prediction (Ammar et al., 2014)
and has been applied to unsupervised parsing (Cai
et al., 2017) and POS induction (Lin et al., 2015).
It consists of an encoder that predicts a structure

https://github.com/livc/cross-crfae
https://github.com/livc/cross-crfae
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(in our case, a dependency parse tree) from the in-
put sentence and a decoder that reconstructs the
sentence from the structure.

Let x = (x1, x2, . . . , xn) be the input sentence,
where xi is the i-th word; let y = (y1, y2, . . . , yn)
be the dependency parse tree, where yi is a tuple
〈hi, pi〉 in which hi is the index of the dependency
head of xi and pi is the POS tag of the head of xi;
and finally let x̂ = (x̂1, x̂2, . . . , x̂n) be the recon-
structed sentence. We would like to have a perfect
reconstruction, so we set x̂ = x.

2.1.1 Encoder
The encoder with parameters Θ computes PΘ(y|x).
We use the deep biaffine model (Dozat and Man-
ning, 2017), a widely used dependency parser, as
our encoder. For each word xi of the input sentence,
its word and POS tag embeddings are concatenated
and input into a multilayer BiLSTM to produce a
contextual representation ri of the word. Then ri is
fed into two MLPs to produce h(dep)

i and h
(head)
i ,

vector representations of the word as a dependent
and dependency head respectively.

We use a biaffine function to compute a score
matrix sEnc, in which each element sEnc

i,j is the
score of the potential dependency from xi to xj :

sEnc
i,j = h

(head )>
i Wh

(dep )
j + b (1)

where W and b are parameters of the biaffine func-
tion.

We follow the head-selection formulation of
Dozat and Manning (2017) to compute PΘ(y|x).

PΘ(y|x) =
∏
i

P (hi|x) (2)

whereP (hi|x) can be computed by a softmax func-
tion on sEnc:

P (hi = j|x) =
es

Enc
j,i∑n

k=1 e
sEnc
k,i

(3)

2.1.2 Decoder
The decoder with parameters Λ computes PΛ(x̂|y).
Following Cai et al. (2017), we represent x̂ as a
sequence of POS tags instead of words and make
the decoder independently predict each POS tag
p̂i in the reconstructed sentence conditioned only
on pi, the true POS tag of its dependency head.
Our decoder simply specifies a categorical distribu-

tion P (p̂i|pi) for each possible head POS tag and
computes the reconstruction probability as follows.

PΛ(x̂|y) =

n∏
i=1

P (p̂i|pi) (4)

2.1.3 Parsing

Given encoder parameters Θ and decoder parame-
ters Λ, we can get the best parse tree by maximizing
the probability PΘ,Λ(y, x̂|x) = PΘ(y|x)PΛ(x̂|y),

y∗ = arg max
y∈Y(x)

logPΘ,Λ(y, x̂|x)

= arg max
y∈Y(x)

n∑
i=1

(logP (hi|x) + logP (p̂i|pi))

(5)
where Y(x) contains all parse trees of sentence x.

We can use Eisner’s algorithm (Eisner, 1996) to
find the best projective dependency parse tree in
O
(
n3
)

time or use Chu-Liu/Edmonds’ algorithm
to find the best non-projective dependency parse
tree (Chu, 1965; Edmonds, 1967; Tarjan, 1977) in
O
(
n2
)

time. Additionally, we can use the head
selection method (Zhang et al., 2017) in O

(
n2
)

time, which often, but not always, produce a tree
structure.

2.1.4 Monolingual Learning

In the unsupervised setting, the parse tree y is un-
known. We follow Cai et al. (2017) and minimize
the negative conditional Viterbi log likelihood as
the training loss function:

L = −
N∑
i=1

max
y∈Y(xi)

logPΘ,Λ (x̂i,y|xi) (6)

whereN is the number of training sentences. Since
both the encoding and the decoding probabilities
can be factorized (Eq. 2 and 4), we can rewrite Eq.
6 as follows to make it tractable.

L = −
N∑
i=1

max
y∈Y(xi)

ni∑
j=1

(logP (hj |xi) + logP (p̂j |pj))

= −
N∑
i=1

ni∑
j=1

max
yj

(logP (hj |xi) + logP (p̂j |pj))

(7)
where ni is the length of sentence xi.

In the supervised setting, the gold parse tree y∗
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is known and the loss function becomes:

L = −
N∑
i=1

logPΘ,Λ(x̂i,y
∗|xi)

= −
N∑
i=1

ni∑
j=1

(
logP (h∗j |xi) + logP (p̂j |p∗j )

)
(8)

In both settings, we can optimize encoder param-
eter Θ and decoder parameter Λ with stochastic
gradient descent.

2.2 Cross-lingual Adaptation

To enable cross-lingual adaptation, we employ mul-
tilingual BERT (m-BERT, (Kenton and Toutanova,
2019)) and universal POS tag as the word and tag
representations. We first train a CRF autoencoder
(the source model) in a supervised way on the
source language treebank. We then use the source
model to initialize a second CRF autoencoder (the
target model) and train it in an unsupervised way
on the unannotated target language corpus. We stop
the training after K epochs, where K is a hyper-
parameter. During training of the target model, we
encourage it to remain similar to the source model
via regularization. We consider three forms of reg-
ularization proposed by Jiang et al. (2019).

Regularization of Model Parameters (W) The
parameter regularization encourages the similarity
between the source model parameters and target
model parameters. Hyper-parameter λW controls
the regularization strength. We add the following
regularization term Ω to the training loss (Eq. 6).

Ω = λW (‖Θsrc −Θtgt‖22
+ ‖Λsrc − Λtgt‖22)

(9)

Regularization on Edge Scores (E) The regu-
larization on edge scores encourages the source and
target models to produce similar scores for each
potential dependency in every training sentence xi.

Ω = λE

N∑
i

‖ssrc(xi)− stgt(xi)‖22 (10)

where s(xi) is the edge score matrix on sentence
xi computed by taking the summation of the en-
coder score sEnc

i,j (Eq. 1) and the decoder score
logP (p̂i|pi) for each possible dependency edge.
Hyper-parameter λE controls the strength of edge
regularization.

Regularization on Parse Trees (T) The regu-
larization on parse trees encourages similarity be-
tween the parse trees predicted by the source and
target models. To achieve this, we change the train-
ing loss (Eq. 6) into the following form:

L =−
N∑
i=1

max
y∈Y(xi)

(
logPΘtgt,Λtgt (x̂i,y|xi)

+ λT logPΘsrc,Λsrc (x̂i,y|xi)
)

(11)
where λT is a hyper-parameter that controls the
strength of tree regularization.

3 Experiments

3.1 Data and Setup
Our experimental setup is the same as that of He
et al. (2019). We evaluate all the methods on
transferring an English parser to 10 nearby lan-
guages and 10 distant languages selected from
Universal Dependencies (UD) project version 2.2
(Nivre et al., 2018). We use two sets of hyper-
parameters: the hyper-parameters for distant lan-
guages tuned on the Arabic development set and
the hyper-parameters for nearby languages tuned
on the Spanish development set.

For supervised learning of the source model, we
train on sentences of all lengths. For unsupervised
learning of the target model, we train on sentences
of length ≤ 40. We test the target model on sen-
tences of all lengths and use Eisner’s algorithm for
parsing.

We run each experiment for five times with dif-
ferent random seeds on a Tesla P40 GPU and report
the average unlabeled attachment score (UAS) with
punctuation excluded.

3.2 Results
We compare our method with a previous state-of-
the-art approach (He et al., 2019) and several base-
lines in Table 1. The three generative methods
are from He et al. (2019): F-Fix is their Flow-Fix
model that directly transfers the generative source
model, F-N is their Flow-FT model that trains on
the target corpus without source regularization, and
F-FT is their best-performing Flow-FT model that
trains on the target corpus with source regulariza-
tion. We rerun their source code2 in our experi-
ments. For discriminative models, DT is the di-
rect transfer baseline and S-T is the self-training

2https://github.com/jxhe/
cross-lingual-struct-flow

https://github.com/jxhe/cross-lingual-struct-flow
https://github.com/jxhe/cross-lingual-struct-flow
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Generative (He et al., 2019) Discriminative
Lang F-Fix F-N F-FT DT S-T Fix N W E T W+E W+T E+T

Distant Languages
zh (0.86) 36.05 24.14 26.27 57.49 59.83 54.62 44.77 45.00 45.47 45.50 45.13 45.41 46.97
fa (0.86) 36.79 46.68 58.33 49.46 51.38 50.67 61.98 61.45 61.14 59.89 60.02 60.55 60.43
ar (0.86) 31.86 54.86 54.97 43.86 41.90 45.66 65.27 65.84 64.96 64.88 64.89 64.72 64.22
ja (0.71) 19.59 37.08 42.45 35.40 36.68 40.41 62.91 62.55 64.15 63.34 64.07 62.75 63.08
id (0.71) 48.73 50.88 66.31 53.43 52.44 54.18 62.69 63.78 64.03 63.14 63.86 63.10 61.21
ko (0.69) 32.93 37.82 33.84 45.62 47.34 47.02 34.74 36.14 34.18 34.20 33.50 34.93 42.08
tr (0.62) 36.95 32.51 34.16 48.84 50.57 49.40 51.23 51.54 51.43 51.51 51.49 51.56 51.39
hi (0.61) 28.70 21.94 31.96 50.67 52.28 53.63 56.54 55.97 58.59 58.26 57.22 59.44 59.87
hr (0.59) 59.48 48.06 64.29 79.61 78.32 78.77 83.45 83.31 82.93 83.16 84.14 83.65 83.92
he (0.57) 52.15 56.14 64.74 66.49 65.61 66.52 73.44 73.85 72.99 72.89 73.30 72.51 73.30

AVG 38.32 41.01 47.73 53.09 53.76 54.09 59.70 59.94 59.99 59.68 59.76 59.86 60.65

Nearby Languages
bg (0.50) 70.74 50.74 71.40 88.66 88.96 88.76 87.68 88.65 87.62 88.43 88.21 88.23 88.13
it (0.50) 69.17 53.24 70.98 84.96 85.56 85.63 90.17 90.58 89.65 89.91 90.75 90.67 89.59
pt (0.48) 66.95 47.82 66.70 79.98 80.56 80.48 84.62 86.35 84.40 84.69 85.97 86.01 84.19
fr (0.46) 66.89 47.72 67.94 82.89 83.26 83.30 86.09 87.35 86.19 86.19 87.74 87.68 86.92
es (0.46) 64.02 47.12 64.70 79.14 79.45 79.70 80.70 84.32 80.87 81.40 84.21 84.19 81.62
no (0.45) 64.61 45.24 64.17 86.74 87.19 86.71 78.76 86.88 81.52 81.88 86.84 86.87 83.14
da (0.41) 61.41 41.76 60.71 83.27 83.30 83.63 82.35 83.27 82.57 82.50 83.19 83.26 82.74
sv (0.40) 65.25 47.51 63.83 86.27 85.97 86.74 87.05 87.09 86.74 86.98 86.89 86.89 86.83
nl (0.37) 61.54 34.74 61.78 79.59 80.91 79.76 79.25 81.05 80.05 80.11 80.76 80.83 80.57
de (0.36) 65.88 36.95 65.25 79.39 80.70 80.91 84.12 84.93 85.06 84.96 84.69 84.70 85.43

AVG 65.64 45.28 65.75 83.09 83.59 83.56 84.08 86.05 84.47 84.71 85.93 85.93 84.92

en∗ 66.94 – – 92.70 – 92.49 – – – – – – –

Table 1: Dependency parsing results (UAS %) on target languages. Numbers next to language names are their
distances to English copied from He et al. (2019). Supervised results on English (∗) are included for reference.

baseline, both of which use the biaffine parser
(Dozat and Manning, 2017). S-T follows Rybak
and Wróblewska (2018) who use the source model
to predict parse trees on the target data and then per-
form supervised training of the target model. The
last eight methods are our methods. Fix is direct
transfer of the CRF autoencoder. N is our method
without any regularization. W, E and T are our
method with weight, edge and tree regularization
respectively. W+E, W+T and E+T are our method
with two forms of regularization combined.

As shown in Table 1, all the discriminative meth-
ods outperform the three generative methods on av-
erage, and the performance gap is especially large
on nearby languages. This is consistent with the
findings of He et al. (2019) when using m-BERT.

Comparing the discriminative methods, we find
that our methods clearly outperform the DT, S-T
and Fix baselines on both distant languages and
nearby languages, showing the advantage of un-
supervised training on target data. However, the
improvements produced by our methods on nearby
languages are much smaller than those on distant
languages. This is not surprising considering that
nearby languages share similar syntactic behav-
iors and direct transfer can already produce strong

parsers.
Comparing our methods with and without regu-

larization, we see that regularization helps in most
cases. The usefulness of regularization is more
prominent on nearby languages, probably because
of the better performance of the source model on
nearby languages.

3.3 Analysis

We evaluate our model with varying sizes of the
target/source data and fixed source/target data in
Figure 1. It can be seen that more target data can
boost the accuracy on the distant language (Ara-
bic), but hurt the accuracy on the nearby language
(Spanish) unless alleviated by regularization. On
the other hand, more source data is always helpful,
especially on the distant language.

4 Conclusion

In this paper, we employ unsupervised discrimina-
tive parsers based on the CRF autoencoder frame-
work for unsupervised cross-lingual adaptation of
dependency parsers. We initialize the target model
using the source model and train it on unanno-
tated target data in an unsupervised way, with three
forms of regularization that encourage its similarity
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Figure 1: Dependency parsing results (UAS %) with varying corpus sizes. Left: fixed source corpus size and
varying target corpus size. Right: fixed target corpus size and varying source corpus size (0: no source corpus and
hence no source model, so the target model is obtained solely by unsupervised learning). ar: Arabic. es: Spanish.
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Figure 1: Dependency parsing results (UAS %) with varying corpus sizes. Left: fixed source corpus size and
varying target corpus size. Right: fixed target corpus size and varying source corpus size (0: no source corpus and
hence no source model, so the target model is obtained solely by unsupervised learning). ar: Arabic. es: Spanish.

the average unlabeled attachment score (UAS) with
punctuation excluded.

3.2 Results

We compare our method with a previous state-of-
the-art approach (He et al., 2019) and several base-
lines in Table 1. The three generative methods
are from He et al. (2019): F-Fix is their Flow-Fix
model that directly transfers the generative source
model, F-N is their Flow-FT model that trains on
the target corpus without source regularization, and
F-FT is their best-performing Flow-FT model that
trains on the target corpus with source regulariza-
tion. We rerun their source code1 in our experi-
ments. For discriminative models, DT is the di-
rect transfer baseline and S-T is the self-training
baseline, both of which use the biaffine parser
(Dozat and Manning, 2017). S-T follows Rybak
and Wróblewska (2018) who use the source model
to predict parse trees on the target data and then
perform supervised training of the target model.
The last five methods are our methods. Fix is di-
rect transfer of the CRF autoencoder. N is our
method without any regularization. W and E are
our method with weight and edge regularization
respectively. W+E is our method with two forms
of regularization combined.

As shown in Table 1, all the discriminative meth-
ods outperform the three generative methods on av-
erage, and the performance gap is especially large

1https://github.com/jxhe/
cross-lingual-struct-flow

on nearby languages. This is consistent with the
findings of He et al. (2019) when using m-BERT.

Comparing the discriminative methods, we find
that on distant languages our methods clearly out-
perform the DT, S-T and Fix baselines, showing
the advantage of unsupervised training on target
data. However, on nearby languages, only E and
W+E outperform the baselines while N and W un-
derperform the baselines. This is not surprising
considering that nearby languages share similar
syntactic behaviors and direct transfer can already
produce strong parsers. The underwhelming perfor-
mance of N is also consistent with the observation
in the unsupervised parsing literature that unsuper-
vised training of a good parser often reduces its
parsing accuracy.

3.3 Analysis

We evaluate our model with varying sizes of the
target/source data and fixed source/target data in
Figure 1. It can be seen that more target data can
boost the accuracy on the distant language (Ara-
bic), but hurt the accuracy on the nearby language
(Spanish) unless alleviated by regularization. On
the other hand, more source data is always helpful,
especially on the distant language.

4 Conclusion

In this paper, we employ unsupervised discrimina-
tive parsers based on the CRF autoencoder frame-
work for unsupervised cross-lingual adaptation of
dependency parsers. We initialize the target model

Figure 2: Dependency parsing results (UAS %) with varying corpus sizes. Left: fixed source corpus size and
varying target corpus size. Right: fixed target corpus size and varying source corpus size (0: no source corpus and
hence no source model, so the target model is obtained solely by unsupervised learning). ar: Arabic. es: Spanish.

We run each experiment for five times with dif-
ferent random seeds on a Tesla P40 GPU and report
the average unlabeled attachment score (UAS) with
punctuation excluded.

3.2 Results

We compare our method with a previous state-of-
the-art approach (He et al., 2019) and several base-
lines in Table 1. The three generative methods
are from He et al. (2019): F-Fix is their Flow-Fix
model that directly transfers the generative source
model, F-N is their Flow-FT model that trains on
the target corpus without source regularization, and
F-FT is their best-performing Flow-FT model that
trains on the target corpus with source regulariza-

tion. We rerun their source code1 in our experi-
ments. For discriminative models, DT is the di-
rect transfer baseline and S-T is the self-training
baseline, both of which use the biaffine parser
(Dozat and Manning, 2017). S-T follows Rybak
and Wróblewska (2018) who use the source model
to predict parse trees on the target data and then
perform supervised training of the target model.
The last five methods are our methods. Fix is di-
rect transfer of the CRF autoencoder. N is our
method without any regularization. W and E are
our method with weight and edge regularization
respectively. W+E is our method with two forms
of regularization combined.

1https://github.com/jxhe/
cross-lingual-struct-flow

Figure 1: Dependency parsing results (UAS %) with varying corpus sizes. Left: fixed source corpus size and
varying target corpus size. Right: fixed target corpus size and varying source corpus size (0: no source corpus and
hence no source model, so the target model is obtained solely by unsupervised learning). ar: Arabic. es: Spanish.

to the source model. Our experiments show the
advantage of our methods over previous generative
methods and discriminative baselines.
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A Model Hyperparameters

Parameter Description DT Baseline Value CRF Autoencoder Value
word embed dimension of word embeddings 300 300
n embed dimension of pos tag embeddings 300 150
n bert layers number of bert layers to use 4 4
embed dropout dropout ratio of embeddings 0.33 0.33
n lstm hidden dimension of lstm hidden states 400 200
n lstm layers number of lstm layers 3 3
lstm dropout dropout ratio of lstm 0.33 0.33
n mlp arc arc mlp size 500 50
mlp dropout dropout ratio of mlp 0.33 0.33
lr starting learning rate of training 2e-3 1e-3
betas hyperparameters of momentum and L2 norm (0.9, 0.9) (0.9, 0.9)
epsilon stability constant 1e-12 1e-12
K unsupervised training epoch - 1

B Regularization Parameters

The regularization parameters are tuned on the development set of Arabic for distant languages and
Spanish for nearby languages.

distant nearby
W 1e6 1e8
E 1e-12 1e-8
T 1e-6 1e-2

W+E
W 1e-8 1e8
E 1e-10 1e-12

W+T
W 1e-4 1e8
T 1e-4 1e-4

E+T
E 1e-10 1e-8
T 1e-2 1e-2


