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Abstract

Chinese spelling check is a challenging task
due to the characteristics of the Chinese lan-
guage, such as the large character set, no word
boundary, and short word length. On the one
hand, most of the previous works only con-
sider corrections with similar character pro-
nunciation or shape, failing to correct visu-
ally and phonologically irrelevant typos. On
the other hand, pipeline-style architectures are
widely adopted to deal with different types of
spelling errors in individual modules, which
is difficult to optimize. In order to handle
these issues, in this work, 1) we extend the tra-
ditional confusion sets with semantical candi-
dates to cover different types of errors; 2) we
propose a chunk-based framework to correct
single-character and multi-character word er-
rors uniformly; and 3) we adopt a global op-
timization strategy to enable a sentence-level
correction selection. The experimental results
show that the proposed approach achieves
a new state-of-the-art performance on three
benchmark datasets, as well as an optical char-
acter recognition dataset.

1 Introduction

Spelling check is a task to automatically detect and
correct spelling errors in human writings. Spelling
check is well-studied for languages such as English,
and many resources and tools have been developed.
However, the characteristics of the Chinese lan-
guage make the Chinese spelling check (CSC)1

quite different from the English one in three as-
pects:

• In contrast to English words that are com-
posed of a small set of Latin letters, Chinese
has more than three thousand frequently used

1As Chinese spelling check involves both error detection
and correction, we do not distinguish between spelling check
and spelling correction in this paper.

characters. The large character set leads to a
huge search space for the CSC models.

• For English spelling check, the basic unit is
the word. However, Chinese characters are
continuously written without word delimiter,
and the word definition varies across differ-
ent linguistic theories (Xue, 2003; Emerson,
2005). It makes the sentence with spelling
errors more ambiguous, and more challenging
for the spell checkers to detect and correct the
errors.

• Chinese words usually consist of one to four
characters and are much shorter than the En-
glish word. Spelling errors can drastically
change the meaning of the word. Thus, the
CSC task relies on the contextual semantic
information to find the best correction.

For the first challenge, previous research demon-
strates that most of the Chinese spelling errors
come from similar pronunciations, shapes, or mean-
ings (Liu et al., 2011; Chen et al., 2011). Previous
CSC models usually employ the characters with
similar pronunciation or shape as the confusion set
to reduce the search space, but the visually and
phonologically irrelevant typos cannot be handled.
Recent work aims at replacing the pronunciation
and shape confusion sets with a dynamically gen-
erated confusion set by masked language models,
which retrieve the semantically related candidates
according to the contextual information (Hong
et al., 2019). However, due to the lack of knowl-
edge about human errors, masked language models
correct the spelling errors ignoring the pronuncia-
tion or shape similarity. Therefore, combining the
two comes as a natural solution.

For the second challenge, early works rely on the
segmentation results from a Chinese word segmen-
tation system (Yu and Li, 2014). However, as the
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segmentation system is trained on the clean corpus,
the spelling errors often lead to incorrect segmen-
tation results. The accumulated errors make the
spell checking even more difficult. Thus, character-
based models are proposed to perform the correc-
tion at the character-level directly, which are more
robust to segmentation errors (Zhang et al., 2015;
Hong et al., 2019; Zhang et al., 2020). However,
the character-based model cannot effectively uti-
lize the word-level semantic information, and the
correction is also more difficult to interpret. In
order to explore and utilize the word-level infor-
mation, the word-based methods are designed to
do word segmentation and spelling error correc-
tions jointly. Previous works show that the word-
based correction models often perform better than
their character-based counterparts (Jia et al., 2013;
Hsieh et al., 2015; Yeh et al., 2015; Zhao et al.,
2017). Since word-based correction models usu-
ally apply a pipeline of submodules and handle
special cases (e.g., single-character words) individ-
ually, the complex architecture makes it difficult to
perform global optimization.

For the third challenge, previous works mainly
rely on the local context features such as point-wise
mutual information (PMI), part-of-speech (POS)
n-gram, and perplexity from an n-gram language
model (Liu et al., 2013; Zhang et al., 2015; Yeh
et al., 2015). As these statistical features are limited
within a fixed-size window, it is difficult to capture
the deep contextual information.

In the paper, we propose a unified framework
combining features and benefits from previous
works. We employ confusion sets from similar pro-
nunciations, shapes, and semantics to deal with dif-
ferent types of spelling errors. A chunk-based de-
coding approach is proposed to model both single-
character and multi-character words in a uniform
way. We also finetune an error model based on the
large-scale pretrained language model to include
deep semantic information. A global optimization
algorithm is adopted to combine different features
and select the best correction. The experiment re-
sults show that the proposed approach achieves
a new state-of-the-art performance on the three
benchmark datasets. A further experiment shows
that our method is also effective for optical char-
acter recognition (OCR) errors. Our contributions
are summarized as follows:

1. We propose a chunk-based decoding method
with global optimization to correct single-

character and multi-character word typos in a
unified framework.

2. We combine pronunciation, shape, and seman-
tic confusion sets to handle different spelling
errors.

3. Our method achieves new state-of-the-art per-
formance on the three benchmark datasets and
an OCR dataset.

2 Approach

The workflow of the proposed approach is shown
in Figure 1. The proposed spelling check method
adopts the chunk-based decoding, which processes
single-character and multi-character words in a uni-
form way. During decoding, the candidates with
variable length are dynamically generated accord-
ing to the input sentence and the partially decoded
sentence. For selecting the best correction, a global
ranking optimization is used to combine different
features.2

2.1 Chunk-based Decoding
The chunk-based decoding treats single-character
words, multi-character words, phrases, and idioms
equivalently as chunks. It provides a unified frame-
work where we can easily extend the candidate gen-
eration methods. The framework also makes the
implementation of global optimization to be pos-
sible. Given an input sentence with n characters
s = [c1, c2, · · · , cn], the chunk-based decoding
gradually segments and corrects the input sentence
at the same time. It attempts to find the best combi-
nation of chunk candidates and rewrites the input
sentence to its correction in a left-to-right style:

sc = argmax
ŝ∈L(s)

f(ŝ, s) (1)

where f is a scoring function. s is the input sen-
tence, and L(s) refers to the set of all possible
combinations of chunk candidates for s.

The decoding process employs the framework
of the beam search algorithm (Lowerre, 1976), and
the details are shown in Algorithm 1. The beam is
initialized with an empty correction. In the loop,
we extend each partially decoded correction in the
beam with dynamically generated chunk candi-
dates. A scoring model is utilized for giving each

2The CSC task only considers substitution errors as
spelling errors and leaves other errors to grammatical er-
rors (Hsieh et al., 2015).
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Figure 1: The workflow of the proposed chunk-based decoding method during the inference time. The chunk-based
candidate generation and decoding are used to disambiguate and correct the input sentence gradually.

Algorithm 1: Chunk-based Decoding
Input: Input sentence s, Beam size k, Vocabulary V
Output: The corrected sentence sc
Init beam← [Root];
Init temp← [];
Init cands← None;
Init x← None;
while Any correction in beam is not finished do

temp← [];
foreach correction in beam do

if correction is finished then
temp.append(correction);
continue;

end
cands← get candidates(s, correction, V );
foreach candidate in cands do

x← correction.extend(candidate);
x.score← score(x);
temp.append(x);

end
end
sort prune beam(temp, k);
beam← temp;

end
sc← beam[0];
Return sc

correction a confidence score. The details about the
candidate generation and correction selection will
be introduced in Section 2.2 and 2.3. At the end
of each loop, we sort the beam and prune the cor-
rections with low confidence to reduce the search
space. Finally, after every correction in the beam
decodes the whole input sentence, we output the
most confident correction as the final result.

Essentially, the decoding stage jointly searches
all possible segmentations and their corrections.
From another point of view, the decoding gradually
disambiguates and rewrites the sentence.

2.2 Candidate Generation
Previous work proposes to retrieve the candidates
according to pronunciation or shape confusion
sets (Liu et al., 2011; Chen et al., 2011). Follow-
ing these works, we adopt confusion sets to reduce
the search space. For handling single-character
word typos and visually or phonologically irrele-
vant typos, we extend the pronunciation and shape
confusion sets with semantic confusion set.

The candidate generation module assumes that
each span of characters in the input sentence can be
misspelled. According to confusion sets from three
aspects, we generate all possible chunk candidates
for the partially decoded correction. Given a vocab-
ulary V , an input sentence s, and a start position
i, we consider chunks of characters starting at i
and within a max length as a potential typo and
generate possible correction candidates:

Pronunciation: Given a chunk of characters
chunkij = [ci, · · · , cj ] from the i-th to the j-th
character in the sentence s, we convert chunkij
to its pinyin3 and retrieve all the candidates in a
similar pronunciation from the V .

Shape: In addition to pronunciation, we also
consider the candidates in a similar shape. Within
a chunkij , we substitute characters with their visu-
ally similar characters and keep the candidates that
can be found in the V . In practice, making a bal-
ance between speed and quality, we only consider
candidates that have 1 edit distance (1 substitution)
with the chunkij .

Semantic: Beyond the pronunciation and shape
3Pinyin is the official phonetic system for transcribing the

sound of Chinese characters into Latin script.
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similarity, we also utilize language models to re-
trieve semantically reasonable candidates accord-
ing to the contextual information. Specifically, we
employ the masked language model (Devlin et al.,
2018) as it is effective for modeling long-range
dependencies. Following Hong et al. (2019), we
finetune the pretrained masked language model on
the CSC training data and use the top k prediction
of each character as the semantic confusion set. For
candidates generation, we substitute each character
in the chunkij with its semantically similar char-
acters and keep the candidates that can be found
in the V . Similar to shape confusion set, in prac-
tice, we only consider candidates that have 1 edit
distance (1 substitution) with the chunkij .

2.3 Correction Selection
In this section, we introduce the training strategy
for correction selection and the features we used
for global optimization. Most of the previous work
follows the noisy channel model (Brill and Moore,
2000), which formulates the error correction tasks
as:

sc = argmax
ŝ

p(ŝ|s) (2)

where the s is the input sentence, and ŝ refers to
a possible correction. The formula can be further
rewritten through the Bayes rule as:

sc = argmax
ŝ

p(s|ŝ) · p(ŝ)
p(s)

(3)

where p(s|ŝ) and p(ŝ) refer to the error model prob-
ability and the sentence probability respectively.
Then we omit the p(s) as it is constant for every ŝ
and take logarithm:

sc = argmax
ŝ

(log p(s|ŝ) + log p(ŝ)) (4)

The formula becomes a linear model combining
the error model probability and the sentence proba-
bility in logarithm. In practice, the error model and
the sentence probability is complex. In the experi-
ment, we use a bundle of features and apply a linear
model as the score function for approximation.

score =
∑
i

wi · feati (5)

where wi is the weight for i-th feature feati.
The features we used for correction selection are

listed with their descriptions in Table 1. The ed
and pyed are used to calculate the similarity of the

Name Description
ed the character-level edit distance between s

and ŝ.
pyed the edit distance between the pinyin of s and

ŝ.
n-chunk the number of chunks in ŝ.
wlm the perplexity of ŝ measured by a word-level

n-gram language model.
cem the improvement of log probability from a

character error model.
n-py the number of chunks that are from the pro-

nunciation confusion set.
n-shape the number of chunks that are from the shape

confusion set.
n-lm the number of chunks that are from the se-

mantic confusion set.

Table 1: The features used for the correction selection.
s and ŝ refer to the input sentence and a correction.

correction and input sentence through character-
level and pronunciation-level. A longer chunk is
usually more unambiguous than a shorter one, thus
a correction with less n-chunk is often more rea-
sonable. The wlm is used for checking the fluency
of a correction. The n-py, n-shape and n-lm assign
weights to different confusion sets. The cem is
used for modeling the character-level error proba-
bility. We directly use the finetuned masked lan-
guage model in the semantic confusion set as the er-
ror model. When a chunk of characters [ci, · · · , cj ]
is substituted with [ĉi, · · · , ĉj ], we calculate the
chunk-level cem approximately as:

cem =

j∑
k=i

(log p(ĉk|ck, s)− log p(ck|ck, s)) (6)

where p(ĉk|ck, s) is the probability of replacing ck
with ĉk given the input sentence s.4

For combining different features, we apply
the Minimum Error Rate Training (MERT) algo-
thrim (Och, 2003). Given the top n outputs, the
MERT algorithm optimizes the scoring function by
learning to rerank the decoded sentences accord-
ing to their similarity to the gold sentence. Rather
than a local ranking, the MERT algorithm measures
the similarity directly by sentence-level metrics to
achieve a global optimization.

3 Experiments

In the following sections, we will introduce the
datasets and the experimental settings first, and

4Note that we use p(ĉk|ck) to simulate the error model
p(s|ŝ), because our error model is contextualized and the
calculation costs will be huge if we calculate p(s|ŝ) for each
candidate.
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Dataset Training Data Test Data
# Sent. Error Rate Avg. Length # Sent. Error Rate Avg. Length

csc13 700 50.0% 41.81 1000 99.6% 74.3
csc14 3437 99.9% 49.6 1062 49.8% 50.0
csc15 2339 100.0% 31.3 1100 50.0% 30.6
ocr 3575 100.0% 10.1 1000 100% 10.2

Table 2: Statistics of datesets. The error rate refers to the percentage of sentences with errors.

then the performance on the three benchmark
datasets is listed to show the effectiveness of the
proposed method. Finally, the evaluation of an
OCR subtitle dataset shows that our method can be
adapted to OCR errors as well.

3.1 Setup

We evaluate the proposed method on three CSC
benchmark datasets and an OCR subtitle error cor-
rection dataset. The three CSC datasets are from
SIGHAN13 (Wu et al., 2013), CLP14 (Yu et al.,
2014) and SIGHAN15 (Tseng et al., 2015), and the
OCR dataset is released from Hong et al. (2019).
For simplicity, we denote the CSC datasets from
SIGHAN13, CLP14, SIGHAN15 and OCR sub-
titles as csc13, csc14, csc15 and ocr, respectively.
The csc13 and ocr dataset is evaluated on edit-level
with the official evaluation tool from SIGHAN13.
Following the official setting, the csc13 dataset
adopts different test set for error dectection and
correction. The csc14 and csc15 dataset are evalu-
ated on sentence-level with the official evaluation
tool from CLP14 and SIGHAN15 respectively.5

Following previous work, we combine the training
data from csc13, csc14 and csc15 as our training set
for csc dataset. The training set of ocr dataset is
used to learn the model for the OCR dataset. The
statistics of the datasets are listed in Figure 2. The
ocr dataset contains only erroneous sentences and
has a significantly shorter sentence length compar-
ing to the csc datasets.

For the candidate generation phase, the vocab-
ulary V used in the experiments is collected from
gigaword corpus (LDC2011T13) and Chinese id-
ioms. For csc dataset, we segmented the traditional
Chinese corpus in the gigaword with hannlp6 and
keep the words that appear more than 10 times in
the corpus. For ocr dataset, we use the simplified
Chinese part for generating vocabulary V . For the
pronunciation confusion set, we use pypinyin7 for

5http://nlp.ee.ncu.edu.tw/resource/csc.
html

6https://github.com/hankcs/HanLP
7https://github.com/mozillazg/

conversion between Chinese characters and pinyin.
For the shape confusion set, we use the released
one from SIGHAN13. For the semantic confu-
sion set, we finetune the released Chinese version
of the mask language model BERT (Devlin et al.,
2018) on the CSC training set with the officially
released Tensorflow code.8 We also experimented
with the whole word masking variants, such as
BERT-wwm (Cui et al., 2019), but it did not show
a significant improvement. The batch size, learning
rate, and training epoch of the finetuning are set
to 32, 2e−5, and 3, respectively. We use the top 5
output as the semantic candidates. The max length
of chunks is set to 6 to cover most of the cases.
For chunks with one character, we only keep the
semantic candidates to reduce the false alarm rate.

For the correction selection phase, the beam size
used in the experiment is set to 10. The segmented
gigaword corpus is also used for training a tradi-
tional Chinese and a simplified Chinese n-gram
word language model through kenlm.9 For the
MERT algorithm, we initialize the weights of the
score function with zero and use the implement
from Z-MERT (Zaidan, 2009). For optimization,
we output the top 10 results and set the maximum
MERT iterations to 15. The bilingual evaluation
understudy (BLEU) is used as the training metric
as it calculates the sentence-level similarity and
often leads to better precision.

3.2 Experiment Results on the CSC Datasets

We first report the performance of the proposed
method on the csc13, csc14 and csc15 dataset. As
shown in Table 3, when comparing to previous
strong CSC systems, our proposed chunk-based
method achieves a significant improvement on the
three datasets.

Zhao et al. (2017) employ a graph-based model
and integrate spelling checking with word segmen-
tation. However, their proposed method only pro-

python-pinyin
8https://github.com/google-research/

bert
9https://github.com/kpu/kenlm
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Dataset Model
Detection Level Correction Level

Acc P R F1 Acc P R F1

csc13

Yeh et al. (2015) 74.80 44.31 37.67 40.72 66.30 70.30 62.50 66.17
Zhao et al. (2017) - - - - 37.00 70.50 35.60 47.31
Hong et al. (2019)* - - - - 60.5 73.1 60.5 66.2
Cheng et al. (2020)‡ - 55.90 46.99 51.06 - 44.58 37.47 40.72
our method 83.20 61.19 75.67 67.66 67.20 74.34 67.20 70.59

csc14

Zhao et al. (2017) - - - - - 55.50 39.14 45.90
Hong et al. (2019) 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4
Cheng et al. (2020)‡ - 58.27 54.53 56.28 - 51.01 47.65 49.27
our method 70.0 78.65 54.80 64.59 68.08 77.43 51.04 61.52

csc15

Zhang et al. (2015) 70.09 80.27 53.27 64.04 69.18 79.72 51.45 62.54
Hong et al. (2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Zhang et al. (2020) 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
Cheng et al. (2020)‡ - 70.97 64.00 67.30 - 60.08 54.18 56.98
our method 76.82 88.11 62.00 72.79 74.64 87.33 57.64 69.44

Table 3: The main results on csc13, csc14 and csc15 datasets. *The csc13 detection-level performance of Hong et al.
(2019) is obtained on the test set of correction task and thus incomparable with the results from other work. The
results with ‡ are reproduced by rerunning the released code and evaluation scripts on the standard CSC datasets.
The Wang et al. (2018) and Wang et al. (2019) calculate the performance on the character-level, which makes their
results incomparable with other works.

cesses the multi-character words. Two types of
single-character words are handled by rules and an
individual module. The separated modules make
their system difficult to fully explore the annotated
data and obtain a global optimization.

Zhang et al. (2015) combine the character-level
candidate generation with a two-stage filter model.
For the first stage, they use a logistic regression
classifier to reduce the size of candidates. In the
second stage, they utilize the online translation
system and search engine to select the best cor-
rection. Although they get help from empirically
developed online systems for correction selection,
our approach outperforms them, indicating the ef-
fectiveness of the chunk-based framework.

Hong et al. (2019) finetune the pretrained BERT
as a character-based correction model and filter
the visually/phonologically irrelevant corrections
to improve precision. In other words, they employ
a character-level candidate generation and perform
a locally optimized character-based correction se-
lection. In the experiment, our method outperforms
Hong et al. (2019) with a large margin, which in-
dicates the effectiveness of the globally optimized
chunk-based decoding.

Zhang et al. (2020) propose to train a detection
and a correction network jointly. In the experiment,
although they employ 5 million pseudo data for
extra pretraining, the proposed method still obtains

an improved performance on the correction level.
Cheng et al. (2020) propose to incorporate

phonological and visual confusion sets into the
CSC models through a graph convolutional net-
work. As the performance reported in their paper
is obtrained with external training data, we repro-
duced their results on the standard CSC datasets
by rerunning their released code and evaluation
scripts.

3.3 Experiment Results for the OCR Errors

We also evaluate our approach on the OCR subtitle
error correction dataset, and the results are listed in
Table 4. For the error detection level, the proposed
method achieves a significant improvement over
the previous model from Hong et al. (2019). The
ocr dataset has a shorter average sentence length.
The finetuned BERT model does not have enough
context to obtain semantically accurate corrections.
Hong et al. (2019) only generate the candidates
according to the BERT model and obtain a low
recall. The proposed method is more robust to short
sentences because we also employ the confusion
sets from pronunciation and shape.

For the correction-level, we also observe a sig-
nificant improvement in the F1 score. However, we
notice that our method obtains a lower precision
comparing with Hong et al. (2019). We analyzed
and found that the OCR subtitles are extracted from
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Model
Detection Level Correction Level

Acc P R F1 Acc P R F1
Hong et al. (2019) 18.6 78.5 18.6 30.1 17.4 73.4 17.4 28.1
our method 63.30 77.57 63.30 69.71 37.90 46.45 37.90 41.74

Table 4: The results on the OCR subtitle error correction dataset ocr.

Model Correction Level
P R F1

all 87.33 57.64 69.44
all - pinyin 87.54 54.91 67.49
all - shape 86.81 57.45 69.15
all - semantic 88.33 48.18 62.35

Table 5: The results on csc15 dataset of disabling differ-
ent confusion sets. The pinyin, shape, semantic refers
to the pronunciation, shape, semantic confusion set, re-
spectively.

the entertainment domain, which contains many
named entities and is quite different from the news
vocabulary we used. Thus, although we detected
the spelling errors, it is difficult to retrieve the cor-
rect candidate. We leave the domain adaptation
problem to future work.

3.4 Analysis of Confusion Sets

To reveal the contributions of each confusion set,
we conduct experiments to disable each confusion
set one at a time. The experiment results are listed
in Table 5. The results show that, without the pro-
nunciation confusion set, the proposed method suf-
fers a obvious drop on the recall rate. The shape
confusion set only brings a slight improvement,
which is explained that errors in similar shape only
count for a small part of the spelling errors in hu-
man writings. Another significant improvement
comes from the semantic confusion set. With a
small sacrifice in precision, we observe an obvious
increment of recall rate. This experiment result
shows that the semantic confusion set is a good
complement to the traditional candidate generation.

3.5 MERT v.s. BERT

In this section, we compare the locally optimized
character-based correction model with our globally
optimized chunk-based approach. In the experi-
ment, we use the finetuned BERT checker (Hong
et al., 2019) as the character-based model. We
use the test set of csc15 and compare the perfor-
mance on the recall rate of the single-character
errors and multi-character errors individually. The
single-character error refers to the misspelling of a
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Figure 2: The comparison of recall between a locally
optimized character-based BERT checker and the pro-
posed globally optimized chunk-based method.
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Figure 3: The case analysis between the BERT checker
and the proposed globally optimized method.

single character, and we take a chunk of continual
typos containing more than one character as the
multi-character error. On the test set, the recall rate
is calculated at the chunk-level, and the experiment
results are shown in Figure 2. The recall of the
BERT checker model almost comes from single-
character errors. For the multi-character errors,
the proposed method obtains a significantly better
performance, which indicates the effectiveness of
globally optimized chunk-based decoding.

In Figure 3, we list two cases and their correc-
tions from the BERT checker and our method. The
BERT checker takes the CSC task as a character
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Figure 4: The precision, recall, F1 score and runtime on the csc15 dataset with different beam size.

Beam Recall on Sentences with
Size 1 Errors 2 Errors 3 Errors 3+ Errors
1 69.56 42.63 43.86 26.83
2 72.13 (+2.57) 44.21 (+1.58) 45.61 (+1.75) 26.83 (+0.00)
4 73.07 (+0.94) 44.74 (+0.53) 43.86 (-1.75) 26.83 (+0.00)
8 73.30 (+0.23) 44.74 (+0.00) 43.86 (+0.00) 26.83 (+0.00)

Table 6: The edit-level recall for sentences in the csc15 dataset with different beam size.

sequence labeling problem and adopts a character-
wise local optimization (Hong et al., 2019). For
the multi-character error, the BERT checker tends
to correct the misspelled characters according to
their incorrect context. As shown in the first case,
the BERT checker correct物 to自 because自 and
the incorrect neighbour 然 can compose a word
自然 (nature). Thus, the BERT checker usually
corrects only a part of the multi-character typo or
rewrites the typo to a word which is unfitted in the
sentence. The proposed method directly generates
the candidates for a chunk of misspelled characters
and performs a global optimization to replace the
whole typo.

3.6 Beam Size

The proposed chunk-based decoding is constructed
under the framework of beam search. In each loop
step, the beam search algorithm prunes the size of
candidates to a pre-defined beam size to reduce the
search complexity.

In this section, we investigate how beam size
influences the performance of the proposed CSC
model. We run experiments with a range of beam
size on the test set of csc15, and the results and
runtime are shown in Figure 4. When the beam size
increases, the CSC model is able to obverse more
candidates and obtains a significant improvement
in the recall rate. At the same time, a larger search
space brings more noise, which leads to a slight
drop in precision. As a result, the F1 score achieves
an improvement when the beam size increases. For
the runtime, Figure 4 illustrates that the time-cost

grows linearly against the beam size.
To further investigate the improvement of re-

call rate, we divide the test set according to the
number of errors in the sentences and calculate the
edit-level recall for the model under different beam
sizes. As shown in Table 6, the experiment results
illustrate that the main improvement of the recall
rate comes from the sentences with only one er-
ror. As the larger beam size essentially includes a
longer context, the experiment results demonstrate
that CSC errors require more contextual informa-
tion even for single-character errors. For sentences
with more errors, the recall rate increases rapidly
when the beam size is small (e.g., beam size from
1 to 2). However, the recall rate does not increase
significantly after the beam grows to an appropriate
size (e.g., a beam size of 4). This experiment result
illustrates that, for sentences with multiple errors,
the bottleneck comes from the candidate selection.

4 Related Work

Previous work of CSC is closely related to a series
of shared tasks (Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015). The workflow of CSC systems
can be roughly divided into two phases, candidate
generation and candidate selection.

For the candidate generation phase, most of the
previous work retrieves the candidates according
to pronunciation or shape (Liu et al., 2011; Chen
et al., 2011; Yu and Li, 2014; Yeh et al., 2015).
Recently, Hong et al. (2019) propose to replace
the traditional confusion sets with a dynamically
generated one. They treat the CSC as a sequence
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labeling problem and finetune a pretrained masked
language model to generate candidates. For reduc-
ing the false alarm rate, they filter the result with
pronunciation and shape similarity. Their method
inspired us to finetune the masked language model
for generating semantically related candidates.

For the candidate selection phase, the perplexity
from language models is frequently used for select-
ing the most reasonable candidate (Chang, 1995;
Liu et al., 2013; Jia et al., 2013; Yu and Li, 2014;
Yeh et al., 2015). Rules are effective and often
included in the CSC model for handling single-
character errors (Hsieh et al., 2015; Zhang et al.,
2015; Zhao et al., 2017). Recent researchers rely
on supervised methods to achieve further improve-
ment. The supervised error model is frequently
involved in previous work (Hsieh et al., 2015; Yeh
et al., 2015; Zhang et al., 2015). Liu et al. (2013)
uses the support vector machines (SVMs) to rerank
the candidate list. Yeh et al. (2015) employ a max-
imum entropy (ME) model for correction selec-
tion. Zhao et al. (2017) use conditional random
fields (CRFs) to handle two types of misspelled
single-character word. Cheng et al. (2020) propose
to incorporate phonological and visual similarity
knowledge into the CSC models via a graph convo-
lutional network.

Due to the limited size of CSC training data, the
supervised models suffer from the lack of annotated
data. Liu et al. (2013) generate pseudo data by
replacing the character in the training sentence with
characters in the confusion set. Similarly, Zhang
et al. (2020) generate homophonous pseudo data
to pretrain the detection and correction network
jointly. Web texts are in large quantities and contain
more errors than published articles. Hsieh et al.
(2015) propose to extract spelling error samples
from the Google web 1T corpus. Wang et al. (2018)
propose the OCR-based and ASR-based methods
to mimic human errors. They further proposed a
pointer network to model the CSC task under the
framework of a seq2seq model (Wang et al., 2019).

5 Conlusion

In this work, we present a new framework for
Chinese spelling check. We include the masked
language model for generating semantically re-
lated candidates. The chunk-based decoding is
employed to handle single-character and multi-
character errors in a uniform way. A global
optimization strategy is adopted for combining

different features. The effectiveness of the pro-
posed method is verified on three CSC benchmark
datasets and an OCR subtitle dataset. As for the
future work, we plan to extend the proposed frame-
work to Chinese grammatical error correction and
explore the possibilities of training in an end-to-end
style.
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