
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1849–1864
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1849

On the Potential of Lexico-logical Alignments
for Semantic Parsing to SQL Queries

Tianze Shi∗
Cornell University

tianze@cs.cornell.edu

Chen Zhao∗
University of Maryland
chenz@cs.umd.edu

Jordan Boyd-Graber
University of Maryland
jbg@umiacs.umd.edu

Hal Daumé III
Microsoft Research & University of Maryland

me@hal3.name

Lillian Lee
Cornell University

llee@cs.cornell.edu

Abstract

Large-scale semantic parsing datasets anno-
tated with logical forms have enabled major
advances in supervised approaches. But can
richer supervision help even more? To ex-
plore the utility of fine-grained, lexical-level
supervision, we introduce SQUALL, a dataset
that enriches 11,276 WIKITABLEQUESTIONS
English-language questions with manually cre-
ated SQL equivalents plus alignments between
SQL and question fragments. Our annotation
enables new training possibilities for encoder-
decoder models, including approaches from
machine translation previously precluded by
the absence of alignments. We propose and
test two methods: (1) supervised attention;
(2) adopting an auxiliary objective of disam-
biguating references in the input queries to ta-
ble columns. In 5-fold cross validation, these
strategies improve over strong baselines by
4.4% execution accuracy. Oracle experiments
suggest that annotated alignments can support
further accuracy gains of up to 23.9%.

1 Introduction

The availability of large-scale datasets pairing natu-
ral utterances with logical forms (Dahl et al., 1994;
Wang et al., 2015; Zhong et al., 2017; Yu et al.,
2018, inter alia) has enabled significant progress on
supervised approaches to semantic parsing (Jia and
Liang, 2016; Xiao et al., 2016; Dong and Lapata,
2016, 2018, inter alia). However, the provision of
logical forms alone does not indicate important fine-
grained relationships between individual words or
phrases and logical form tokens. This is unfortu-
nate because researchers have in fact hypothesized
that the lack of such alignment information ham-
pers progress in semantic parsing (Zhang et al.,
2019, pg. 80).

∗Equal contribution; listed in alphabetical order.

Table:

Athlete (c1) Total Time (c2) Total Rank (c3) …

Stefan Shalamanov 1:52.37 23 …

Borislav Dimitrachkov 1:50.81 19 …

Petar Popangelov 1:46.34 16 …

Question:

Target Logical Form:

Answer:

Bulgaria at the 1988 Winter Olympics

Petar Popangelov

Table:

City (c1) Population (c2) Area (km2) (c3) …

Alessandria 94191 203.97 …

Casale Monferrato 36039 86.32 …

Novi Ligure 28581 54.22 …
Tortona 27476 99.29 …

Acqui Terme 20426 33.42 …

Question:

Target Logical Form:

SELECT count(c1) FROM w WHERE c2_number>=25000

Answer:

Province of Alessandria

4

① ② ③ ④ ⑤
How many cities have at least 25,000 people?

① ② ① ⑤ ④③

① ② ③
Who has the highest rank ?

① ② ③ ②
SELECT c1 FROM w ORDER BY c3_number LIMIT 1

Figure 1: Two examples from SQUALL. The
table-question-answer triplets come from WIKITABLE-
QUESTIONS. We provide the logical forms as SQL plus
alignments between question and logical form. In the
bottom example, for instance, “the highest” ↔ ORDER
BY and LIMIT 1, as indicated by both matching high-
light color (blue) and circled-number labels (2).

We address this lack by introducing SQUALL,1

the first large-scale semantic-parsing dataset with
manual lexical-to-logical alignments; and we inves-
tigate the potential accuracy boosts achievable from
such alignments. The starting point for SQUALL

is WIKITABLEQUESTIONS (WTQ; Pasupat and
Liang, 2015), containing data tables, English ques-
tions regarding the tables, and table-based answers.
We manually enrich the 11,276-instance subset of
WTQ’s training data that is translatable to SQL

1SQUALL =“SQL+QUestion pairs ALigned Lexically”.

1850

by providing expert annotations, consisting not
only of target logical forms in SQL, but also la-
beled alignments between the input question tokens
(e.g., “how many”) and their corresponding SQL

fragments (e.g., COUNT(. . .)). Figure 1 shows two
SQUALL instances.

These new data enable training of encoder-
decoder neural models that incorporates manual
alignments. Consider the bottom example in Fig-
ure 1: A decoder can benefit from knowing that
ORDER BY . . . LIMIT 1 comes from “the highest”
(where rank 1 is best); and an encoder should match
“who” with the “athlete” column even though the
two strings have no overlapping tokens. We imple-
ment these ideas with two training strategies:

1. Supervised attention that guides models to
produce attention weights mimicking human
judgments during both encoding and decod-
ing. Supervised attention has improved both
alignment and translation quality in machine
translation (Liu et al., 2016; Mi et al., 2016),
but has only been applied in semantic parsing
to heuristically generated alignments (Rabi-
novich et al., 2017) due to the lack of manual
annotations.

2. Column prediction that infers which column
in the data table a question fragment refers to.

Using BERT features, our models reach 54.1%
execution accuracy on the WTQ test set, surpass-
ing the previous weakly-supervised state-of-the-art
48.8% (where weak supervision means access to
only the answer, not the logical form of the ques-
tion). More germane to the issue of alignment
utility, in 5-fold cross validation, our additional
fine-grained supervision improves execution accu-
racy by 4.4% over models supervised with only
logical forms; ablation studies indicate that map-
pings between question tokens and columns help
the most. Additionally, we construct oracle mod-
els that have access to the full alignments during
test time to show the unrealized potential for our
data, seeing improvements of up to 23.9% absolute
logical form accuracy.

Through annotation-cost and learning-curve
analysis, we conclude that lexical alignments are
cost-effective for training parsers: lexical align-
ments take less than half the time to annotate as
a logical form does, and we can improve execu-
tion accuracy by 2.5 percentage points by aligning
merely 5% of the logical forms in the training set.

Our contributions are threefold: 1) we re-
lease a high-quality semantic parsing dataset with
manually-annotated logical forms; 2) we label the
alignments between the English questions and the
corresponding logical forms to provide additional
supervision; 3) we propose two training strategies
that use our alignments to improve strong base mod-
els. Our dataset and code are publicly available at
https://www.github.com/tzshi/squall.

2 Task: Table-based Semantic Parsing

Our task is to answer questions about structured
tables through semantic parsing to logical forms
(LFs). Formally, the input x = (q, T) consists of
a question q about a table T , and the goal of a
semantic parser is to reproduce the target LF y?

for q (and thus have high LF accuracy) or, in a
less strict setting, to generate any query LF y′ that,
when executed against T , yields the correct output
z? (and thus have high execution accuracy).

In a weakly supervised setting, training examples
consist only of input-answer pairs (x, z?). Recent
datasets (Zhong et al., 2017; Yu et al., 2018, in-
ter alia) provide enough logical forms, i.e., (x, y?)
training pairs, to learn from mappings from x to y?

in a supervised setting. Unsurprisingly, supervised
models are more accurate than weakly supervised
ones. However, training supervised models is still
challenging: both x and y are structured, so models
typically generate y in multiple steps, but the train-
ing data cannot reveal which parts of x generate
which parts of y and how they are combined.

Just as adding supervised training improves ac-
curacy over weak supervision, we explore whether
even finer-grained supervision further helps. Since
no large-scale datasets furnishing fine-grained su-
pervision exist (to the best of our knowledge), we
introduce SQUALL.

3 SQUALL: Our New Dataset

SQUALL is based on WIKITABLEQUESTIONS

(WTQ; Pasupat and Liang, 2015). WTQ is a large-
scale question-answering dataset that contains di-
verse and challenging crowd-sourced question-
answer pairs over 2,108 semi-structured Wikipedia
tables. Most of the questions are more than sim-
ple table-cell look-ups and are highly composi-
tional, a fact that motivated us to study lexical
mappings between questions and logical forms. We
hand-generate SQL equivalents of the WTQ queries
and align question tokens with corresponding SQL

 https://www.github.com/tzshi/squall

1851

query fragments.2 We leave lexical alignments of
other text-to-SQL datasets and cross-dataset model
generalization (Suhr et al., 2020) to future work.

3.1 Data Annotation

We annotated WTQ’s training fold in three stages:
database construction, SQL query annotation, and
alignment. Two expert annotators familiar with
SQL annotated half of the dataset each and then
checked each other’s annotations and resolved all
conflicts via discussion. See Appendix C for the
annotation guidelines.

Database Construction Tables encode semi-
structured information. Each table column usually
contains data of the same type: e.g., text, num-
bers, dates, etc., as is typical in relational databases.
While pre-processing the WTQ tables, we consid-
ered both basic data types (e.g., raw text, numbers)
and composite types (e.g., lists, binary tuples), and
we suffixed column names with their inferred data
types (e.g., number in Figure 1). For annotation
consistency, all tables were assigned the same name
w and columns were given the sequential names
c1, c2,. . . in the database schema, but we kept the
original table headers for feature extraction. We
additionally added a special column id to every
table denoting the linear order of its rows. See
Appendix D for details.

Conversion of Queries to SQL For every ques-
tion in WTQ’s training fold, we manually created
its corresponding SQL query, choosing the shortest
when there are multiple possibilities, for instance,
we wrote “SELECT MAX(c1) FROM w” instead of
“SELECT c1 FROM w ORDER BY c1 DESC LIMIT
1”. An exception is that we opted for less table
structure-dependent versions even if their complex-
ity was higher. As an example, if the table listed
games (c2) pre-sorted by date (c1), and the ques-
tion was “what is the next game after A?”, we wrote
“SELECT c2 FROM w WHERE c1 > (SELECT c1
FROM w WHERE c2 = A) ORDER BY c1 LIMIT
1” instead of “SELECT c2 FROM w WHERE id =
(SELECT id FROM w WHERE c2 = A) + 1”.
Out of 14,149 questions spanning 1,679 tables,

2SQL is a widely adopted formalism. Other formalisms
including LambdaDCS (Pasupat and Liang, 2015), have been
used on WTQ. SQL and LambdaDCS can express roughly
the same percentage of queries: 81% (our finding) vs. 79%
(analysis of a 200-question sample by Pasupat and Liang,
2016). We leave automatic conversion to and from SQL to
other formalisms and vice versa to future work.

how long MAX(. . .)

Fr
eq

ue
nt

ly
al

ig
ne

d
to

col the last
MAX(col)-MIN(col) the most
col-col the largest
COUNT(*) the highest
COUNT(col) the first

Table 1: Examples of frequently-aligned English/LF
segment pairs, illustrating the diversity in the aligned
counterparts for the same lexical units. col is a place-
holder for the actual data table column mention.

SQUALL provided SQL queries for 11,468 ques-
tions, or 81.1%. The remaining 18.9% consisted
of questions with non-deterministic answers (e.g.,
“show me an example of . . . ”), questions requir-
ing additional pre-processing (e.g., looking up a
date inside a text-based details column), and cases
where SQL queries would be insufficiently expres-
sive (e.g., “what team has the most consecutive
wins?”).

Alignment Annotation Given a tokenized ques-
tion/LF pair, the annotators selected and aligned
corresponding fragments from the two sides. The
selected tokens did note need to be contiguous, but
they had to be units that decompose no further. For
the example in Figure 1, there were three alignment
pairs, where the non-contiguous “ORDER BY . . .
LIMIT 1” was treated as an atomic unit and aligned
to “the highest” in the input. Additionally, not all
tokens on either side needed to be aligned. For in-
stance, SQL keywords SELECT, FROM and question
tokens “what”, “is”, etc. were mostly unaligned.
Table 1 shows that the same question phrase was
aligned to a range of SQL expressions, and vice
versa. Overall, 49.8% of question tokens were
aligned. Comparative and superlative question to-
kens were the most frequently aligned, while many
function words were unaligned; see Appendix E for
part-of-speech distributions of the aligned and un-
aligned tokens. Except for the four keywords in the
basic structure “SELECT . . . FROM w WHERE . . .”,
90.2% of SQL keywords were aligned. The rest of
the unaligned SQL tokens include d= (alignment
ratio of 18.0%), AND (25.5%) and column names
(86.1%). The first two cases arose because equality
checks and conjunctions of filtering conditions are
often implicit in natural language.

Inter-Annotator Agreement and Annotation
Cost The two annotators’ initial SQL annotation

1852

agreement in a pilot trial3 was 70.4% and after dis-
cussion, they agreed on 94.5% of data instances;
similarly, alignment agreement rose from 75.1%
to 93.3%. With respect to annotation speed, an
average SQL query took 33.9 seconds to produce
and an additional 15.0 seconds to enrich with align-
ments: the cost of annotating 100 instances with
alignment enrichment was comparable to that of
144 instances with only logical forms.

3.2 Post-processing

Literal values in the SQL queries such as “25,000”
in Figure 1 and “star one” in Figure 3 are often
directly copied from the input questions. We thus
adapted WikiSQL’s (Zhong et al., 2017) task set-
ting, where all literal values correspond to spans
in the input questions. We used our alignment
to generate gold selection spans, filtering out in-
stances where literal values could not be recon-
structed through fuzzy match from the gold spans.
After post-processing, SQUALL contained 11,276
table-question-answer triplets with logical form
and lexical alignment annotations.

4 (State-of-the-Art)4 Base Model:
Seq2seq with Attention and Copying

Recent state-of-the-art text-to-SQL models extend
the sequence-to-sequence (seq2seq) framework
with attention and copying mechanisms (Zhong
et al., 2017; Dong and Lapata, 2016, 2018; Suhr
et al., 2020, inter alia). We adopt this strong neural
paradigm as our base model. The seq2seq model
generates one output token at a time via a proba-
bility distribution conditioned on both the input se-
quence representations and the partially-generated
output sequence: P (y |x) =

∏|y|
i=1 P (yi |y<i,x),

where x and y are the feature representations for
the input and output sequences, and <i denotes
a prefix. The last token of y must be a special
<STOP> token that terminates the output genera-
tion. The per-token probability distribution is mod-
eled through Long-Short Term Memory networks
(LSTMs, Hochreiter and Schmidhuber, 1997) and

3In the pilot study, the annotators independently labeled
questions over the same 50 tables. We report the percentage
of cases where one annotator accepted the other annotator’s
labels.

4In Appendix §B, we show that on SQUALL, our base
model is competitive with a state-of-the-art system (Suhr et al.,
2020) benchmarked on the Spider dataset (Yu et al., 2018).

multi-layer perceptrons (MLPs):

hi = LSTM(hi−1,yi−1) (1)

P (yi |y<i,x) = softmax (MLP(hi)) . (2)

The training objective is the negative log likelihood
of the gold y?, defined for each timestep as

L
seq2seq
i = − logP (y?i |y?

<i,x).

Question and Table Encoding An input x con-
tains a length-n question q = q1, . . . , qn and a table
with m columns c = c1, . . . , cm. The input ques-
tion is represented through a bi-directional LSTM
(bi-LSTM) encoder that summarizes information
from both directions within the sequence. Inputs
to the bi-LSTM are concatenations of word em-
beddings, character-level bi-LSTM vectors, part-
of-speech embeddings, and named entity type em-
beddings. We denote the resulting feature vector
associated with qi as qi. For column names, the rep-
resentation cj concatenates the final hidden states
of two LSTMs running in opposite directions that
take the concatenated word embeddings, character
encodings, and column data type embeddings as
inputs. We also experiment with pre-trained BERT
feature extractors (Devlin et al., 2019), where we
feed the BERT model with the question and the
columns as a single sequence delimited by the spe-
cial [SEP] token, and we take the final-layer repre-
sentations of the question words and the last token
of each column as their representations.

Attention in Encoding To enhance feature inter-
action between the question and the table schema,
for each question word representation qi, we use
an attention mechanism to determine its relevant
columns and calculate a linearly-weighted context
vector q̃i as follows:

q̃i = Attn(qi, c) ,
∑

j aijcj , (3)

where aij = softmaxj
(
qT
i W

attc
)
. (4)

Then we run another bi-LSTM by concatenating
the question representation q and context repre-
sentation q̃ as inputs to derive a column-sensitive
representation ~qi for each question word qi. We
apply a similar procedure to get the column repre-
sentation ~cj for each column.

Attention in Decoding During decoding, to al-
low LSTMs to capture long-distance dependencies

1853

from the input, we add attention-based features to
the recurrent feature definition of Eq. (1):

vi = Attn(hi, ~q) (5)

hi = LSTM(hi−1, [vi−1;yi−1]). (6)

SQL Token Prediction with Copying Mecha-
nism Since each output token can be an SQL

keyword, a column name or a literal value, we
factor the probability defined in Eq. (2) into two
components: one that decides the type ti ∈
{KEY, COL, STR} of yi:

P (ti |y<i,x) = softmax
(
MLPtype(hi)

)
,

and another that predicts the token conditioned on
the type ti. For token type KEY, we predict the
keyword token with another MLP:

P (yi |y<i,x, ti = KEY) = softmax
(
MLPKEY(hi)

)
.

For COL and STR tokens, the model selects directly
from the input column names c or question q via a
copying mechanism. We define a probability distri-
bution with softmax-normalized bilinear scores:

P (yi = cj |y<i,x, ti = COL) = softmaxj(si·),

where sij = h>i W
COLcj .

Similarly, we define literal string copying from q
with another bilinear scoring matrix W STR.

5 Using Alignments in Model Training

The model design in §4 includes many latent in-
teractions within and across the encoder and the
decoder. We now describe how our manual align-
ments can enable direct supervision on such pre-
viously latent interactions. Our alignments can
be used as supervision for the necessary attention
weights (§5.1). In an oracle experiment where we
replace induced attention with manual alignments,
the jump in logical form accuracy shows align-
ments are valuable, if only the models could repro-
duce them (§5.2). Moreover, alignments enable a
column-prediction auxiliary task (§5.3).

The loss function L of our full model is a linear
combination of the loss terms of the seq2seq model,
supervised attention, and column prediction:

L = Lseq2seq + λattLatt + λCPLCP,

where we define Latt and LCP below.

Attention type ACCLF (Dev) ∆

Induced attention 37.8± 0.6

Oracle attention
Encoder only 51.5± 1.4 +13.7
Decoder only 49.4± 0.9 +11.6
Encoder + decoder 61.7± 0.4 +23.9

Table 2: Oracle experiment LF-accuracy results over
five dev sets from random splits, where attention
weights are replaced by manual alignments. Induced
attention refers to the base model (§4).

5.1 Supervised Attention

Our annotated lexical alignments resemble our base
model’s attention mechanisms. At the encoding
stage, question tokens and the relevant columns are
aligned (e.g., “who”↔ column “athlete”) which
should induce higher weights in both question-to-
column and column-to-question attention (Eq. (3)
and Eq. (4)); similarly, for decoding, annotation
reflects which question words are most relevant
to the current output token. Inspired by improve-
ments from supervised attention in machine transla-
tion (Liu et al., 2016; Mi et al., 2016), we train the
base model’s attention mechanisms to minimize the
Euclidean distance5 between the human-annotated
alignment vector a? and the model-generated atten-
tion vector a:

Latt =
1

2
‖a− a?‖2.

The vector a? is a one-hot vector when the annota-
tion aligns to a single element, or a? represents a
uniform distribution over the subset in cases where
the annotation aligns multiple elements.

5.2 Oracle Experiments with Manual
Alignments

To present the potential of alignment annotations
for models with supervised attention, we first as-
sume a model that can flawlessly reproduce our
annotations within the base model. During training
and inference, we feed the true alignment vectors in
place of the attention weights to the encoder and/or
decoder. Table 2 shows the resultant logical form
accuracies. Access to oracle alignments provides
up to 23.9% absolute higher accuracy over the base
model. This wide gap suggests the high potential
for training models with our lexical alignments.

5See Appendix F for experiments with other distances.

1854

Model ACCEXE (Test)

Prior work (all necessarily are weakly supervised)
Single model 34.2–44.5
Single model (w/ BERT) 48.8
Ensemble 37.7–46.9

This paper (strongly supervised for the first time)
Single model (ALIGN) 49.7± 0.4
Single model (ALIGN w/ BERT) 54.1± 0.2
Ensemble (ALIGN) 53.1
Ensemble (ALIGN w/ BERT) 57.2

Table 3: WTQ test set execution accuracies (%). The
accuracy ranges for prior work are aggregated over Pa-
supat and Liang (2015), Neelakantan et al. (2016), Kr-
ishnamurthy et al. (2017), Zhang et al. (2017), Haug
et al. (2018), Liang et al. (2018), Dasigi et al. (2019),
Agarwal et al. (2019), Wang et al. (2019), and Herzig
et al. (2020). Unsurprisingly, our models trained on
SQUALL surpass weakly-supervised previous work.

5.3 Column Prediction
Wang et al. (2019) show the importance of infer-
ring token-column correspondence in a weakly-
supervised setting; SQUALL enables full supervi-
sion for an auxiliary task that directly predicts the
corresponding column cj for each question token
qi. We model this auxiliary prediction as:

sij = q>i W
CPcj

P (qi matches cj | qi) = softmaxj(si·).

For the corresponding loss LCP over tokens that
match columns, we use cross-entropy.

Exact-match Features: An Unsupervised Alter-
native A heuristic-based, albeit lower-coverage,
alternative to manual alignment is to use ques-
tions’ mentions of column names. Thus, we use
automatically-generated exact-match features in
our baseline models for comparison in our exper-
iments. For question encoders, we include two
embeddings derived from binary exact-match fea-
tures: indicators of whether the token appears in
(1) any of the column headers and (2) any of the
table cells. Similarly, for the column encoders, we
also include an exact-match feature of whether the
column name appears in the question.

6 Experiments

Setup We randomly shuffle the tables in SQUALL

and divide them into five splits. For each set-
ting, we report the average logical form accuracy
ACCLF (output LF exactly matches the target LF)
and execution accuracy ACCEXE (output LF may

Model Dev Test
ACCLF ACCEXE ACCEXE

SEQ2SEQ+ 37.8± 0.6 56.9± 0.7 46.6± 0.5
ALIGN 42.2± 1.5 61.3± 0.8 49.7± 0.4

SEQ2SEQ+ w/ BERT 44.7± 2.1 63.8± 1.1 51.8± 0.4
ALIGN w/ BERT 47.2± 1.2 66.5± 1.2 54.1± 0.2

Table 4: Logical form (ACCLF) and execution
(ACCEXE) accuracies (%) on dev and test sets, show-
ing the utility of learning from lexical supervisions.

not match the target LF, but its execution yields
the gold-standard answer) as well as the standard
deviation of five models, each trained with four
of the splits as its training set and the other split
as its dev set. We denote the base model from §4
as SEQ2SEQ and our model trained with both pro-
posed training strategies in §5 as ALIGN. The main
baseline model we compare with, SEQ2SEQ+, is
the base model enhanced with the automatically-
derived exact-match features (§5.3). See Appendix
Appendix A for model implementation details.

WTQ Test Results Table 3 presents the WTQ
test-set ACCEXE of ALIGN compared with previ-
ous models. Unsurprisingly, SQUALL’s supervi-
sion allows our models to surpass weakly super-
vised models. Single models trained with BERT
feature extractors exceed prior state-of-the-art by
5.3%. However, our main scientific interest is not
these numbers per se, but how beneficial additional
lexical supervision is.

Effect of Alignment Annotations To examine
the utility of lexical alignments as a finer-grained
type of supervision, we compare ALIGN with
SEQ2SEQ+ in Table 4. Both have access to logical
form supervision, but ALIGN additionally uses lex-
ical alignments during training. ALIGN improves
SEQ2SEQ by 2.3% with BERT and 3.1% without,
showing that lexical alignment annotation is more
beneficial than automatically-derived exact-match
column reference features.6

Effect of Individual Strategies Table 5 com-
pares model variations. We add each individual
training strategy into the baseline SEQ2SEQ+ model
and ablate components from the ALIGN model.
Each component contributes to increased accura-
cies compared with SEQ2SEQ+. The effects range
from +1.3% ACCEXE with column prediction to

6Test set accuracies are lower than on the dev set because
the WTQ test set includes questions unanswerable by SQL.

1855

Component Dev
ACCLF ACCEXE

SEQ2SEQ 31.0± 0.7 48.8± 0.8

SEQ2SEQ+ 37.8± 0.6 56.9± 0.7
+ Supervised decoder attn. 39.4± 1.1 58.6± 1.3
+ Supervised encoder attn. 41.3± 1.7 60.7± 0.7
+ Column prediction 38.6± 0.5 58.2± 0.8

ALIGN 42.2± 1.5 61.3± 0.8
- Supervised decoder attn. 41.6± 1.8 61.1± 1.3
- Supervised encoder attn. 39.6± 0.6 58.7± 0.8
- Column prediction 41.8± 1.6 60.9± 0.8
- Exact-match features 39.5± 1.1 58.8± 0.7

Oracle attention 61.7± 0.4 –

30 40 50 60

Table 5: Dev logical form (ACCLF) and execution
(ACCEXE) accuracies for different model variations
(w/o BERT). The superimposed bar chart provides a
visual presentation of ACCLF. Each ALIGN compo-
nent contributes to increased accuracies compared with
SEQ2SEQ+, while the oracle attention model demon-
strates the unrealized potential of the alignments.

+3.8% ACCEXE with supervised encoder attention.
Supervised encoder attention is the single most ef-
fective strategy: including it produces the highest
gains and ablating it the largest drop. The exact-
match column reference features are essential to the
baseline model: SEQ2SEQ without those features
has 8.1% lower ACCEXE. Nonetheless, supervised
encoder attention and column prediction are still
effective on top of the exact-match features. Yet,
ALIGN’s accuracy is still far below that of the oracle
models; we hope SQUALL can inspire future work
to take better advantage of its rich supervision.

Effect of Annotation Availability: Are Lexical
Alignments Worth It? The lefthand side of Fig-
ure 2 plots SEQ2SEQ+’s and ALIGN’s learning
curves. For each of for SEQ2SEQ+’s accuracy lev-
els, ALIGN reaches a similar level but at the much
“cheaper” training cost of about half as many train-
ing examples. Moreover, the righthand side of
Figure 2 shows what happens if ALIGN has access
to all the training logical forms, but only a percent-
age of the accompanying alignments. Surprisingly,
more than half of the accuracy improvement comes
from as little as 5% of the alignment annotations.
Because the cost of aligning an example is less
than half of that for writing a logical form (§3.1),
we conclude that annotating lexical alignments is a
cost-effective approach on a fixed budget.

Where Do Our Models Improve the Most?
According to Table 6, ALIGN produces the high-

ACCLF ACCTEMP ACCCOL

SEQ2SEQ+ 37.8 64.7 39.6
ALIGN 42.2 66.7 44.5
(delta) (+4.4) (+2.0) (+4.9)

Table 6: Dev logical form (ACCLF), template
(ACCTEMP) and column (ACCCOL) accuracies. Paren-
thetical numbers are deltas with respect to the baseline.
ALIGN improves ACCCOL the most.

Unseen Templates ACCLF ACCEXE

SEQ2SEQ+ 15.5 44.8
ALIGN 26.1 57.3

Table 7: Model accuracies in a generalization setting:
we exclude an SQL template from training, and evaluate
on that unseen template. Shown are macro-averages
over the 10 most frequent templates. ALIGN is more
accurate than SEQ2SEQ+ by a large margin.

est gains with respect to SEQ2SEQ+ on the sub-
task of column selection (+4.9%), compared with
a +2.0% improvement on generating correct SQL

templates. The gain is larger on complex SQL tem-
plates (i.e., those with more aggregation functions
and nested queries).7 which demonstrates the effec-
tiveness of reinforcing question-column correspon-
dence through supervised attention and a column
prediction auxiliary task.

Do Our Models Generalize Better to Unseen
Query Templates? We follow Finegan-Dollak
et al. (2018) and consider a challenging evaluation
setting where the models are tested on unseen SQL

query templates. In Table 7, ALIGN shows an even
larger margin compared with SEQ2SEQ+ in this
setting, suggesting that lexical alignment supervi-
sion benefits model robustness. See Appendix I for
detailed results.

Are the Induced Attention Weights Similar
to Manual Alignments? Table 8 quantitatively
compares the attention distributions. The models
trained with and without supervised attention have
very different attention patterns: without explicit
supervision, the models focus on a few items (low
entropy values), but those items are usually unlike
manually-derived alignments (low recall). Inter-
estingly, the supervised decoder attention encour-
ages the model to induce question-to-column (q2c)
attention that seems similar to human alignment

7For example, on template SELECT COUNT(col) FROM
w, the ACCCOL is 59.4 (ALIGN) vs. 48.9 (SEQ2SEQ+). See
Appendix §H for detailed result breakdowns.

1856

5% 10% 20% 40% 80%
20

30

40

50

60

?

?

Percentage of training examples (log scale)

E
xe

cu
tio

n
ac

cu
ra

ci
es

on
de

v

ALIGN

SEQ2SEQ+

5%10%20% 40% 100%
56

58

60

62

SEQ2SEQ+

ALIGN

Percentage of alignment annotations

Figure 2: (Left) the ? markers on the learning curves illustrate that ALIGN uses roughly half the amount of training
data to achieve similar ACCEXE as SEQ2SEQ+. (Right) annotating just 5% of the logical forms with alignments
yields half of the accuracy improvement of ALIGN.

Model Recall Entropy
q2c c2q d2q q2c c2q d2q

SEQ2SEQ+ 26.1 4.8 33.2 0.31 0.16 1.24
+ Sup. enc. 64.8 66.0 35.6 1.57 1.95 1.10
+ Sup. dec. 55.5 3.9 86.6 0.44 0.24 0.99
ALIGN 65.4 65.9 86.2 1.56 1.94 1.00

Table 8: Recall against hand-annotated alignments and
average entropy of the attention distributions in the
question-to-column (q2c), column-to-question (c2q)
and decoder-to-question (d2q) modules, comparing
models trained with supervised encoder/decoder atten-
tion, none (SEQ2SEQ+), or both strategies (ALIGN).

judgments. This is an arguably surprising benefit,
since the supervised decoder was not trained with
q2c supervision, and so one might have expected it
to perform similarly to SEQ2SEQ+. However, one
needs to be careful in interpreting these results, as
machine-induced attention distributions are not in-
tended for direct human interpretation (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

Qualitative Analysis Our additional supervision
helps when the question has little textual overlap
with the referred columns. Figure 3 shows an exam-
ple. With finer-grained supervision, ALIGN learns
the column “Serial Name” corresponds to the ques-
tion word “show”, but SEQ2SEQ+ selects the wrong
column “Co-Star”.

7 Related Work

Attention and Alignments Explicit supervision
for attention mechanisms (Bahdanau et al., 2015)
is helpful for many tasks, including machine trans-
lation (Liu et al., 2016; Mi et al., 2016), image
captioning (Liu et al., 2017), and visual question

①

?

②

Serial Name (c1) Role (c2) Co-Star (c3) Channel (c4) …
Saat Phere Nahar Singh Rajshree Thakur Zee TV …

Nach Baliye 2 Himself Keerti Gaekwad
Kelkar Star One …

Question:

Target:

SEQ2SEQ+:

ALIGN: ①

①

②

②

②

③

③

③

③

SELECT c3 FROM w where c4 = 'star one'

SELECT c1 FROM w where c4 = 'star one'

SELECT c1 FROM w where c4 = 'star one'

What was the only show that ran on the channel star one?

Figure 3: An example with SEQ2SEQ+ and ALIGN pre-
dictions. SEQ2SEQ+ selects an incorrect column.

answering (Gan et al., 2017). For semantic pars-
ing, Rabinovich et al. (2017) improve code genera-
tion with exact string-match heuristics to provide
supervision for attention. Wang et al. (2019) ar-
gue that structured alignment is crucial to text-to-
SQL models and they induce latent alignments in
a weakly-supervised setting. In contrast, we take
a fully-supervised approach and train models with
manual alignments.

Lexical Focus and Semantic Parsing Our lex-
ical alignment annotations are similar to seman-
tic lexicons in lexicalized-grammar-based seman-
tic parsing (Zettlemoyer and Collins, 2005, 2007;
Kwiatkowski et al., 2010; Krishnamurthy and
Mitchell, 2012; Artzi and Zettlemoyer, 2013).
Those lexicons are usually well-typed to support
semantic composition. It is an interesting fu-
ture direction to explore how to model analogous
compositional aspects with our type-flexible align-
ments through, for example, syntax-based align-
ment (Zhang and Gildea, 2004).

1857

Annotator Rationales A related direction to en-
riching annotations is supplying annotator ratio-
nales (Zaidan et al., 2007), i.e., evidence support-
ing the annotations in addition to the final labels.
Many recent datasets on machine reading compre-
hension and question answering, such as HotpotQA
(Yang et al., 2018) and CoQA (Reddy et al., 2019),
include such intermediate annotations at dataset
release. Dua et al. (2020) show that these annota-
tor rationales improve model accuracy for a given
annotation budget on machine reading comprehen-
sion. The alignments we provide could, at a stretch,
be considered a type of rationale for the output
SQL annotation.

Text-to-SQL Datasets There is growing inter-
est in both the database and NLP communities
in text-to-SQL applications. Widely-used domain-
specific datasets include ATIS (Price, 1990; Dahl
et al., 1994), GeoQuery (Zelle and Mooney, 1996;
Popescu et al., 2003), Restaurants (Tang and
Mooney, 2000; Popescu et al., 2003), and Scholar
(Iyer et al., 2017). WikiSQL (Zhong et al., 2017) is
among the first large-scale datasets with question-
logical form pairs querying a wide range of data ta-
bles extracted from Wikipedia, but WikiSQL’s log-
ical forms are generated from a limited set of tem-
plates. In contrast, WTQ questions are authored by
humans under no specific constraints, and as a re-
sult WTQ includes more diverse semantics and log-
ical operations. The family of Spider datasets (Yu
et al., 2018, 2019a,b) contain queries even more
complex than in WTQ, including a higher percent-
age of nested queries and multiple table joins. We
leave extensions of lexical alignments to Spider’s
complex-structure queries to future work.

8 Conclusion

We introduce SQUALL, the first large-scale seman-
tic parsing dataset with both hand-produced target
logical forms and manually-derived lexical align-
ments between questions and SQL queries. Our
dataset enables finer-grained supervision than exist-
ing datasets have previously supported. We incor-
porate the alignments into encoder-decoder-based
neural models through supervised attention and an
auxiliary task of column prediction. Experiments
confirm our intuition that finer-grained supervision
is helpful to model training. Our oracle studies
also show that there is large unrealized further po-
tential for our annotations. Thus, it remains an
exciting challenge for future research to use our

lexical alignment annotations more effectively.
Our annotation cost analysis shows that col-

lecting additional lexical alignments is more cost-
effective for improving model accuracy than having
only logical forms. We hope that our findings will
help future dataset design decisions and extensions
of other existing datasets. One potential future di-
rection is to further investigate the utility of lexical
alignments in a cross-dataset/domain evaluation
setting (Suhr et al., 2020).

Acknowledgments

We thank the members of UMD CLIP, Xilun Chen,
Jack Hessel, Thomas Müller, Ana Smith, and the
anonymous reviewers and meta-reviewer for their
suggestions and comments. TS was supported by
a Bloomberg Data Science Ph.D. Fellowship. CZ
and JBG are supported by the Defense Advanced
Research Projects Agency (DARPA) and Air Force
Research Laboratory (AFRL), and awarded to
Raytheon BBN Technologies under contract num-
ber FA865018-C-7885. Any opinions, findings,
conclusions, or recommendations expressed here
are those of the authors and do not necessarily re-
flect the view of the sponsors.

References
Rishabh Agarwal, Chen Liang, Dale Schuurmans, and

Mohammad Norouzi. 2019. Learning to general-
ize from sparse and underspecified rewards. In Pro-
ceedings of the International Conference of Machine
Learning, pages 130–140.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, pages 49–62.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Proceedings of the
Workshop on Human Language Technology, pages
43–48.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke
Zettlemoyer, and Eduard Hovy. 2019. Iterative
search for weakly supervised semantic parsing. In
Conference of the North American Chapter of the

http://proceedings.mlr.press/v97/agarwal19e
http://proceedings.mlr.press/v97/agarwal19e
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/H94-1010
https://www.aclweb.org/anthology/H94-1010
https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/N19-1273

1858

Association for Computational Linguistics, pages
2669–2680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 4171–4186.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the As-
sociation for Computational Linguistics, pages 33–
43.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 731–742.

Dheeru Dua, Sameer Singh, and Matt Gardner. 2020.
Benefits of intermediate annotations in reading com-
prehension. In Proceedings of the Association for
Computational Linguistics, pages 5627–5634.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 351–360.

Chuang Gan, Yandong Li, Haoxiang Li, Chen Sun, and
Boqing Gong. 2017. VQS: Linking segmentations
to questions and answers for supervised attention in
VQA and question-focused semantic segmentation.
In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1811–1820.

Till Haug, Octavian-Eugen Ganea, and Paulina
Grnarova. 2018. Neural multi-step reasoning for
question answering on semi-structured tables. In Eu-
ropean Conference on Information Retrieval, pages
611–617.

Jonathan Herzig, Paweł Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Martin
Eisenschlos. 2020. TaPas: Weakly supervised table
parsing via pre-training. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 4320–
4333.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the Association for Computational
Linguistics, pages 963–973.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not explanation. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 3543–
3556.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. In Proceedings
of the Association for Computational Linguistics,
pages 12–22.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings
of Empirical Methods in Natural Language Process-
ing, pages 1516–1526.

Jayant Krishnamurthy and Tom M. Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing, pages 754–765.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of Empirical Meth-
ods in Natural Language Processing, pages 1223–
1233.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. In Proceedings of Advances in Neu-
ral Information Processing Systems, pages 10015–
10027.

Chenxi Liu, Junhua Mao, Fei Sha, and Alan Yuille.
2017. Attention correctness in neural image cap-
tioning. In Proceedings of the Association for the
Advancement of Artificial Intelligence, pages 4176–
4182.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of Inter-
national Conference on Computational Linguistics,
pages 3093–3102.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
In Proceedings of Empirical Methods in Natural
Language Processing, pages 2283–2288.

Arvind Neelakantan, Quoc V. Le, Martin Abadi, An-
drew McCallum, and Dario Amodei. 2016. Learn-
ing a natural language interface with Neural Pro-
grammer. In Proceedings of the International Con-
ference on Learning Representations.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the Association for Computational
Linguistics, pages 1470–1480.

Panupong Pasupat and Percy Liang. 2016. Inferring
logical forms from denotations. In Proceedings
of the Association for Computational Linguistics,
pages 23–32.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In International Conference on
Intelligent User Interfaces, pages 149–157.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/2020.acl-main.497
https://doi.org/10.18653/v1/2020.acl-main.497
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://openaccess.thecvf.com/content_iccv_2017/html/Gan_VQS_Linking_Segmentations_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Gan_VQS_Linking_Segmentations_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Gan_VQS_Linking_Segmentations_ICCV_2017_paper.html
https://arxiv.org/abs/1702.06589
https://arxiv.org/abs/1702.06589
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://www.aclweb.org/anthology/D12-1069
https://www.aclweb.org/anthology/D10-1119
https://www.aclweb.org/anthology/D10-1119
https://www.aclweb.org/anthology/D10-1119
https://papers.nips.cc/paper/8204-memory-augmented-policy-optimization-for-program-synthesis-and-semantic-parsing
https://papers.nips.cc/paper/8204-memory-augmented-policy-optimization-for-program-synthesis-and-semantic-parsing
https://papers.nips.cc/paper/8204-memory-augmented-policy-optimization-for-program-synthesis-and-semantic-parsing
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14246
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14246
https://www.aclweb.org/anthology/C16-1291
https://www.aclweb.org/anthology/C16-1291
https://doi.org/10.18653/v1/D16-1249
https://openreview.net/forum?id=ry2YOrcge¬eId=ry2YOrcge
https://openreview.net/forum?id=ry2YOrcge¬eId=ry2YOrcge
https://openreview.net/forum?id=ry2YOrcge¬eId=ry2YOrcge
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070

1859

P. J. Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Proceedings of the
Workshop on Speech and Natural Language, pages
91–95.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the Asso-
ciation for Computational Linguistics, pages 1139–
1149.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the Association for Computational
Linguistics, pages 8372–8388.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for seman-
tic parsing. In Proceedings of Empirical Methods in
Natural Language Processing, pages 133–141.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.
Learning semantic parsers from denotations with la-
tent structured alignments and abstract programs. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing, pages 3765–3776.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 1332–1342.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of Empirical
Methods in Natural Language Processing, pages 11–
20.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the Association
for Computational Linguistics, pages 1341–1350.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for di-
verse, explainable multi-hop question answering. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing, pages 2369–2380.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing, pages 1962–1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
Association for Computational Linguistics, pages
4511–4523.

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 260–267.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Association
for the Advancement of Artificial Intelligence, pages
1050–1055.

Luke Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of Uncertainty in Artificial Intelli-
gence, pages 658–666.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of Empirical Methods
in Natural Language Processing, pages 678–687.

Hao Zhang and Daniel Gildea. 2004. Syntax-based
alignment: Supervised or unsupervised? In Pro-
ceedings of International Conference on Computa-
tional Linguistics, pages 418–424.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the Associa-
tion for Computational Linguistics, pages 80–94.

Yuchen Zhang, Panupong Pasupat, and Percy Liang.
2017. Macro grammars and holistic triggering for ef-
ficient semantic parsing. In Proceedings of Empiri-
cal Methods in Natural Language Processing, pages
1214–1223.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

https://doi.org/10.3115/116580.116612
https://doi.org/10.3115/116580.116612
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.3115/v1/P15-1129
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://www.aclweb.org/anthology/N07-1033
https://www.aclweb.org/anthology/N07-1033
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/1864519.1864543
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/C04-1060
https://www.aclweb.org/anthology/C04-1060
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D17-1125
https://doi.org/10.18653/v1/D17-1125
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

1860

A Model Implementation Details

We use and compare two different feature extrac-
tors in our experiments. For bi-LSTM encoders, we
concatenate 100-dimensional word embeddings ini-
tialized from pre-trained GLoVE embeddings (Pen-
nington et al., 2014), 8-dimensional part-of-speech
and 8-dimensional named-entity embeddings as in-
put to the LSTM encoders. Tokens that appear
less than five times are replaced with a special
“UNK” token. For the BERT setting, we fine-tune
a BERTbase model8 and use the 768-dimensional
final-layer representations. For the decoder, we
embed previously decoded tokens, such as key-
words, into 256-dimensional vectors and feed them
as next-timestep input to the decoder LSTM. Both
the encoder and decoder LSTMs have 128 hidden
units and 2 layers. If the decoder predicts question
words as literal strings in the output SQL queries,
we replace them with the most similar table cell val-
ues using fuzzy match.9 We set both λatt and λCP

to be 0.2. During training, we use a batch size of 8
and we set the dropout rate to be 0.3 in all MLPs
and LSTMs. We use the Adam optimizer (Kingma
and Ba, 2015) with default learning rate 0.001 and
we clip gradients to 5.0. We train our models for
up to 50 epochs and conduct early stopping based
on per-epoch dev-set evaluation. On a single GTX
1080 Ti GPU, a training mini-batch takes 0.7 sec-
ond on average and the training process finishes
within 10 hours. We do not tune hyper-parameters.

B Comparison of Our Baseline Model
with a State-of-the-Art Text-to-SQL
Parser

To evaluate the strength of our baseline model, we
compare it with Suhr et al.’s (2020) state-of-the-art
model previously tested on the Spider dataset (Yu
et al., 2018). Our task formulation is unlike the Spi-
der dataset in that 1) the official Spider evaluation
does not require predictions of literal values and
2) on our dataset, the model needs to predict data
types for each column (e.g., number in Figure 1).
Suhr et al.’s (2020) model has already addressed the
first difference by including literal string prediction
modules, and we loosen our evaluation criteria for
the sake of this comparison. We train Suhr et al.’s
(2020) model on SQUALL with their reported hy-
perparameters and evaluate with a variant of logical

8https://github.com/huggingface/transformers
9https://github.com/seatgeek/fuzzywuzzy

Model ACC−
LF

SEQ2SEQ+ w/ BERT 50.8
Suhr et al. (2020) w/ BERT 51.7

Table B1: Dev logical form accuracy excluding column
type (ACC−

LF) of our SEQ2SEQ+ w/ BERT is comparable
to that of a state-of-the-art model on Spider.

form accuracies (ACC−LF) that accepts column type
disparities between the prediction and the gold stan-
dard; Table B1 shows the evaluation results. Our
baseline SEQ2SEQ+ model has competitive ACC−LF
with Suhr et al.’s (2020) state-of-the-art text-to-SQL

parser.

C Annotation Guidelines

In our pilot study, we instruct two expert SQL anno-
tators to write down SQL equivalents of the English
questions and to pick out the lexical mappings be-
tween the question and SQL tokens that correspond
to each other semantically and are atomic, i.e., they
cannot further decompose into smaller meaningful
mappings. These underspecified instructions lead
to 70.4% agreement on SQL annotation and 75.1%
agreement on alignment annotation. The annota-
tors have similar but not identical intuitions about,
for example, what constitutes an atomic unit, espe-
cially when there are equally plausible alternative
options. Following discussions, we refine our anno-
tation guidelines for frequently occurring patterns
to ensure consistent annotations, as follows:

General Rules

1. SQL queries should reflect the semantic intent
of the English questions, even if shorter SQL

queries return the same execution results. The
only exception is when SQL offers no straight-
forward implementation of the implicit seman-
tic constraints. In that case, answer the first
appearing subquestion, i.e., assume that the
implicit semantic constraints are always met.
For example, it is implicitly assumed in the
question “which city are A and B located in?”
that A and B are located in the same city; write
down the SQL equivalent for “which city is A
located in?”.

2. When there are competing choices of anno-
tation, select the simplest version. Among
alternative SQL queries, select the one with
fewer nestings and fewer SQL tokens: SELECT
MAX(col) FROM w is prioritized over SELECT

https://github.com/huggingface/transformers
https://github.com/seatgeek/fuzzywuzzy

1861

col FROM w ORDER BY col DESC LIMIT 1.
Following this rule, default values are always
omitted since the queries are shorter without
them. These include, for example, the key-
word ASC in an ORDER BY clause.

3. Lexical alignments should cover as many
semantically-meaningful tokens as possible,
even if there is no word overlap. For exam-
ple, for the question “who performed better,
toshida or young-sun?”, align the word “per-
formed” to its corresponding column (“result”
or “rank”). For wh-tokens, align “when”,
“who” and “where” if appropriate, but omit
alignments of “what” and “which” when they
do not contribute to concrete meanings.

4. Prioritize alignments with exact lexical
matches. This means that for many noun
phrases, align bare nouns excluding the de-
terminers instead of maximal noun phrases
(e.g., “movie” rather than “the movie” should
be aligned to the “movie” column token in
the SQL query). In contrast, include “the”
in the alignment of superlatives (e.g., “the
least”), since superlatives usually do not lexi-
cally overlap with the column tokens.

5. In general, the annotation should not depend
on the table contents and sorting assumptions.
In other words, use direct references to the
presented row order id as little as possible.
However, use id if the question explicitly asks
about the presentation order, e.g., “the first on
the list” or “the first listed”.

Some Frequent Specific Cases
1. Align “how many” to the aggregation opera-

tion when appropriate, but do not align “how
many” when the SQL query directly selects a
column without aggregation, e.g., the question
is “how many total medals has Spain won?”
and the table contains a column “total”.

2. Only add the keyword DISTINCT if there are
clear linguistic cues (“how many different
countries on the table?”), otherwise do not
use DISTINCT.

3. Use COUNT(col) if possible and use
COUNT(*) only if there is no good match from
the question to any column.

4. When the question asks about the row with
the max/min value in a column, generally use
SELECT col FROM w ORDER BY col [DESC]
LIMIT 1. If there are ties in the max/min
values, use SELECT col FROM w WHERE col

= (SELECT MAX(col) FROM w).
5. Align question word “game” to “date” column

if necessary but use COUNT(*) for counting
the game numbers when there are no better
alignment alternatives.

6. Align words referring to performance, such
as “fast”, to the corresponding “result”/“time”
columns; if not available, align them to “rank”
columns that indirectly refer to performance;
if still not available, align them to id, which
explicitly relies on the table being presorted
by the performance.

D Database Construction

We assume 9 basic data types for WTQ tables:
numbers (e.g., “5”), numbers with units (e.g.,
“5 kg”) , date and time (e.g., “May 29, 1968”,
“3:56”), (sports) scores (e.g., “w 5:3”), number
spans (e.g., “12–89”), time spans (e.g., “May 2011–
June 2012”), fractions (e.g., “3/5”) , street ad-
dresses (e.g., “2020 Westchester Street”), and raw
texts (e.g., “John Shermer”). Additionally, we con-
sider two composite types: binary tuples (e.g., “KO
(head kick)”) and lists (e.g., “Wojtek Fibak, Joakim
Nyström”). Binary tuples are split into two sub-
columns in the generated databases, and lists are
automatically transformed to a separate table joined
with the original table through primary-foreign key
relations. Data types for each column are first iden-
tified with regular expressions and manually ver-
ified by annotators. Any column that contains a
type outside of these 9 types is interpreted as raw
text. We also filter out aggregation rows from the
tables so that the SQL aggregation functions over
the table can skip those pre-computed aggregates.

E Additional Alignment Data Statistics

Table E2 shows the part-of-speech tags that are
most- and least-aligned.10 Comparative and su-
perlative adjectives and adverbs are among the
most frequently aligned tokens, while pronouns
and function words are infrequently aligned.

10These POS tags are automatically derived from Stanford
CoreNLP toolkit and are provided in the WTQ dataset.

1862

POS (%)↓ POS (%)↑

RBS (Adverb, superlative) 99.02 . (Punctuation) 0.15
JJR (Adjective, comparative) 96.24 WDT (wh-determiner) 1.20

JJS (Adjective, superlative) 94.66 VBD-AUX (Auxiliary verb) 2.26
RBR (Adverb, comparative) 93.89 EX (Existential there) 3.56

WRB (wh-adverb) 88.25 PRP$ (Possessive pronoun) 9.38
JJ (Adjective) 82.07 POS (Possessive ending) 13.42

CD (Cardinal number) 79.48 PRP (Personal pronoun) 13.95
NNP (Proper noun, singular) 75.70 WP (wh-pronoun) 20.58

Table E2: The POS tags with the highest and lowest alignment ratios (%) to SQL queries (with more than 100 occur-
rences). Comparative/superlative adjectives (JJR, JJS) and adverbs (RBS, RBR) are most aligned, corresponding
to SQL operations like MAX. Punctuations (.), wh-determiners (WDT), helper-verbs (VBD-AUX), existential there’s
(EX), and pronouns (PRP, PRP$) are least aligned.

Attention Loss ACCLF ACCEXE

Mean squared error (ALIGN) 41.8± 1.6 60.9± 0.8
Multiplication 40.3± 1.5 59.4± 1.0
Cross entropy 41.6± 1.2 60.3± 1.0

Table F3: Dev logical form (ACCLF) and execution
(ACCEXE) accuracies with different attention loss func-
tions. Our final model ALIGN uses mean squared error,
the most accurate variant of the three loss functions.

F Different Loss Functions for
Supervised Attention

Following Liu et al. (2016), we experiment with
three different attention loss definitions:

Latt =
1

2
‖a− a?‖2 (Mean Squared Error)

Latt = − log (a · a?) (Multiplication)

Latt = −a? · log (a) , (Cross Entropy)

where ai and a?i denote the learned attention
weights and annotated gold-standard alignments.
A smaller distance between ai and a?i indicates a
model better at reproducing our alignment annota-
tion. While both mean squared error and multipli-
cation are symmetric in ai and a∗i , cross entropy is
asymmetric and has been previously shown to be
the most effective measure in the task of machine
translation (Liu et al., 2016). Table F3 shows dev-
set results with different supervised attention loss
choices in ALIGN’s encoder. The mean square error
loss is the strongest, with 1.5% higher execution
accuracy than multiplication loss and 0.6% higher
than cross-entropy loss.

G ALIGN Trained with
Heuristically-Generated Alignments

We experiment with question-column alignments
derived from textual fuzzy matching between col-

Model Dev
ACCLF ACCEXE

SEQ2SEQ+ 37.8± 0.6 56.9± 0.7
ALIGN (Heuristics) 40.3± 1.8 59.6± 1.4
ALIGN (Manual) 42.2± 1.5 61.3± 0.8

Table G4: Dev logical form (ACCLF) and execution
(ACCEXE) accuracies comparing ALIGN trained with
automatic and manual alignments. Training with au-
tomatic alignments leads to higher accuracies than
SEQ2SEQ+ and manual annotations give an additional
accuracy improvement.

umn names and question 5-grams. Table G4 shows
dev-set results. Training with automatic alignments
improves over the SEQ2SEQ+ model, but manual
annotations provide an additional +1.7% ACCEXE.
The manual annotations are cleaner and more in-
formative since there are many column mentions
without any lexical overlap with the column head-
ers (e.g., “who”↔ column “athlete”).

H Template-based Evaluation

Table H5 shows dev-set results of the top 10
most frequent templates. We report logical
form (ACCLF), template (ACCTEMP) and column
(ACCCOL) accuracies. ACCCOL is calculated on
the subset where template predictions are accu-
rate.11 The improvement of ALIGN over SEQ2SEQ+

is more significant on ACCCOL than ACCTEMP. Ad-
ditionally, ALIGN tends to yield higher ACCCOL
gains on complex templates, compared with simple
and common templates.

11We do not include literal string and number accuracies:
both SEQ2SEQ+ and ALIGN get nearly perfect scores (> 98%).

1863

Template Count ACCLF ACCTEMP ACCCOL
SEQ2SEQ+ ALIGN SEQ2SEQ+ ALIGN SEQ2SEQ+ ALIGN

SELECT col FROM w ORDER BY
1,490 48.1 50.6 86.9 87.6 56.3 60.2

col [DESC] LIMIT 1

SELECT col FROM w WHERE col = STR 1,149 39.5 42.6 73.6 75.0 40.1 44.0

SELECT COUNT(col) FROM w WHERE col = STR 1,127 55.0 59.8 85.2 86.1 55.9 60.3

SELECT COUNT(col) FROM w WHERE col COMP NUM 635 50.1 57.6 89.0 91.1 57.8 66.0

SELECT col FROM w WHERE col = NUM 607 49.4 54.7 72.9 75.3 49.7 55.0

SELECT COUNT(col) FROM w 507 43.2 51.3 78.1 77.7 48.9 59.4

SELECT col FROM w GROUP BY col ORDER BY
315 34.6 47.3 80.0 85.4 36.2 49.5

COUNT(col) [DESC] LIMIT 1

SELECT COUNT(col) FROM w WHERE col = NUM 308 51.0 59.8 85.1 87.3 51.9 59.7

SELECT col FROM w WHERE col = (SELECT
284 61.2 61.6 76.1 75.7 61.6 62.0

col FROM w WHERE col = STR) + 1

SELECT col FROM w WHERE col IN (STR, STR)
282 39.0 46.8 85.5 85.8 49.3 56.0

ORDER BY col [DESC] LIMIT 1

Entire Corpus 11,276 37.8 42.2 64.7 66.7 39.6 44.5

Table H5: Dev logical form (ACCLF), template (ACCTEMP) and column (ACCCOL) accuracies on the 10 most
frequent templates. We combine model predictions from five data splits for this analysis. [DESC] denotes the
keyword DESC is optional, and COMP includes comparison operators (>, <, >=, <= and 6=). ALIGN yields higher
ACCCOL gains on complex templates, compared with simple and common templates.

Unseen Template Count ACCLF ACCEXE
SEQ2SEQ+ ALIGN SEQ2SEQ+ ALIGN

SELECT col FROM w ORDER BY
1,490 9.0 23.1 38.9 48.2

col [DESC] LIMIT 1

SELECT col FROM w WHERE col = STR 1,149 12.8 11.3 48.8 53.7

SELECT COUNT(col) FROM w WHERE col = STR 1,127 9.0 34.0 32.0 57.0

SELECT COUNT(col) FROM w WHERE col COMP NUM 635 22.6 45.2 51.6 58.9

SELECT col FROM w WHERE col = NUM 607 15.4 19.5 58.5 68.3

SELECT COUNT(col) FROM w 507 0.0 1.0 19.0 23.0

SELECT col FROM w GROUP BY col ORDER BY
315 3.3 50.8 24.6 73.8

COUNT(col) [DESC] LIMIT 1

SELECT COUNT(col) FROM w WHERE col = NUM 308 34.0 30.0 59.0 66.0

SELECT col FROM w WHERE col = (SELECT
284 30.8 15.4 61.5 57.7

col FROM w WHERE col = STR) + 1

SELECT col FROM w WHERE col IN (STR, STR)
282 17.9 30.4 53.6 66.4

ORDER BY col [DESC] LIMIT 1

Macro-average over the above templates — 15.5 26.1 44.8 57.3

Table I6: Dev logical form (ACCLF) and execution (ACCEXE) accuracies in a generalization evaluation setting
following Finegan-Dollak et al. (2018), where instances of a given template are ablated from training, and we
evaluate model accuracies on that unseen template. ALIGN outperforms SEQ2SEQ+ in ACCEXE on 9 out of the 10
most frequent templates.

I Evaluation Results on Unseen SQL
Templates

Table I6 considers an evaluation setting of Finegan-
Dollak et al. (2018) to test the model accuracies on
unseen SQL templates. We exclude all instances
of a given template from the training set, and then

evaluate only on that template. ALIGN outperforms
SEQ2SEQ+ in ACCEXE on 9 out of the 10 most
frequent templates. Notably, on a template that
contains both GROUP BY and ORDER BY clauses,
the ACCEXE improvement of ALIGN is as large as
+49.2%.

1864

References
Catherine Finegan-Dollak, Jonathan K. Kummerfeld,

Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the Association for Computational Linguis-
tics, pages 351–360.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of Inter-
national Conference on Computational Linguistics,
pages 3093–3102.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of Empirical Methods in
Natural Language Processing, pages 1532–1543.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the Association for Computational
Linguistics, pages 8372–8388.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921.

https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/C16-1291
https://www.aclweb.org/anthology/C16-1291
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

