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Abstract

In this paper, we present Hierarchical Graph
Network (HGN) for multi-hop question an-
swering. To aggregate clues from scattered
texts across multiple paragraphs, a hierarchi-
cal graph is created by constructing nodes
on different levels of granularity (questions,
paragraphs, sentences, entities), the representa-
tions of which are initialized with pre-trained
contextual encoders. Given this hierarchical
graph, the initial node representations are up-
dated through graph propagation, and multi-
hop reasoning is performed via traversing
through the graph edges for each subsequent
sub-task (e.g., paragraph selection, supporting
facts extraction, answer prediction). By weav-
ing heterogeneous nodes into an integral uni-
fied graph, this hierarchical differentiation of
node granularity enables HGN to support dif-
ferent question answering sub-tasks simultane-
ously. Experiments on the HotpotQA bench-
mark demonstrate that the proposed model
achieves new state of the art, outperforming ex-
isting multi-hop QA approaches.1

1 Introduction

In contrast to one-hop question answering (Ra-
jpurkar et al., 2016; Trischler et al., 2016; Lai et al.,
2017) where answers can be derived from a single
paragraph (Wang and Jiang, 2017; Seo et al., 2017;
Liu et al., 2018; Devlin et al., 2019), many recent
studies on question answering focus on multi-hop
reasoning across multiple documents or paragraphs.
Popular tasks include WikiHop (Welbl et al., 2018),
ComplexWebQuestions (Talmor and Berant, 2018),
and HotpotQA (Yang et al., 2018).

An example from HotpotQA is illustrated in Fig-
ure 1. In order to correctly answer the question
(“The director of the romantic comedy ‘Big Stone
Gap’ is based in what New York city”), the model is

1Code will be released at https://github.com/yuwfan/HGN.

Figure 1: An example of multi-hop question answer-
ing from HotpotQA. The model needs to identify rele-
vant paragraphs, determine supporting facts, and then
predict the answer correctly.

required to first identify P1 as a relevant paragraph,
whose title contains the keywords that appear in the
question (“Big Stone Gap”). S1, the first sentence
of P1, is then chosen by the model as a supporting
fact that leads to the next-hop paragraph P2. Lastly,
from P2, the span “Greenwich Village, New York
City” is selected as the predicted answer.

Most existing studies use a retriever to find para-
graphs that contain the right answer to the question
(P1 and P2 in this case). A Machine Reading Com-
prehension (MRC) model is then applied to the
selected paragraphs for answer prediction (Nishida
et al., 2019; Min et al., 2019b). However, even after
successfully identifying a reasoning chain through
multiple paragraphs, it still remains a critical chal-
lenge how to aggregate evidence from scattered

https://github.com/yuwfan/HGN
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sources on different granularity levels (e.g., para-
graphs, sentences, entities) for joint answer and
supporting facts prediction.

To better leverage fine-grained evidences, some
studies apply entity graphs through query-guided
multi-hop reasoning. Depending on the character-
istics of the dataset, answers can be selected either
from entities in the constructed entity graph (Song
et al., 2018; Dhingra et al., 2018; De Cao et al.,
2019; Tu et al., 2019; Ding et al., 2019), or from
spans in documents by fusing entity representa-
tions back into token-level document representa-
tion (Xiao et al., 2019). However, the constructed
graph is mostly used for answer prediction only,
while insufficient for finding supporting facts. Also,
reasoning through a simple entity graph (Ding et al.,
2019) or paragraph-entity hybrid graph (Tu et al.,
2019) lacks the ability to support complicated ques-
tions that require multi-hop reasoning.

Intuitively, given a question that requires mul-
tiple hops through a set of documents to reach
the right answer, a model needs to: (i) identify
paragraphs relevant to the question; (ii) determine
strong supporting evidence in those paragraphs;
and (iii) pinpoint the right answer following the
garnered evidence. To this end, Graph Neural Net-
work with its inherent message passing mechanism
that can pass on multi-hop information through
graph propagation, has great potential of effectively
predicting both supporting facts and answer simul-
taneously for complex multi-hop questions.

Motivated by this, we propose a Hierarchical
Graph Network (HGN) for multi-hop question an-
swering, which empowers joint answer/evidence
prediction via multi-level fine-grained graphs in
a hierarchical framework. Instead of only using
entities as nodes, for each question we construct
a hierarchical graph to capture clues from sources
with different levels of granularity. Specifically,
four types of graph node are introduced: questions,
paragraphs, sentences and entities (see Figure 2).
To obtain contextualized representations for these
hierarchical nodes, large-scale pre-trained language
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) are used for contextual
encoding. These initial representations are then
passed through a Graph Neural Network for graph
propagation. The updated node representations are
then exploited for different sub-tasks (e.g., para-
graph selection, supporting facts prediction, entity
prediction). Since answers may not be entities in

the graph, a span prediction module is also intro-
duced for final answer prediction.

The main contributions of this paper are three-
fold: (i) We propose a Hierarchical Graph Network
(HGN) for multi-hop question answering, where
heterogeneous nodes are woven into an integral
hierarchical graph. (ii) Nodes from different gran-
ularity levels mutually enhance each other for dif-
ferent sub-tasks, providing effective supervision
signals for both supporting facts extraction and
answer prediction. (iii) On the HotpotQA bench-
mark, the proposed model achieves new state of
the art in both Distractor and Fullwiki settings.

2 Related Work

Multi-Hop QA Multi-hop question answering
requires a model to aggregate scattered pieces of
evidence across multiple documents to predict the
right answer. WikiHop (Welbl et al., 2018) and Hot-
potQA (Yang et al., 2018) are two recent datasets
designed for this purpose. Existing work on Hot-
potQA Distractor setting focuses on converting
the multi-hop reasoning task into single-hop sub-
problems. Specifically, QFE (Nishida et al., 2019)
regards evidence extraction as a query-focused
summarization task, and reformulates the query
in each hop. DecompRC (Min et al., 2019b) de-
composes a compositional question into simpler
sub-questions and leverages single-hop MRC mod-
els to answer the sub-questions. A neural modu-
lar network is also proposed in Jiang and Bansal
(2019b), where neural modules are dynamically
assembled for more interpretable multi-hop rea-
soning. Recent studies (Chen and Durrett, 2019;
Min et al., 2019a; Jiang and Bansal, 2019a) have
also studied the multi-hop reasoning behaviors that
models have learned in the task.

Graph Neural Network Recent studies on
multi-hop QA also build graphs based on entities
and reasoning over the constructed graph using
graph neural networks (Kipf and Welling, 2017;
Veličković et al., 2018). MHQA-GRN (Song et al.,
2018) and Coref-GRN (Dhingra et al., 2018) con-
struct an entity graph based on co-reference reso-
lution or sliding windows. Entity-GCN (De Cao
et al., 2019) considers three different types of edges
that connect different entities in the entity graph.
HDE-Graph (Tu et al., 2019) enriches information
in the entity graph by adding document nodes and
creating interactions among documents, entities
and answer candidates. Cognitive Graph QA (Ding
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Figure 2: Model architecture of Hierarchical Graph Network. The constructed graph corresponds to the example
in Figure 1. Green, blue, orange, and brown colors represent paragraph (P), sentence (S), entity (E), and question
(Q) nodes, respectively. Some entities and hyperlinks are omitted for simplicity.

et al., 2019) employs an MRC model to predict
answer spans and possible next-hop spans, and
then organizes them into a cognitive graph. DFGN
(Xiao et al., 2019) constructs a dynamic entity
graph, where in each reasoning step irrelevant en-
tities are softly masked out and a fusion module
is designed to improve the interaction between the
entity graph and documents.

More recently, SAE (Tu et al., 2020) defines
three types of edge in the sentence graph based
on the named entities and noun phrases appearing
in the question and sentences. C2F Reader (Shao
et al., 2020) uses graph attention or self-attention
on entity graph, and argues that this graph may
not be necessary for multi-hop reasoning. Asai
et al. (2020) proposes a new graph-based recurrent
method to find evidence documents as reasoning
paths, which is more focused on information re-
trieval. Different from the above methods, our
proposed model constructs a hierarchical graph,
effectively exploring relations on different granu-
larities and employing different nodes to perform
different tasks.

Hierarchical Coarse-to-Fine Modeling Previ-
ous work on hierarchical modeling for question an-
swering is mainly based on a coarse-to-fine frame-
work. Choi et al. (2017) proposes to use rein-
forcement learning to first select relevant sentences
and then produce answers from those sentences.
Min et al. (2018) investigates the minimal context
required to answer a question, and observes that
most questions can be answered with a small set
of sentences. Swayamdipta et al. (2018) constructs
lightweight models and combines them into a cas-

cade structure to extract the answer. Zhong et al.
(2019) proposes to use hierarchies of co-attention
and self-attention to combine information from ev-
idence across multiple documents. Different from
the above methods, our proposed model organizes
different granularities in a hierarchical manner and
leverages graph neural network to obtain the repre-
sentations for different downstream tasks.

3 Hierarchical Graph Network

As illustrated in Figure 2, the proposed Hierarchical
Graph Network (HGN) consists of four main com-
ponents: (i) Graph Construction Module (Sec. 3.1),
through which a hierarchical graph is constructed
to connect clues from different sources; (ii) Con-
text Encoding Module (Sec. 3.2), where initial
representations of graph nodes are obtained via
a RoBERTa-based encoder; (iii) Graph Reasoning
Module (Sec. 3.3), where graph-attention-based
message passing algorithm is applied to jointly
update node representations; and (iv) Multi-task
Prediction Module (Sec. 3.4), where multiple sub-
tasks, including paragraph selection, supporting
facts prediction, entity prediction, and answer span
extraction, are performed simultaneously.

3.1 Graph Construction
The hierarchical graph is constructed in two steps:
(i) identifying relevant multi-hop paragraphs; and
(ii) adding edges representing connections between
sentences/entities within the selected paragraphs.

Paragraph Selection We first retrieve para-
graphs whose titles match any phrases in the ques-
tion (title matching). In addition, we train a para-
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graph ranker based on a pre-trained RoBERTa en-
coder, followed by a binary classification layer, to
rank the probabilities of whether the input para-
graphs contain the ground-truth supporting facts.
If multiple paragraphs are found by title match-
ing, only two paragraphs with the highest ranking
scores are selected. If title matching returns no re-
sults, we further search for paragraphs that contain
entities appearing in the question. If this also fails,
the paragraph ranker will select the paragraph with
the highest ranking score. The number of selected
paragraphs in the first-hop is at most 2.

Once the first-hop paragraphs are identified, the
next step is to find facts and entities within the para-
graphs that can lead to other relevant paragraphs
(i.e,, the second hop). Instead of relying on entity
linking, which could be noisy, we use hyperlinks
(provided by Wikipedia) in the first-hop paragraphs
to discover second-hop paragraphs. Once the links
are selected, we add edges between the sentences
containing these links (source) and the paragraphs
that the hyperlinks refer to (target), as illustrated
by the dashed orange line in Figure 2. In order to
allow information flow from both directions, the
edges are considered as bidirectional.

Through this two-hop selection process, we are
able to obtain several candidate paragraphs. In
order to reduce introduced noise during inference,
we use the paragraph ranker to select paragraphs
with top-N ranking scores in each step.

Nodes and Edges Paragraphs are comprised of
sentences, and each sentence contains multiple enti-
ties. This graph is naturally encoded in a hierarchi-
cal structure, and also motivates how we construct
the hierarchical graph. For each paragraph node,
we add edges between the node and all the sen-
tences in the paragraph. For each sentence node,
we extract all the entities in the sentence and add
edges between the sentence node and these entity
nodes. Optionally, edges between paragraphs and
edges between sentences can also be included in
the final graph.

Each type of these nodes captures semantics
from different information sources. Thus, the hi-
erarchical graph effectively exploits the structural
information across all different granularity levels
to learn fine-grained representations, which can lo-
cate supporting facts and answers more accurately
than simpler graphs with homogeneous nodes.

An example hierarchical graph is illustrated in
Figure 2. We define different types of edges as

follows: (i) edges between question node and para-
graph nodes; (ii) edges between question node
and its corresponding entity nodes (entities ap-
pearing in the question, not shown for simplicity);
(iii) edges between paragraph nodes and their cor-
responding sentence nodes (sentences within the
paragraph); (iv) edges between sentence nodes and
their linked paragraph nodes (linked through hy-
perlinks); (v) edges between sentence nodes and
their corresponding entity nodes (entities appear-
ing in the sentences); (vi) edges between paragraph
nodes; and (vii) edges between sentence nodes that
appear in the same paragraph. Note that a sentence
is only connected to its previous and next neigh-
boring sentence. The final graph consists of these
seven types of edges as well as four types of nodes,
which link the question to paragraphs, sentences,
and entities in a hierarchical way.

3.2 Context Encoding
Given the constructed hierarchical graph, the next
step is to obtain the initial representations of all
the graph nodes. To this end, we first combine
all the selected paragraphs into context C, which
is concatenated with the question Q and fed into
pre-trained Transformer RoBERTa, followed by
a bi-attention layer (Seo et al., 2017). We de-
note the encoded question representation as Q =
{q0,q1, . . . ,qm−1} ∈ Rm×d, and the encoded
context representation as C = {c0, c1, ..., cn−1} ∈
Rn×d, where m, n are the length of the question
and the context, respectively. Each qi and cj ∈ Rd.

A shared BiLSTM is applied on top of the con-
text representation C, and the representations of
different nodes are extracted from the output of
the BiLSTM, denoted as M ∈ Rn×2d. For en-
tity/sentence/paragraph nodes, which are spans of
the context, the representation is calculated from:
(i) the hidden state of the backward LSTM at the
start position, and (ii) the hidden state of the for-
ward LSTM at the end position. For the question
node, a max-pooling layer is used to obtain its rep-
resentation. Specifically,

pi = MLP1

([
M[P

(i)
start][d:];M[P

(i)
end][:d]

])
si = MLP2

([
M[S

(i)
start][d:];M[S

(i)
end][:d]

])
ei = MLP3

([
M[E

(i)
start][d:];M[E

(i)
end][:d]

])
q = max-pooling(Q) , (1)

where P (i)
start, S

(i)
start, and E(i)

start denote the start
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position of the i-th paragraph/sentence/entity node.
Similarly, P (i)

end, S(i)
end, and E(i)

end denote the corre-
sponding end positions. MLP(·) denotes an MLP
layer, and [; ] denotes the concatenation of two vec-
tors. As a summary, after context encoding, each
pi, si, and ei ∈ Rd, serves as the representation
of the i-th paragraph/sentence/entity node. The
question node is represented as q ∈ Rd.

3.3 Graph Reasoning
After context encoding, HGN performs reasoning
over the hierarchical graph, where the contextu-
alized representations of all the graph nodes are
transformed into higher-level features via a graph
neural network. Specifically, let P = {pi}

np

i=1,
S = {si}ns

i=1, and E = {ei}ne
i=1, where np, ns and

ne denote the number of paragraph/sentence/entity
nodes in a graph. In experiments, we set np = 4,
ns = 40 and ne = 60 (padded where necessary),
and denote H = {q,P,S,E} ∈ Rg×d, where
g = np + ns + ne + 1, and d is the feature dimen-
sion of each node.

For graph propagation, we use Graph Attention
Network (GAT) (Veličković et al., 2018) to per-
form message passing over the hierarchical graph.
Specifically, GAT takes all the nodes as input, and
updates node feature h′i through its neighbors Ni

in the graph. Formally,

h′i = LeakyRelu
( ∑

j∈Ni

αijhjW
)
, (2)

where hj is the jth vector from H, W ∈ Rd×d

is a weight matrix2 to be learned, and αij is the
attention coefficients, which can be calculated by:

αij =
exp(f([hi;hj ]weij ))∑

k∈Ni
exp(f([hi;hk]weik))

, (3)

where weij ∈ R2d is the weight vector correspond-
ing to the edge type eij between the i-th and j-
th nodes, and f(·) denotes the LeakyRelu activa-
tion function. In a summary, after graph reason-
ing, we obtain H′ = {h′0,h′1, . . . ,h′g} ∈ Rg×d,
from which the updated representations for each
type of node can be obtained, i.e., P′ ∈ Rnp×d,
S′ ∈ Rns×d, E′ ∈ Rne×d, and q′ ∈ Rd.

Gated Attention The graph information will fur-
ther contribute to the context information for an-
swer span extraction. We merge the context repre-
sentation M and the graph representation H′ via a

2Note that we omit the bias term for all the weight matrices
in the paper to save space.

gated attention mechanism:

C = Relu(MWm) · Relu(H′W′
m)T

H̄ = Softmax(C) ·H′

G = σ([M; H̄]Ws) · Tanh([M; H̄]Wt), (4)

where Wm ∈ R2d×2d,W′
m ∈ R2d×2d,Ws ∈

R4d×4d,Wt ∈ R4d×4d are weight matrices to learn.
G ∈ Rn×4d is the gated representation which will
be used for answer span extraction.

3.4 Multi-task Prediction

After graph reasoning, the updated node representa-
tions are used for different sub-tasks: (i) paragraph
selection based on paragraph nodes; (ii) support-
ing facts prediction based on sentence nodes; and
(iii) answer prediction based on entity nodes and
context representation G. Since the answers may
not reside in entity nodes, the loss for entity node
only serves as a regularization term.

In our HGN model, all three tasks are jointly
performed through multi-task learning. The final
objective is defined as:

Ljoint = Lstart + Lend + λ1Lpara + λ2Lsent
+ λ3Lentity + λ4Ltype , (5)

where λ1, λ2, λ3, and λ4 are hyper-parameters,
and each loss function is a cross-entropy loss, cal-
culated over the logits (described below).

For both paragraph selection (Lpara) and sup-
porting facts prediction (Lsent), we use a two-layer
MLP as the binary classifier:

osent = MLP4(S
′), opara = MLP5(P

′) , (6)

where osent ∈ Rns represents whether a sen-
tence is selected as supporting facts, and opara ∈
Rnp represents whether a paragraph contains the
ground-truth supporting facts.

We treat entity prediction (Lentity) as a multi-
class classification problem. Candidate entities
include all entities in the question and those that
match the titles in the context. If the ground-truth
answer does not exist among the entity nodes, the
entity loss is zero. Specifically,

oentity = MLP6(E
′) . (7)

The entity loss will only serve as a regularization
term, and the final answer prediction will only rely
on the answer span extraction module as follows.
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Model
Ans Sup Joint

EM F1 EM F1 EM F1

DecompRC (Min et al., 2019b) 55.20 69.63 - - - -
ChainEx (Chen et al., 2019) 61.20 74.11 - - - -
Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49 10.83 40.16
QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49 34.63 59.61
DFGN (Xiao et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82
LQR-Net (Grail et al., 2020) 60.20 73.78 56.21 84.09 36.56 63.68
P-BERT† 61.18 74.16 51.38 82.76 35.42 63.79
TAP2 (Glass et al., 2019) 64.99 78.59 55.47 85.57 39.77 69.12
EPS+BERT† 65.79 79.05 58.50 86.26 42.47 70.48
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86 45.36 71.45
C2F Reader(Shao et al., 2020) 67.98 81.24 60.81 87.63 44.67 72.73
Longformer? (Beltagy et al., 2020) 68.00 81.25 63.09 88.34 45.91 73.16
ETC-large? (Zaheer et al., 2020) 68.12 81.18 63.25 89.09 46.40 73.62

HGN (ours) 69.22 82.19 62.76 88.47 47.11 74.21

Table 1: Results on the test set of HotpotQA in the Distractor setting. HGN achieves state-of-the-art results at the
time of submission (Dec. 1, 2019). (†) and (?) indicates unpublished and concurrent work. RoBERTa-large (Liu
et al., 2019) is used for context encoding.

The logits of every position being the start and
end of the ground-truth span are computed by a
two-layer MLP on top of G in Eqn.(4):

ostart = MLP7(G), oend = MLP8(G) . (8)

Following previous work (Xiao et al., 2019), we
also need to identify the answer type, which in-
cludes the types of span, entity, yes and no. We use
a 3-way two-layer MLP for answer-type classifi-
cation based on the first hidden representation of
G:

otype = MLP9(G[0]) . (9)

During decoding, we first use this to determine
the answer type. If it is “yes” or “no”, we
directly return it as the answer. Overall, the
final cross-entropy loss (Ljoint) used for train-
ing is defined over all the aforementioned logits:
osent,opara,oentity,ostart,oend,otype.

4 Experiments

In this section, we describe experiments comparing
HGN with state-of-the-art approaches and provide
detailed analysis on the model and results.

4.1 Dataset
We use HotpotQA dataset (Yang et al., 2018) for
evaluation, a popular benchmark for multi-hop QA.
Specifically, two sub-tasks are included in this

dataset: (i) Answer prediction; and (ii) Supporting
facts prediction. For each sub-task, exact match
(EM) and partial match (F1) are used to evaluate
model performance, and a joint EM and F1 score
is used to measure the final performance, which
encourages the model to take both answer and evi-
dence prediction into consideration.

There are two settings in HotpotQA: Distractor
and Fullwiki setting. In the Distractor setting, for
each question, two gold paragraphs with ground-
truth answers and supporting facts are provided,
along with 8 ‘distractor’ paragraphs that were col-
lected via a bi-gram TF-IDF retriever (Chen et al.,
2017). The Fullwiki setting is more challenging,
which contains the same training questions as in
the Distractor setting, but does not provide relevant
paragraphs for test set. To obtain the right answer
and supporting facts, the entire Wikipedia can be
used to find relevant documents. Implementation
details can be found in Appendix B.

4.2 Experimental Results

Results on Test Set Table 1 and 2 summarize
results on the hidden test set of HotpotQA. In Dis-
tractor setting, HGN outperforms both published
and unpublished work on every metric by a sig-
nificant margin, achieving a Joint EM/F1 score
of 47.11/74.21 with an absolute improvement of
2.44/1.48 over previous state of the art. In Fullwiki
setting, HGN achieves state-of-the-art results on
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Model
Ans Sup Joint

EM F1 EM F1 EM F1

TPReasoner (Xiong et al., 2019) 36.04 47.43 - - - -
Baseline Model (Yang et al., 2018) 23.95 32.89 3.86 37.71 1.85 16.15
QFE (Nishida et al., 2019) 28.66 38.06 14.20 44.35 8.69 23.10
MUPPET (Feldman and El-Yaniv, 2019) 30.61 40.26 16.65 47.33 10.85 27.01
Cognitive Graph (Ding et al., 2019) 37.12 48.87 22.82 57.69 12.42 34.92
PR-BERT† 43.33 53.79 21.90 59.63 14.50 39.11
Golden Retriever (Qi et al., 2019) 37.92 48.58 30.69 64.24 18.04 39.13
Entity-centric BERT (Godbole et al., 2019) 41.82 53.09 26.26 57.29 17.01 39.18
SemanticRetrievalMRS (Yixin Nie, 2019) 45.32 57.34 38.67 70.83 25.14 47.60
Transformer-XH (Zhao et al., 2020) 48.95 60.75 41.66 70.01 27.13 49.57
MIR+EPS+BERT† 52.86 64.79 42.75 72.00 31.19 54.75
Graph Recur. Retriever (Asai et al., 2020) 60.04 72.96 49.08 76.41 35.35 61.18

HGN (RoBERTa-large) 57.85 69.93 51.01 76.82 37.17 60.74
HGN (ALBERT-xxlarge-v2) 59.74 71.41 51.03 77.37 37.92 62.26

Table 2: Results on the test set of HotpotQA in the Fullwiki setting. HGN achieves state-of-the-art results at
the time of submission (Feb. 11, 2020). (†) indicates unpublished work. RoBERTa-large (Liu et al., 2019) and
ALBERT-xxlarge-v2 (Lan et al., 2020) are used for context encoding, and SemanticRetrievalMRS is used for
retrieval. Leaderboard: https://hotpotqa.github.io/.

Joint EM/F1 with 2.57/1.08 improvement, despite
using an inferior retriever; when using the same
retriever as in SemanticRetrievalMRS (Yixin Nie,
2019), our method outperforms by a significant
margin, demonstrating the effectiveness of our
multi-hop reasoning approach. In the following
sub-sections, we provide a detailed analysis on the
sources of performance gain on the dev set. Ad-
ditional ablation study on paragraph selection is
provided in Appendix D.

Effectiveness of Hierarchical Graph As de-
scribed in Section 3.1, we construct our graph with
four types of nodes and seven types of edges. For
ablation study, we build the graph step by step.
First, we only consider edges from question to para-
graphs, and from paragraphs to sentences, i.e., only
edge type (i), (iii) and (iv) are considered. We call
this the PS Graph. Based on this, entity nodes and
edges related to each entity node (corresponding to
edge type (ii) and (v)) are added. We call this the
PSE Graph. Lastly, edge types (vi) and (vii) are
added, resulting in the final hierarchical graph.

As shown in Table 4, the use of PS Graph im-
proves the joint F1 score over the plain RoBERTa
model by 2.81 points. By further adding entity
nodes, the Joint F1 increases by 0.30 points. This
indicates that the addition of entity nodes is helpful,
but may also bring in noise, thus only leading to
limited performance improvement. By including

edges among sentences and paragraphs, our final
hierarchical graph provides an additional improve-
ment of 0.24 points. We hypothesize that this is
due to the explicit connection between sentences
that leads to better representations.

Effectiveness of Pre-trained Language Model
To verify the effects of pre-trained language mod-
els, we compare HGN with prior state-of-the-art
methods using the same pre-trained language mod-
els. Results in Table 5 show that our HGN variants
outperform DFGN, EPS and SAE, indicating the
performance gain comes from better model design.

4.3 Analysis

In this section, we provide an in-depth error anal-
ysis on the proposed model. HotpotQA provides
two reasoning types: “bridge” and “comparison”.
“Bridge” questions require the identification of a
bridge entity that leads to the answer, while “com-
parison” questions compare two entities to infer
the answer, which could be yes, no or a span of
text. For analysis, we further split “comparison”
questions into “comp-yn” and “comp-span”. Ta-
ble 6 indicates that “comp-yn” questions are the
easiest, on which our model achieves 88.5 joint F1
score. HGN performs similarly on “bridge” and
“comp-span” with 74 joint F1 score, indicating that
there is still room for further improvement.

To provide a more in-depth understanding of our

https://hotpotqa.github.io/
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Category Question Answer Prediction Pct (%)

Annotation Were the films Tonka and 101
Dalmatians released in the same
decade?

1958 Walt Disney
Western adventure
film

No 9

Multiple An-
swers

Michael J. Hunter replaced the
lawyer who became the adminis-
trator of which agency?

EPA Environmental Pro-
tection Agency

24

Discrete Rea-
soning

Between two bands, Mastodon
and Hole, which one has more
members?

Mastodon Hole 15

Commonsense
& External
Knowledge

What is the name of second ex-
tended play by the artists of the
mini-album Code#01?

Code#02
Pretty Pretty

Code#01 Bad Girl 16

Multi-hop Who directed the film based on
the rock opera 5:15 appeared in?

Franc Roddam Ken Russell 16

MRC How was Ada Lovelace, the first
computer programmer, related to
Lord Byron in Childe Byron?

his daughter strained relation-
ship

20

Table 3: Error analysis of HGN model. For ‘Multi-hop’ errors, the model jumps to the wrong film (“Tommy
(1975 film)”) instead of the correct one (“Quadrophenia (film)”) from the starting entity “rock opera 5:15”. The
supporting fact for the ‘MRC’ example is “Childe Byron is a 1977 play by Romulus Linney about the strained
relationship between the poet, Lord Byron, and his daughter, Ada Lovelace”.

Model Ans F1 Sup F1 Joint F1

w/o Graph 80.58 85.83 71.02
PS Graph 81.68 88.44 73.83
PSE Graph 82.10 88.40 74.13
Hier. Graph 82.22 88.58 74.37

Table 4: Ablation study on the effectiveness of the hi-
erarchical graph on the dev set in the Distractor setting.
RoBERTa-large is used for context encoding.

Model Ans F1 Sup F1 Joint F1

DFGN (BERT-base) 69.38 82.23 59.89
EPS (BERT-wwm)† 79.05 86.26 70.48
SAE (RoBERTa) 80.75 87.38 72.75

HGN (BERT-base) 74.76 86.61 66.90
HGN (BERT-wwm) 80.51 88.14 72.77
HGN (RoBERTa) 82.22 88.58 74.37
HGN (ALBERT-xxlarge-v2) 83.46 89.2 75.79

Table 5: Results with different pre-trained language
models on the dev set in the Distractor setting. (†) is un-
published work with results on the test set, using BERT
whole word masking (wwm).

model’s weaknesses (and provide insights for fu-
ture work), we randomly sample 100 examples in
the dev set with the answer F1 as 0. After carefully
analyzing each example, we observe that these er-

Question Ans F1 Sup F1 Joint F1 Pct (%)

comp-yn 93.45 94.22 88.50 6.19
comp-span 79.06 91.72 74.17 13.90
bridge 81.90 87.60 73.31 79.91

Table 6: Results of HGN for different reasoning types.
‘Pct’ is short for ‘Percentage’.

rors can be roughly grouped into six categories: (i)
Annotation: the annotation provided in the dataset
is not correct; (ii) Multiple Answers: questions
may have multiple correct answers, but only one
answer is provided in the dataset; (iii) Discrete
Reasoning: this type of error often appears in “com-
parison” questions, where discrete reasoning is re-
quired to answer the question correctly; (iv) Com-
monsense & External Knowledge: to answer this
type of question, commonsense or external knowl-
edge is required; (v) Multi-hop: the model fails to
perform multi-hop reasoning, and finds the final
answer from wrong paragraphs; (vi) MRC: model
correctly finds the supporting paragraphs and sen-
tences, but predicts the wrong answer span.

Note that these error types are not mutually ex-
clusive, but we aim to classify each example into
only one type, in the order presented above. For
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example, if an error is classified as ‘Commonsense
& External Knowledge’ type, it cannot be classi-
fied as ‘Multi-hop’ or ‘MRC’ error. Table 3 shows
examples from each category (the corresponding
paragraphs are omitted due to space limit).

We observed that a lot of errors are due to the fact
that some questions have multiple answers with the
same meaning, such as “a body of water vs. creek”,
“EPA vs. Environmental Protection Agency”, and
“American-born vs. U.S. born”. In these exam-
ples, the former is the ground-truth answer, and
the latter is our model’s prediction. Secondly, for
questions that require commonsense or discrete rea-
soning (e.g., “second” means “Code#02”3, “which
band has more members”, or “who was born ear-
lier”), our model just randomly picks an entity as
answer, as it is incapable of performing this type
of reasoning. The majority of the errors are from
either multi-hop reasoning or MRC model’s span
selection, which indicates that there is still room
for further improvement. Additional examples are
provided in Appendix F.

4.4 Generalizability Discussion

The hierarchical graph can be applied to different
multi-hop QA datasets, though in this paper mainly
tailored for HotpotQA. Here we use Wikipedia hy-
perlinks to connect sentences and paragraphs. An
alternative way is to use an entity linking system
to make it more generalizable. For each sentence
node, if its entities exist in a paragraph, an edge
can be added to connect the sentence and paragraph
nodes. In our experiments, we restrict the number
of multi-hops to two for the HotpotQA task, which
can be increased to accommodate other datasets.
The maximum number of paragraphs is set to four
for HotpotQA, as we observe that using more docu-
ments within a maximum sequence length does not
help much (see Table 9 in the Appendix). To gener-
alize to other datasets that need to consume longer
documents, we can either: (i) use sliding-window-
based method to chunk a long sequence into short
ones; or (ii) replace the BERT-based backbone
with other transformer-based models that are capa-
ble of dealing with long sequences (Beltagy et al.,
2020; Zaheer et al., 2020; Wang et al., 2020).

5 Conclusion

In this paper, we propose a new approach, Hi-
erarchical Graph Network (HGN), for multi-hop

3Please refer to Row 4 in Table 3 for more context.

question answering. To capture clues from dif-
ferent granularity levels, our HGN model weaves
heterogeneous nodes into a single unified graph.
Experiments with detailed analysis demonstrate
the effectiveness of our proposed model, which
achieves state-of-the-art performances on the Hot-
potQA benchmark. Currently, in the Fullwiki set-
ting, an off-the-shelf paragraph retriever is adopted
for selecting relevant context from large corpus of
text. Future work includes investigating the interac-
tion and joint training between HGN and paragraph
retriever for performance improvement.
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A Datasets

There are two benchmark settings in HotpotQA:
Distractor and Fullwiki setting. They both have
90k training samples and 7.4k development sam-
ples. In the Distractor setting, there are 2 gold
paragraphs and 8 distractors. However, 2 gold para-
graphs may not be available in the Fullwiki Setting.
Therefore, the Fullwiki setting is more challenge
which requires to search the entire Wikipedia to
find relevant documents. For both settings, there
are 90K hidden test samples. More details about
the dataset can be found in Yang et al. (2018).

B Implementation Details

Our implementation is based on the Transformer li-
brary (Wolf et al., 2019). To construct the proposed
hierarchical graph, we use spacy4 to extract entities
from both questions and sentences. The numbers
of entities, sentences and paragraphs in one graph
are limited to 60, 40 and 4, respectively. Since
HotpotQA only requires two-hop reasoning, up
to two paragraphs are connected to each question.
Our paragraph ranking model is a binary classifier
based on the RoBERTa-large model. For the Full-
wiki setting, we leverage the retrieved paragraphs
and the paragraph ranker provided by Yixin Nie
(2019). We finetune on the training set for 8 epochs,
with batch size as 8, learning rate as 1e-5, λ1 as
1, λ2 as 5, λ3 as 1, λ4 as 1, LSTM dropout rate
as 0.3 and GNN dropout rate as 0.3. We search
hyperparameters for learning rate from {1e-5, 2e-5,
3e-5} , λ2 from {1, 3, 5} and dropout rate from
{0.1, 0.3, 0.5}.

C Computing Resources

We conduct experiments on 4 Quadro RTX 8000
GPUs. The parameters of each component in HGN
are summarized in Table 7. The computation bot-
tleneck is mainly from RoBERTa. The best model
of HGN took around 12 hours for training, which
is almost the same as the RoBERTa-large baseline.

Components #Parameters
RoBERTa 355M
Bi-Attention 0.62M
BiLSTM 1.44M
GNN 29M
Multi-task Layer 0.55M

Table 7: Number of parameters for each component in
HGN.

D Effectiveness of Paragraph Selection

The proposed HGN relies on effective paragraph se-
lection to find relevant multi-hop paragraphs. Table
8 shows the performance of paragraph selection on
the dev set of HotpotQA. In DFGN, paragraphs are
selected based on a threshold to maintain high re-
call (98.27%), leading to a low precision (60.28%).
Compared to both threshold-based and pure Top-
N -based paragraph selection, our two-step para-

4https://spacy.io

https://spacy.io
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Method Precision Recall #Para.
Threshold-based 60.28 98.27 3.26
Top 2 from ranker 93.43 93.43 2
Top 4 from ranker 49.39 98.48 4
1st hop 96.10 59.74 1.24
2 paragraphs (ours) 94.53 94.53 2
4 paragraphs (ours) 49.45 98.74 4

Table 8: Performance of paragraph selection on the dev
set of HotpotQA based on BERT-base.

graph selection process is more accurate, achiev-
ing 94.53% precision and 94.53% recall. Besides
these two top-ranked paragraphs, we also include
two other paragraphs with the next highest ranking
scores, to obtain a higher coverage on potential an-
swers. Table 9 summarizes the results on the dev
set in the Distractor setting, using our paragraph
selection approach for both DFGN and the plain
BERT-base model. Note that the original DFGN
does not finetune BERT, leading to much worse
performance. In order to provide a fair comparison,
we modify their released code to allow finetuning
of BERT. Results show that our paragraph selec-
tion method outperforms the threshold-based one
in both models.

Model Ans F1 Sup F1 Joint F1
DFGN (paper) 69.38 82.23 59.89
DFGN
+ threshold-based 71.90 83.57 63.04
+ 2 para. (ours) 72.53 83.57 63.87
+ 4 para. (ours) 72.67 83.34 63.63
BERT-base
+ threshold-based 71.95 82.79 62.43
+ 2 para. (ours) 72.42 83.64 63.94
+ 4 para. (ours) 72.67 84.86 64.24

Table 9: Results with selected paragraphs on the dev
set in the Distractor setting.

E Case Study

We provide two example questions for case study.
To answer the question in Figure 3 (left), Q needs
to be linked with P1. Subsequently, the sentence
S4 within P1 is connected to P2 through the hy-
perlink (“John Surtees”) in S4. A plain BERT
model without using the constructed graph missed
S7 as additional supporting facts, while our HGN
discovers and utilizes both pieces of evidence as the
connections among S4, P2 and S7 are explicitly
encoded in our hierarchical graph.

For the question in Figure 3 (right), the inference
chain is Q→ P1→ S1→ S2→ P2→ S3. The
plain BERT model infers the evidence sentences
S2 and S3 correctly. However, it fails to predict
S1 as the supporting facts, while HGN succeeds,
potentially due to the explicit connections between
sentences in the constructed graph.

F Additional Examples for Error
Analysis

Below, we provide additional examples for error
analysis, where “Q” denotes question, “A” denotes
answer provided with dataset and “P” denotes
the prediction of proposed model. A full list of
all the 100 examples is provided in Table 10 and 11.

Category: Annotation
ID: 5ae2e0fd55429928c4239524
Q: What actor was also a president that Richard
Darman worked with when they were in office?
A: George H. W. Bush
P: Ronald Reagan

ID: 5ab43b755542991779162c21
Q: What sports club based in Hamburg Germany
had a Persian born football player who played for
eight seasons?
A: Mehdi Mahdavikia
P: Hamburger SV

ID: 5a72e28f5542992359bc31ba
Q: Which technique did the director at Pzena
Investment Management outline?
A: outlined by Joel Greenblatt
P: Magic formula investing

ID: 5a7e71ab55429949594199bc
Q: Perfect Imperfection is a 2016 Chinese romantic
drama film starring a south Korean actor best
known for his roles in what 2016 television drama?
A: Reunited Worlds
P: Cinderella and Four Knights

ID: 5a7a18b05542990783324e53
Q: What year was the independent regional brew-
ery founded that currently operates in Hasting’s
oldest pub?
A: since 1864
P: 1698

Category: Multiple Answers
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Figure 3: Examples of supporting facts prediction in the HotpotQA Distractor setting.

Category Sample IDs
Annotation 6, 23, 33, 38, 47, 59, 75, 81, 93

Multiple Answers 1, 4, 8, 10, 11, 16, 19, 24, 26, 28, 29, 32, 39, 40, 42,
50, 53, 56, 60, 63, 67, 68, 71, 72

Discrete Reasoning 0, 2, 9, 21, 22, 35, 37, 45, 58, 64, 77, 82, 86, 88, 95
Commonsense & External Knowledge 7, 15, 20, 36, 69, 70, 73, 76, 78, 83, 84, 85, 87, 91,

92, 96
Multi-hop 3, 17, 25, 27, 30, 41, 43, 46, 54, 57, 62, 74, 79, 90,

97, 99
MRC 5, 12, 13, 14, 18, 31, 34, 44, 48, 49, 51, 52, 55, 61,

65, 66, 80, 89, 94, 98

Table 10: The categories and sample IDs for the 100 examples selected for error analysis. The sample IDs are
mapped to the ground-truth IDs in Table 11.

ID: 5a8c9641554299585d9e36f5
Q: Which season of Alias does the English actor,
who was born 25 June 1961, appear?
A: three
P: third season

ID: 5ae6179b5542992663a4f25b
Q: Which Hong Kong actor born on 19 August
1946 starred in The Sentimental Swordsman
A: Tommy Tam Fu-Wing
P: Ti Lung5

ID: 5abec66b5542997ec76fd360
Q: What do Josef Veltjens and Hermann Goering
have in common?
A: A veteran World War I fighter pilot ace
P: German

ID: 5a85d6d95542996432c570fb
Q: What is one element of House dance where the
dancer ripples his or her torso back and forth?

5Alias of the true answer, Tommy Tam Fu-Wing

A: the jack
P: Jacking

ID: 5a79c9395542994bb94570a2
Q: Which two occupations does Ronnie Dunn and
Annie Lennox have in common?
A: singer, songwriter
P: singer-songwriter

Category: Discrete Reasoning
ID: 5a8ec3205542995a26add506
Q: Does Dashboard Confessional have more
members than World Party?
A: yes
P: no

ID: 5abfd83f5542997ec76fd45c
Q: Which genus has more species, Quesnelia or
Honeysuckle?
A: Honeysuckle
P: Honeysuckles
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ID: 5ac44b47554299194317396c
Q: Which became a Cathedral first St Chad’s
Cathedral, Birmingham or Chelmsford Cathedral?
A: Metropolitan Cathedral Church and Basilica of
Saint Chad
P: St Chad’s

ID: 5ac2455e55429951e9e68512
Q: Were both Life magazine and Strictly Slots
magazine published monthly in 1998?
A: yes
P: no

ID: 5a7d26bd554299452d57bb28
Q: Who was born earlier, Johnny Lujack or Jim
Kelly?
A: Jim Kelly
P: John Christopher Lujack

Category: Commonsense & External Knowl-
edge
ID: 5ac275e755429921a00aaf81
Q: From what nation is the football player
who was named Man of the Match at the 2001
Intercontinental Cup?
A: Ghana
P: Ghanaian

ID: 5ac02d345542992a796decc0
Q: Where are Abbey Clancy and Peter Crouch
from?
A: England
P: English

ID: 5ab2beba554299166977408f
Q: Who is the father of the Prince in which William
Joseph Weaver is most famous for painting a full
length portrait of?
A: George III
P: Queen Victoria

ID: 5a8dab16554299068b959d89
Q: What type of elevation does Aldgate railway
station, Adelaide and Aldgate, South Australia
have in common?
A: Hills
P: kilometres

ID: 5a82edae55429966c78a6a9f
Q: Swiss music duo Double released their best
known single ”The Captain of Her Heart” in what

year?
A: 1986
P: 1985

Category: Multi-hop
ID: 5a7a46605542994f819ef1ad
Q: What year did Roy Rogers and his third wife
star in a film directed by Frank McDonald?
A: 1945
P: 1946

ID: 5a84f7255542991dd0999e33
Q: Which country borders the Central African
Republic and is south of Libya and east of Niger?
A: Republic of Chad
P: Sudan

ID: 5a77152355429966f1a36c2e
Q: What was the Roud Folk Song Index of the
nursery rhyme inspiring What Are Little Girls
Made Of?
A: 821
P: 326

ID: 5a7e7c725542991319bc94be
Q: In what year did Farda Amiga win a race at the
Saratoga Race course?
A: (foaled February 1, 1999)
P: 1872

ID: 5ae21ef35542994d89d5b35d
Q: What college teamdid the point guard that
led the way for Philedlphia 76ers in the 2017-18
season play basketball in?
A: Washington Huskies
P: University of Kansas

Category: MRC
ID: 5ae5cf625542996de7b71a22
Q: What sports team included both of the brothers
Case McCoy and Colt McCoy during different
years?
A: University of Texas Longhorns
P: Washington Redskins

ID: 5a8fa4a5554299458435d6a3
Q: What is name of the business unit led by Tina
Sharkey at a web portal which is originally known
as America Online?
A: Sesame Street
P: community programming
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ID: 5a8135cc55429903bc27b943
Q: In the USA, gun powder is used in conjunction
with this to start the Boomershot.
A: Anvil firing
P: an explosive fireball

ID: 5a84bb825542991dd0999dbe
Q: Who beacme a star as a comic book character
created by Gerry Conway and Bob Oksner?
A: Megalyn Echikunwoke
P: Stephen Amell

ID: 5a75f1a755429976ec32bcb1
Q: Which actress played a character that dated
Mark Brendanawicz?
A: Rashida Jones
P: Amy Poehler
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ID ID
0 5ac2455e55429951e9e68512 1 5a8c9641554299585d9e36f5
2 5a8ec3205542995a26add506 3 5a7a46605542994f819ef1ad
4 5ae6179b5542992663a4f25b 5 5ac3c08a5542995ef918c217
6 5ae2e0fd55429928c4239524 7 5ac275e755429921a00aaf81
8 5a7ca98f55429935c91b5288 9 5a747a9a55429929fddd8444
10 5a88696b554299206df2b25b 11 5abec66b5542997ec76fd360
12 5ae5cf625542996de7b71a22 13 5abb729b5542993f40c73af4
14 5a85cead5542991dd0999ea9 15 5ac02d345542992a796decc0
16 5a7a88e455429941d65f268c 17 5a84f7255542991dd0999e33
18 5a8fa4a5554299458435d6a3 19 5ae7793c554299540e5a55c2
20 5a7755c65542993569682d54 21 5abfd83f5542997ec76fd45c
22 5adeb95d5542992fa25da827 23 5ab43b755542991779162c21
24 5a85d6d95542996432c570fb 25 5a8463945542992ef85e23d9
26 5ae7d0675542994a481bbdf2 27 5a82a55955429966c78a6a70
28 5ae7313c5542991e8301cbbc 29 5ac44629554299194317395d
30 5a89d36e554299515336132a 31 5ac2e97d554299657fa290c0
32 5a8a764555429930ff3c0de1 33 5a886211554299206df2b24a
34 5a8f05b1554299458435d517 35 5a840e8a5542992ef85e239e
36 5a7354e35542994cef4bc55b 37 5abc36cc55429959677d6a50
38 5a7a18b05542990783324e53 39 5ab5d27a554299494045f073
40 5ac19f405542991316484b5b 41 5a82ebb855429966c78a6a9c
42 5a72c9e85542991f9a20c595 43 5ae7739c5542997b22f6a775
44 5a84bda45542992a431d1a96 45 5a7d26bd554299452d57bb28
46 5ae21ef35542994d89d5b35d 47 5a753c8c55429916b01642ab
48 5ac24d725542996366519966 49 5ae0ec48554299422ee9955a
50 5a8febb555429916514e73e4 51 5a7c9d2e55429935c91b5261
52 5a8769475542993e715abf2b 53 5abbf519554299114383a0ad
54 5a735bae55429901807dafef 55 5a7299465542992359bc3131
56 5a8b2f2b5542995d1e6f12fa 57 5a77152355429966f1a36c2e
58 5a87954f5542996e4f308856 59 5a7e71ab55429949594199bc
60 5ac531ea5542994611c8b419 61 5ab72c7d55429928e1fe3830
62 5a7e7c725542991319bc94be 63 5ae54c085542992663a4f1c4
64 5adc7dbf5542994d58a2f618 65 5a8fb0be5542997ba9cb32ed
66 5a8135cc55429903bc27b943 67 5abcf17655429959677d6b5c
68 5ab925fd554299131ca42281 69 5ab2beba554299166977408f
70 5a8dab16554299068b959d89 71 5ac38ce255429939154137c2
72 5a79c9395542994bb94570a2 73 5ab946d7554299743d22eaaf
74 5a73d33e5542992d56e7e3a9 75 5a72e28f5542992359bc31ba
76 5ab1d983554299340b52540a 77 5a7cb9b95542990527d55515
78 5a773d8955429966f1a36cc4 79 5a7780e855429949eeb29e9f
80 5a84bb825542991dd0999dbe 81 5a7698c2554299373536010d
82 5ae1847e55429920d52343ee 83 5a7199725542994082a3e88f
84 5abf11d45542997719eab660 85 5ae52cb955429908b6326540
86 5ac44b47554299194317396c 87 5a7d61775542991319bc93b9
88 5ae0536755429924de1b70a6 89 5a75f1a755429976ec32bcb1
90 5adbc8e25542996e68525230 91 5a72ac8a5542992359bc3164
92 5adc6ded55429947ff17395d 93 5a7b971255429927d897bff3
94 5ae34a225542992e3233c370 95 5ac2cdaa554299657fa29070
96 5a82edae55429966c78a6a9f 97 5a8a3a355542996c9b8d5e5e
98 5adcc90c5542990d50227d1b 99 5a79c9c05542994bb94570a5

Table 11: The full index list of the 100 samples selected for error analysis.


