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Abstract

Recent developments in machine learning
have introduced models that approach human
performance at the cost of increased architec-
tural complexity. Efforts to make the ratio-
nales behind the models’ predictions transpar-
ent have inspired an abundance of new ex-
plainability techniques. Provided with an al-
ready trained model, they compute saliency
scores for the words of an input instance. How-
ever, there exists no definitive guide on (i) how
to choose such a technique given a particular
application task and model architecture, and
(ii) the benefits and drawbacks of using each
such technique. In this paper, we develop a
comprehensive list of diagnostic properties for
evaluating existing explainability techniques.
We then employ the proposed list to compare
a set of diverse explainability techniques on
downstream text classification tasks and neu-
ral network architectures. We also compare
the saliency scores assigned by the explain-
ability techniques with human annotations of
salient input regions to find relations between
a model’s performance and the agreement of
its rationales with human ones. Overall, we
find that the gradient-based explanations per-
form best across tasks and model architectures,
and we present further insights into the proper-
ties of the reviewed explainability techniques.

1 Introduction

Understanding the rationales behind models’ de-
cisions is becoming a topic of pivotal importance,
as both the architectural complexity of machine
learning models and the number of their applica-
tion domains increases. Having greater insight into
the models’ reasons for making a particular predic-
tion has already proven to be essential for discov-
ering potential flaws or biases in medical diagno-
sis (Caruana et al., 2015) and judicial sentencing
(Rich, 2016). In addition, European law has man-

Figure 1: Example of the saliency scores for the words
(columns) of an instance from the Twitter Sentiment
Extraction dataset. They are produced by the explain-
ability techniques (rows) given a Transformer model.
The first row is the human annotation of the salient
words. The scores are normalized in the range [0, 1].

dated “the right . . . to obtain an explanation of the
decision reached” (Regulation, 2016).

Explainability methods attempt to reveal the rea-
sons behind a model’s prediction for a single data
point, as shown in Figure 1. They can be produced
post-hoc, i.e., with already trained models. Such
post-hoc explanation techniques can be applicable
to one specific model (Martens et al., 2008; Wagner
et al., 2019) or to a broader range thereof (Ribeiro
et al., 2016; Lundberg and Lee, 2017). They can
further be categorised as: employing model gra-
dients (Sundararajan et al., 2017; Simonyan et al.,
2013), being perturbation based (Shapley, 1953;
Zeiler and Fergus, 2014) or providing explana-
tions through model simplifications (Ribeiro et al.,
2016; Johansson et al., 2004). There also exist
explainability methods that generate textual expla-
nations (Camburu et al., 2018) and are trained post-
hoc or jointly with the model at hand.

While there is a growing amount of explainabil-
ity methods, we find that they can produce vary-



3257

ing, sometimes contradicting explanations, as illus-
trated in Figure 1. Hence, it is important to assess
existing techniques and to provide a generally ap-
plicable and automated methodology for choosing
one that is suitable for a particular model archi-
tecture and application task (Jacovi and Goldberg,
2020). Robnik-Šikonja and Bohanec (2018) com-
piles a list of property definitions for explainability
techniques, but it remains a challenge to evaluate
them in practice. Several other studies have inde-
pendently proposed different setups for probing var-
ied aspects of explainability techniques (DeYoung
et al., 2020; Sundararajan et al., 2017). However,
existing studies evaluating explainability methods
are discordant and do not compare to properties
from previous studies. In our work, we consider
properties from related work and extend them to be
applicable to a broader range of downstream tasks.

Furthermore, to create a thorough setup for eval-
uating explainability methods, one should include
at least: (i) different groups of explainability meth-
ods (explanation by simplification, gradient-based,
etc.), (ii) different downstream tasks, and (iii) dif-
ferent model architectures. However, existing stud-
ies usually consider at most two of these aspects,
thus providing insights tied to a specific setup.

We propose a number of diagnostic properties
for explainability methods and evaluate them in
a comparative study. We consider explainability
methods from different groups, all widely applica-
ble to most ML models and application tasks. We
conduct an evaluation on three text classification
tasks, which contain human annotations of salient
tokens. Such annotations are available for Natural
Language Processing (NLP) tasks, as they are rel-
atively easy to obtain. This is in contrast to ML
sub-fields such as image analysis, for which we
only found one relevant dataset – 536 manually an-
notated object bounding boxes for Visual Question
Answering (Subramanian et al., 2020).

We further compare explainability methods
across three of the most widely used model ar-
chitectures – CNN, LSTM, and Transformer. The
Transformer model achieves state-of-the-art per-
formance on many text classification tasks but has
a complex architecture, hence methods to explain
its predictions are strongly desirable. The proposed
properties can also be directly applied to Machine
Learning (ML) subfields other than NLP. The code
for the paper is publicly available.1

1https://github.com/copenlu/xai-benchmark

In summary, the contributions of this work are:

• We compile a comprehensive list of diagnos-
tic properties for explainability and automatic
measurement of them, allowing for their ef-
fective assessment in practice.
• We study and compare the characteristics of

different groups of explainability techniques
in three different application tasks and three
different model architectures.
• We study the attributions of the explainability

techniques and human annotations of salient
regions to compare and contrast the rationales
of humans and machine learning models.

2 Related Work

Explainability methods can be divided into ex-
planations by simplification, e.g., LIME (Ribeiro
et al., 2016); gradient-based explanations (Sun-
dararajan et al., 2017); perturbation-based expla-
nations (Shapley, 1953; Zeiler and Fergus, 2014).
Some studies propose the generation of text serving
as an explanation, e.g., (Camburu et al., 2018; Lei
et al., 2016; Atanasova et al., 2020a). For extensive
overviews of existing explainability approaches,
see Arrieta et al. (2020).

Explainability methods provide explanations of
different qualities, so assessing them systemati-
cally is pivotal. A common attempt to reveal short-
comings in explainability techniques is to reveal a
model’s reasoning process with counter-examples
(Alvarez-Melis and Jaakkola, 2018; Kindermans
et al., 2019; Atanasova et al., 2020b), finding dif-
ferent explanations for the same output. However,
single counter-examples do not provide a measure
to evaluate explainability techniques (Jacovi and
Goldberg, 2020).

Another group of studies performs human eval-
uation of the outputs of explainability methods
(Lertvittayakumjorn and Toni, 2019; Narayanan
et al., 2018). Such studies exhibit low inter-
annotator agreement and reflect mostly what ap-
pears to be reasonable and appealing to the annota-
tors, not the actual properties of the method.

The most related studies to our work design mea-
sures and properties of explainability techniques.
Robnik-Šikonja and Bohanec (2018) propose an ex-
tensive list of properties. The Consistency property
captures the difference between explanations of
different models that produce the same prediction;
and the Stability property measures the difference
between the explanations of similar instances given



3258

a single model. We note that similar predictions
can still stem from different reasoning paths. In-
stead, we propose to explore instance activations,
which reveal more of the model’s reasoning process
than just the final prediction. The authors propose
other properties as well, which we find challenging
to apply in practice. We construct a comprehensive
list of diagnostic properties tied with measures that
assess the degree of each characteristic.

Another common approach to evaluate explain-
ability methods is to measure the sufficiency of
the most salient tokens for predicting the target la-
bel (DeYoung et al., 2020). We also include a suffi-
ciency estimate, but instead of fixing a threshold for
the tokens to be removed, we measure the decrease
of a model’s performance, varying the proportion
of excluded tokens. Other perturbation-based eval-
uation studies and measures exist (Sundararajan
et al., 2017; Adebayo et al., 2018), but we consider
the above, as it is the most widely applied.

Another direction of explainability evaluation is
to compare the agreement of salient words anno-
tated by humans to the saliency scores assigned
by explanation techniques (DeYoung et al., 2020).
We also consider the latter and further study the
agreement across model architectures, downstream
tasks, and explainability methods. While we con-
sider human annotations at the word level (Cam-
buru et al., 2018; Lei et al., 2016), there are also
datasets (Clark et al., 2019; Khashabi et al., 2018)
with annotations at the sentence-level, which would
require other model architectures, so we leave this
for future work.

Existing studies for evaluating explainability
heavily differ in their scope. Some concentrate on
a single model architecture - BERT-LSTM (DeY-
oung et al., 2020), RNN (Arras et al., 2019), CNN
(Lertvittayakumjorn and Toni, 2019), whereas a
few consider more than one model (Guan et al.,
2019; Poerner et al., 2018). Some studies concen-
trate on one particular dataset (Guan et al., 2019;
Arras et al., 2019), while only a few generalize their
findings over downstream tasks (DeYoung et al.,
2020; Vashishth et al., 2019). Finally, existing stud-
ies focus on one (Vashishth et al., 2019) or a single
group of explainability methods (DeYoung et al.,
2020; Adebayo et al., 2018). Our study is the first
to propose a unified comparison of different groups
of explainability techniques across three text clas-
sification tasks and three model architectures.

3 Evaluating Attribution Maps

We now define a set of diagnostic properties of
explainability techniques, and propose how to
quantify them. Similar notions can be found
in related work (Robnik-Šikonja and Bohanec,
2018; DeYoung et al., 2020), and we extend them
to be generally applicable to downstream tasks.
We first introduce the prerequisite notation. Let
X = {(xi, yi, wi)|i ∈ [1, N ]} be the test dataset,
where each instance consists of a list of tokens
xi = {xi,j |j ∈ [1, |xi|]}, a gold label yi, and a
gold saliency score for each of the tokens in xi:
wi = {wi,j |j ∈ [1, |xi|]} with each wi,j ∈ {0, 1}.
Let ω be an explanation technique that, given a
model M , a class c, and a single instance xi, com-
putes saliency scores for each token in the in-
put: ωMxi,c= {ω

M
(i,j),c|j ∈ [1, |xi|]}. Finally, let

M =M1, . . .MK be models with the same archi-
tecture, each trained from a randomly chosen seed,
and let M ′ = M ′

1, . . .M
′
K be models of the same

architecture, but with randomly initialized weights.
Agreement with human rationales (HA). This

diagnostic property measures the degree of overlap
between saliency scores provided by human anno-
tators, specific to the particular task, and the word
saliency scores computed by an explainability tech-
nique on each instance. The property is a simple
way of approximating the quality of the produced
feature attributions. While it does not necessarily
mean that the saliency scores explain the predic-
tions of a model, we assume that explanations with
high agreement scores would be more comprehen-
sible for the end-user as they would adhere more
to human reasoning. With this diagnostic prop-
erty, we can also compare how the type and the
performance of a model and/or dataset affect the
agreement with human rationales when observing
one type of explainability technique.

During evaluation, we provide an estimate of the
average agreement of the explainability technique
across the dataset. To this end, we start at the in-
stance level and compute the Average Precision
(AP) of produced saliency scores ωMxi,c by compar-
ing them to the gold saliency annotations wi. Here,
the label for computing the saliency scores is the
gold label: c = yi. Then, we compute the average
across all instances, arriving at Mean AP (MAP):

MAP(ω,M,X) =
1

N

∑
i∈[1,N ]

AP (wi, ω
M
xi,yi) (1)

Confidence Indication (CI). A token from a sin-
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gle instance can receive several saliency scores,
indicating its contribution to the prediction of each
of the classes. Thus, when a model recognizes
a highly indicative pattern of the predicted class
k, the tokens involved in the pattern would have
highly positive saliency scores for this class and
highly negative saliency scores for the remaining
classes. On the other hand, when the model is not
highly confident, we can assume that it is unable
to recognize a strong indication of any class, and
the tokens accordingly do not have high saliency
scores for any class. Thus, the computed explana-
tion of an instance i should indicate the confidence
pi,k of the model in its prediction.

We propose to measure the predictive power of
the produced explanations for the confidence of
the model. We start by computing the Saliency
Distance (SD) between the saliency scores for the
predicted class k to the saliency scores of the other
classes K/k (Eq. 2). Given the distance between
the saliency scores, we predict the confidence of
the class with logistic regression (LR) and finally
compute the Mean Absolute Error – MAE (Eq. 3),
of the predicted confidence to the actual one.

SD =
∑

j∈[0,|x|]

D(ωMxi,j ,k, ω
M
xi,j ,K/k

) (2)

MAE(ω,M,X) =
∑

i∈[1,N ]

|pi,k − LR(SD)| (3)

For tasks with two classes, D is the subtraction of
the saliency value for class k and the other class.
For more than two classes, D is the concatenation
of the max, min, and average across the differ-
ences of the saliency value for class k and the other
classes. Low MAE indicates that model’s confi-
dence can be easily identified by looking at the
produced explanations.

Faithfulness (F). Since explanation techniques
are employed to explain model predictions for a
single instance, an essential property is that they
are faithful to the model’s inner workings and not
based on arbitrary choices. A well-established way
of measuring this property is by replacing a number
of the most-salient words with a mask token (DeY-
oung et al., 2020) and observing the drop in the
model’s performance. To avoid choosing an un-
justified percentage of words to be perturbed, we
produce several dataset perturbations by masking
0, 10, 20, . . . , 100% of the tokens in order of de-
creasing saliency, thus arriving at Xω0

, Xω10
, . . . ,

Xω100
. Finally, to produce a single number to mea-

sure faithfulness, we compute the area under the
threshold-performance curve (AUC-TP):

AUC-TP(ω,M,X) =

AUC([(i, P (M(Xω0
))−M(Xωi))])

(4)

where P is a task specific performance measure and
i ∈ [0, 10, . . . , 100]. We also compare the AUC-TP
of the saliency methods to a random saliency map
to find whether there are explanation techniques
producing saliency scores without any contribution
over a random score.

Using AUC-TP, we perform an ablation anal-
ysis which is a good approximation of whether
the most salient words are also the most important
ones for a model’s prediction. However, some prior
studies (Feng et al., 2018) find that models remain
confident about their prediction even after stripping
most input tokens, leaving a few that might appear
nonsensical to humans. The diagnostic properties
that follow aim to facilitate a more in-depth analy-
sis of the alignment between the inner workings of
a model and produced saliency maps.

Rationale Consistency (RC). A desirable prop-
erty of an explainability technique is to be consis-
tent with the similarities in the reasoning paths of
several models on a single instance. Thus, when
two reasoning paths are similar, the scores provided
by an explainability technique ω should also be sim-
ilar, and vice versa. Note that we are interested in
similar reasoning paths as opposed to similar pre-
dictions, as the latter does not guarantee analogous
model rationales. For models with diverse architec-
tures, we expect rationales to be diverse as well and
to cause low consistency. Therefore, we focus on
a set of models with the same architecture, trained
from different random seeds as well as the same
architecture, but with randomly initialized weights.
The latter would ensure that we can have model
pairs (Ms,Mp) with similar and distant rationales.
We further claim that the similarity in the reasoning
paths could be measured effectively with the dis-
tance between the activation maps (averaged across
layers and neural nodes) produced by two distinct
models (Eq. 5). The distance between the expla-
nation scores is computed simply by subtracting
the two (Eq. 6). Finally, we compute Spearman’s
ρ between the similarity of the explanation scores
and the similarity of the attribution maps (Eq. 7).
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D(Ms,Mp, xi) = D(Ms(xi),Mp(xi)) (5)

D(Ms,Mp, xi, ω) = D(ωMs
xi,yi , ω

Mp
xi,yi) (6)

ρ(Ms,Mp, X, ω) = ρ(D(Ms,Mp, xi),

D(Ms,Mp, xi, ω)|i ∈ [1, N ])
(7)

The higher the positive correlation is, the more
consistent the attribution method would be. We
choose Spearman’s ρ as it measures the mono-
tonic correlation between the two variables. On
the other hand, Pearson’s ρ measures only the
linear correlation, and we can have a non-linear
correlation between the activation difference and
the saliency score differences. When subtracting
saliency scores and layer activations, we also take
the absolute value of the vector difference as the
property should be invariant to order of subtrac-
tion. An additional benefit of the property is that
low correlation scores would also help to identify
explainability techniques that are not faithful to a
model’s rationales.

Dataset Consistency (DC). The next diagnos-
tic property is similar to the above notion of ratio-
nale consistency but focuses on consistency across
instances of a dataset as opposed to consistency
across different models of the same architecture.
In this case, we test whether instances with similar
rationales also receive similar explanations. While
Rationale Consistency compares instance expla-
nations of the same instance for different model
rationales, Dataset Consistency compares explana-
tions for pairs of instances on the same model. We
again measure the similarity between instances xi
and xj by comparing their activation maps, as in
Eq. 8. The next step is to measure the similarity
of the explanations produced by an explainability
technique ω, which is the difference between the
saliency scores as in Eq. 9. Finally, we measure
Spearman’s ρ between the similarity in the activa-
tions and the saliency scores as in Eq. 10. We again
take the absolute value of the difference.

D(M,xi, xj) = D(M(xi),M(xj)) (8)

D(M,xi, xj , ω) = D(ωMxi,yi , ω
M
xj ,yi) (9)

ρ(M,X,ω) = ρ(D(M,xi, xj),

D(M,xi, xj , ω)|i, j ∈ [1, N ])
(10)

4 Experiments

4.1 Datasets
2https://www.kaggle.com/c/tweet-sentim

Dataset Example Size Length

e-SNLI
(Camburu
et al.,
2018)

Premise: An adult dressed
in black holds a stick.
Hypothesis: An adult is
walking away, empty-
handed.
Label: contradiction

549 367 Train
9 842 Dev
9 824 Test

27.4 inst.
5.3 expl.

Movie
Reviews
(Zaidan
et al.,
2007)

Review: he is one of
the most exciting martial
artists on the big screen,
continuing to perform his
own stunts and dazzling
audiences with his flashy
kicks and punches.
Class: Positive

1 399 Train
199 Dev
199 Test

834.9 inst.
56.18 expl.

Tweet
Sentiment
Extraction
(TSE) 2

Tweet: im soo bored...im
deffo missing my music
channels
Class: Negative

21 983 Train
2 747 Dev
2 748 Test

20.5 inst.
9.99 expl.

Table 1: Datasets with human-annotated saliency ex-
planations. The Size column presents the dataset split
sizes we use in our experiments. The Length column
presents the average number of instance tokens in the
test set (inst.) and the average number of human anno-
tated explanation tokens (expl.).

Table 1 provides an overview of the used datasets.
For e-SNLI, models predict inference – contradic-
tion, neutral, or entailment – between sentence
tuples. For the Movie Reviews dataset, models
predict the sentiment – positive, negative, or neu-
tral – of reviews with multiple sentences. Finally,
for the TSE dataset, models predict tweets’ senti-
ment – positive, negative, or neutral. The e-SNLI
dataset provides three dataset splits with human-
annotated rationales, which we use as training, dev,
and test sets, respectively. The Movie Reviews
dataset provides rationale annotations for nine out
of ten splits. Hence, we use the ninth split as a test
and the eighth split as a dev set, while the rest are
used for training. Finally, the TSE dataset only pro-
vides rationale annotations for the training dataset,
and we therefore randomly split it into 80/10/10%
chunks for training, development and testing.

4.2 Models

We experiment with different commonly used base
models, namely CNN (Fukushima, 1980), LSTM

(Hochreiter and Schmidhuber, 1997), and the
Transformer (Vaswani et al., 2017) architecture
BERT (Devlin et al., 2019). The selected mod-
els allow for a comparison of the explainability
techniques on diverse model architectures. Table 4
presents the performance of the separate models on
the datasets.

For the CNN model, we use an embedding, a con-
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Model Val Test

e-SNLI
Transformer 0.897 (±0.002) 0.892 (±0.002)
TransformerRI 0.167 (±0.003) 0.167 (±0.003)
CNN 0.773 (±0.003) 0.768 (±0.002)
CNNRI 0.195 (±0.038) 0.194 (±0.037)
LSTM 0.794 (±0.005) 0.793 (±0.009)
LSTMRI 0.176 (±0.013) 0.176 (±0.000)

Movie Reviews
Transformer 0.859 (±0.044) 0.856 (±0.018)
TransformerRI 0.335 (±0.003) 0.333 (±0.000)
CNN 0.831 (±0.014) 0.773 (±0.005)
CNNRI 0.343 (±0.020) 0.333 (±0.001)
LSTM 0.614 (±0.017) 0.567 (±0.019)
LSTMRI 0.362 (±0.030) 0.363 (±0.041)

TSE
Transformer 0.772 (±0.005) 0.781 (±0.009)
TransformerRI 0.165 (±0.025) 0.171 (±0.022)
CNN 0.708 (±0.007) 0.730 (±0.007)
CNNRI 0.221 (±0.060) 0.226 (±0.055)
LSTM 0.701 (±0.005) 0.727 (±0.004)
LSTMRI 0.196 (±0.070) 0.204 (±0.070)

Table 2: Models’ F1 score on the test and the validation
datasets. The results present the average and the stan-
dard deviation of the Performance measure over five
models trained from different seeds. The random ver-
sions of the models are again five models, but only ran-
domly initialized, without training.

volutional, a max-pooling, and a linear layer. The
embedding layer is initialized with GloVe (Pen-
nington et al., 2014) embeddings and is followed
by a dropout layer. The convolutional layer com-
putes convolutions with several window sizes and
multiple-output channels with ReLU (Hahnloser
et al., 2000) as an activation function. The result is
compressed down with a max-pooling layer, passed
through a dropout layer, and into a fine linear layer
responsible for the prediction. The final layer has a
size equal to the number of classes in the dataset.

The LSTM model again contains an embedding
layer initialized with the GloVe embeddings. The
embeddings are passed through several bidirec-
tional LSTM layers. The final output of the re-
current layers is passed through three linear layers
and a final dropout layer.

For the Transformer model, we fine-tune
the pre-trained basic, uncased language model
(LM) (Wolf et al., 2019). The fine-tuning is per-
formed with a linear layer on top of the LM with
a size equal to the number of classes in the corre-
sponding task. Further implementation details for
all of the models, as well as their F1 scores, are
presented in A.1.

4.3 Explainability Techniques

We select the explainability techniques to be repre-
sentative of different groups – gradient (Sundarara-
jan et al., 2017; Simonyan et al., 2013), perturba-
tion (Shapley, 1953; Zeiler and Fergus, 2014) and
simplification based (Ribeiro et al., 2016; Johans-
son et al., 2004).

Starting with the gradient-based approaches,
we select Saliency (Simonyan et al., 2013) as many
other gradient-based explainability methods build
on it. It computes the gradient of the output w.r.t.
the input. We also select two widely used improve-
ments of the Saliency technique, namely InputX-
Gradient (Kindermans et al., 2016), and Guided
Backpropagation (Springenberg et al., 2014). In-
putXGradient additionally multiplies the gradient
with the input and Guided Backpropagation over-
writes the gradients of ReLU functions so that only
non-negative gradients are backpropagated.

From the perturbation-based approaches, we
employ Occlusion (Zeiler and Fergus, 2014), which
replaces each token with a baseline token (as
per standard, we use the value zero) and mea-
sures the change in the output. Another popular
perturbation-based technique is the Shapley Value
Sampling (Castro et al., 2009). It is based on the
Shapley Values approach that computes the aver-
age marginal contribution of each word across all
possible word perturbations. The Sampling variant
allows for a faster approximation of Shapley Values
by considering only a fixed number of random per-
turbations as opposed to all possible perturbations.

Finally, we select the simplification-based ex-
planation technique LIME (Ribeiro et al., 2016).
For each instance in the dataset, LIME trains a lin-
ear model to approximate the local decision bound-
ary for that instance.

Generating explanations. The saliency scores
from each of the explainability methods are gener-
ated for each of the classes in the dataset. As all
of the gradient approaches provide saliency scores
for the embedding layer (the last layer that we can
compute the gradient for), we have to aggregate
them to arrive at one saliency score per input token.
As we found different aggregation approaches in
related studies (Bansal et al., 2016; DeYoung et al.,
2020), we employ the two most common methods –
L2 norm and averaging (denoted as µ and `2 in the
explainability method names).
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Saliency e-SNLI IMDB TSE
Transformer

Random 0.201 0.517 0.185
ShapSampl 0.479 0.481 0.667
LIME 0.809 0.604 0.553
Occlusion 0.523 0.323 0.556
Saliencyµ 0.772 0.671 0.707
Saliency`2 0.781 0.687 0.696
InputXGradµ 0.364 0.432 0.307
InputXGrad`2 0.796 0.676 0.754
GuidedBPµ 0.468 0.236 0.287
GuidedBP`2 0.782 0.676 0.685

CNN
Random 0.209 0.468 0.384
ShapSampl 0.460 0.648 0.630
LIME 0.571 0.572 0.681
Occlusion 0.554 0.411 0.594
Saliencyµ 0.853 0.712 0.595
Saliency`2 0.875 0.796 0.631
InputXGradµ 0.576 0.662 0.613
InputXGrad`2 0.881 0.759 0.636
GuidedBPµ 0.403 0.346 0.438
GuidedBP`2 0.875 0.788 0.628

LSTM
Random 0.166 0.343 0.225
ShapSampl 0.606 0.605 0.526
LIME 0.759 0.233 0.630
Occlusion 0.609 0.589 0.681
Saliencyµ 0.795 0.568 0.702
Saliency`2 0.800 0.583 0.704
InputXGradµ 0.432 0.481 0.441
InputXGrad`2 0.820 0.685 0.693
GuidedBPµ 0.492 0.553 0.410
GuidedBP`2 0.805 0.660 0.720

Table 3: Mean of the diagnostic property measures for
all tasks and models. The best result for the particular
model architecture and downstream task is in bold and
the second-best is underlined.

5 Results and Discussion

We report the measures of each diagnostic property
as well as FLOPs as a measure of the computing
time used by the particular method. For all diag-
nostic properties, we also include the randomly
assigned saliency as a baseline.

5.1 Results

Of the three model architectures, unsurprisingly,
the Transformer model performs best, while the
CNN and the LSTM models are close in performance.
It is only for the IMDB dataset that the LSTM model
performs considerably worse than the CNN, which
we attribute to the fact that the instances contain a
large number of tokens, as shown in Table 1. As
this is not the core focus of this paper, detailed
results can be found in the supplementary material.

Overall results. Table 3 presents the mean of all
properties across tasks and models with all property
measures normalized to be in the range [0,1]. We

see that gradient-based explainability techniques al-
ways have the best or the second-best performance
for the diagnostic properties across all three model
architectures and all three downstream tasks. Note
that, InputXGradµ and GuidedBPµ, which are com-
puted with a mean aggregation of the scores, have
some of the worst results. We conjecture that this
is due to the large number of values that are aver-
aged – the mean smooths out any differences in
the values. In contrast, the L2 norm aggregation
amplifies the presence of large and small values in
the vector. From the non-gradient based explain-
ability methods, LIME has the best performance,
where in two out of nine cases it has the best perfor-
mance. It is followed by ShapSampl and Occlusion.
We can conclude that the occlusion based methods
overall have the worst performance according to
the diagnostic properties.

Furthermore, we see that the explainability meth-
ods achieve better performance for the e-SNLI and
the TSE datasets with the Transformer and LSTM

architectures, whereas the results for the IMDB
dataset are the worst. We hypothesize that this
is due to the longer text of the input instances
in the IMDB dataset. The scores also indicate
that the explainability techniques have the high-
est diagnostic property measures for the CNN model
with the e-SNLI and the IMDB datasets, followed
by the LSTM, and the Transformer model. We
suggest that the performance of the explainabil-
ity tools can be worse for large complex architec-
tures with a huge number of neural nodes, like the
Transformer one, and perform better for small,
linear architectures like the CNN.

Diagnostic property performance. Figure 2
shows the performance of each explainability tech-
nique for all diagnostic properties on the e-SNLI
dataset, and Figure 3 – for the TSE dataset, which
are considerably bigger than IMDB. The IMDB
dataset shows similar tendencies and a correspond-
ing figure can be found in the supplementary mate-
rial.

Agreement with human rationales. We
observe that the best performing explainabil-
ity technique for the Transformer model is
InputXGrad`2 followed by the gradient-based ones
with L2 norm aggregation. While for the CNN

and the LSTM models, we observe similar trends,
their MAP scores are always lower than for the
Transformer, which indicates a correlation be-
tween the performance of a model and its agree-
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(a) Transformer

(b) CNN

(c) LSTM

Figure 2: Diagnostic property evaluation for all explain-
ability techniques, on the e-SNLI dataset. The ↗ and
↙ signs indicate that higher, correpspondingly lower,
values of the property measure are better.

(a) Transformer

(b) CNN

(c) LSTM

Figure 3: Diagnostic property evaluation for all explain-
ability techniques, on the TSE dataset. The↗ and↙
signs indicate that higher, correspondingly lower, val-
ues of the property measure are better.
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ment with human rationales. Furthermore, the
MAP scores of the CNN model are higher than for
the LSTM model, even though the latter achieves
higher F1 scores on the e-SNLI dataset. This might
indicate that the representations of the LSTM model
are less in line with human rationales. Finally, we
note that the mean aggregations of the gradient-
based explainability techniques have MAP scores
close to or even worse than those from the ran-
domly initialized models.

Faithfulness. We find that gradient-based tech-
niques have the best performance for the Faithful-
ness diagnostic property. On the e-SNLI dataset, it
is particularly InputXGrad`2, which performs well
across all model architectures. We further find that
the CNN exhibits the highest Faithfulness scores for
seven out of nine explainability methods. We hy-
pothesize that this is due to the simple architecture
with relatively few neural nodes compared to the
recurrent nature of the LSTM model and the large
number of neural nodes in the Transformer ar-
chitecture. Finally, models with high Faithfulness
scores do not necessarily have high Human agree-
ment scores and vice versa. This suggests that these
two are indeed separate diagnostic properties, and
the first should not be confused with estimating the
faithfulness of the techniques.

Confidence Indication. We find that the Con-
fidence Indication of all models is predicted most
accurately by the ShapSampl, LIME, and Occlusion
explainability methods. This result is expected, as
they compute the saliency of words based on dif-
ferences in the model’s confidence using different
instance perturbations. We further find that the
CNN model’s confidence is better predicted with
InputXGradµ. The lowest MAE with the balanced
dataset is for the CNN and LSTM models. We hypoth-
esize that this could be due to these models’ over-
confidence, which makes it challenging to detect
when the model is not confident of its prediction.

Rationale Consistency. There is no single uni-
versal explainability technique that achieves the
highest score for Rationale Consistency property.
We see that LIME can be good at achieving a high
performance, which is expected, as it is trained to
approximate the model’s performance. The latter
is beneficial, especially for models with complex
architectures like the Transformer. The gradient-
based approaches also have high Rationale Consis-
tency scores. We find that the Occlusion technique
is the best performing for the LSTM across all tasks,

as it is the simplest of the explored explainability
techniques, and does not inspect the model’s inter-
nals or try to approximate them. This might serve
as an indication that LSTM models, due to their re-
current nature, can be best explained with simple
perturbation based methods that do not examine a
model’s reasoning process.

Dataset Consistency. Finally, the results for the
Dataset Consistency property show low to mod-
erate correlations of the explainability techniques
with similarities across instances in the dataset. The
correlation is present for LIME and the gradient-
based techniques, again with higher scores for the
L2 aggregated gradient-based methods.

Overall. To summarise, the proposed list of di-
agnostic properties allows for assessing existing
explainability techniques from different perspec-
tives and supports the choice of the best perform-
ing one. Individual property results indicate that
gradient-based methods have the best performance.
The only strong exception to the above is the better
performance of ShapSampl and LIME for the Con-
fidence Indication diagnostic property. However,
ShapSampl, LIME and Occlusion take considerably
more time to compute and have worse performance
for all other diagnostic properties.

6 Conclusion

We proposed a comprehensive list of diagnostic
properties for the evaluation of explainability tech-
niques from different perspectives. We further
used them to compare and contrast different groups
of explainability techniques on three downstream
tasks and three diverse architectures. We found
that gradient-based explanations are the best for
all of the three models and all of the three down-
stream text classification tasks that we consider in
this work. Other explainability techniques, such as
ShapSampl, LIME and Occlusion take more time to
compute, and are in addition considerably less faith-
ful to the models and less consistent with the ratio-
nales of the models and similarities in the datasets.
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A Appendices

A.1 Experimental Setup

Model Time Score

e-SNLI
Transformer 244.763 (±62.022) 0.523 (±0.356)
CNN 195.041 (±53.994) 0.756 (±0.028)
LSTM 377.180 (±232.918) 0.708 (±0.205)

Movie Reviews
Transformer 3.603 (±0.031) 0.785 (±0.226)
CNN 4.777 (±1.953) 0.756 (±0.058)
LSTM 5.344 (±1.593) 0.584 (±0.061)

TSE
Transformer 9.393 (±1.841) 0.783 (±0.006)
CNN 2.240 (±0.544) 0.730 (±0.035)
LSTM 3.781 (±1.196) 0.713 (±0.076)

Table 4: Hyper-parameter tuning details. Time is the
average time (mean and standard deviation in brackets)
measured in minutes required for a particular model
with all hyper-parameter combinations. Score is the
mean and standard deviation of the performance on the
validation set as a function of the number of the differ-
ent hyper-parameter searches.

Machine Learning Models . The models used
in our experiments are trained on the training
splits, and the parameters are selected according to
the development split. We conducted fine-tuning
in a grid-search manner with the ranges and
parameters we describe next. We use superscripts
to indicate when a parameter value was selected
for one of the datasets e-SNLI – 1, Movie
Review – 2, and TSE – 3. For the CNN model,
we experimented with the following parameters:
embedding dimension ∈ {50, 100, 200, 3001,2,3},
batch size ∈ {162, 32, 643, 128, 2561},
dropout rate ∈ {0.051,2,3, 0.1, 0.15, 0.2},
learning rate for an Adam optimizer
∈ {0.01, 0.03, 0.0012,3, 0.003, 0.00011, 0.0003},
window sizes ∈
{[2, 3, 4]2, [2, 3, 4, 5], [3, 4, 5]3, [3, 4, 5, 6],
[4, 5, 6], [4, 5, 6, 7]1}, and number of output
channels ∈ {502,3, 100, 200, 3001}. We leave the
stride and the padding parameters to their default
values – one and zero.

For the LSTM model we fine-tuned over
the following grid of parameters: embed-
ding dimension ∈ {50, 1001,2, 2003, 300},
batch size ∈ {162,3, 32, 64, 128, 2561},
dropout rate ∈ {0.053, 0.11,2, 0.15, 0.2},
learning rate for an Adam optimizer
∈ {0.011, 0.032, 0.0012,3, 0.003, 0.0001, 0.0003},

number of LSTM layers ∈ {12,3, 2, 3, 41}, LSTM
hidden layer size ∈ {50, 1001,2,3, 200, 300},
and size of the two linear layers
∈ {[50, 25]2, [100, 50]1, [200, 100]3}. We
also experimented with other numbers of linear
layers after the recurrent ones, but having three
of them, where the final was the prediction layer,
yielded the best results.

The CNN and LSTM models are trained with an
early stopping over the validation accuracy with a
patience of five and a maximum number of training
epochs of 100. We also experimented with other
optimizers, but none yielded improvements.

Finally, for the Transformer model we fine-
tuned the pre-trained basic, uncased LM (Wolf
et al., 2019)(110M parameters) where the maxi-
mum input size is 512, and the hidden size of each
layer of the 12 layers is 768. We performed a
grid-search over learning rate of ∈ {1e− 5, 2e−
51,2, 3e − 53, 4e − 5, 5e − 5}. The models were
trained with a warm-up period where the learning
rate increases linearly between 0 and 1 for 0.05%
of the steps found with a grid-search. We train
the models for five epochs with an early stopping
with patience of one as the Transformer models are
easily fine-tuned for a small number of epochs.

All experiments were run on a single NVIDIA
TitanX GPU with 8GB, and 4GB of RAM and 4
Intel Xeon Silver 4110 CPUs.

The models were evaluated with macro
F1 score, which can be found here
https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.precision_

recall_fscore_support.html and is defined as
follows:

Precision(P ) =
TP

TP + FP

Recall(R) =
TP

TP + FN

F1 =
2 ∗ P ∗ R
P+ R

where TP is the number of true positives, FP is the
number of false positives, and FN is the number of
false negatives.

Explainability generation. When evaluating
the Confidence Indication property of the explain-
ability measures, we train a logistic regression for 5
splits and provide the MAE over the five test splits.
As for some of the models, e.g. Transformer,
the confidence is always very high, the LR starts

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
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to predict only the average confidence. To avoid
this, we additionally randomly up-sample the train-
ing instances with a smaller confidence, making
the number of instances in each confidence inter-
val [0.0-0.1],. . . [0.9-1.0]) to be the same as the
maximum number of instances found in one of the
separate intervals.

For both Rationale and Dataset Consistency
properties, we consider Spearman’s ρ. While Pear-
son’s ρ measures only the linear correlation be-
tween two variables (a change in one variable
should be proportional to the change in the other
variable), Spearman’s ρ measures the monotonic
correlation (when one variable increases, the other
increases, too). In our experiments, we are inter-
ested in the monotonic correlation as all activation
differences don’t have to be linearly proportional
to the differences of the explanations and therefore
measure Spearman’s ρ.

The Dataset Consistency property is estimated
over instance pairs from the test dataset. As com-
puting it for all possible pairs in the dataset is com-
putationally expensive, we select 2 000 pairs from
each dataset in order of their decreasing word over-
lap and sample 2 000 from the remaining instance
pairs. This ensures that we compute the diagnostic
property on a set containing tuples of similar and
different instances.

Both the Dataset Consistency property and the
Rationale Consistency property estimate the differ-
ence between the instances based on their activa-
tions. For the LSTM model, the activations of the
LSTM layers are limited to the output activation
also used for prediction as it isn’t possible to com-
pare activations with different lengths due to the
different token lengths of the different instances.
We also use min-max scaling of the differences in
the activations and the saliencies as the saliency
scores assigned by some explainability techniques
are very small.

A.2 Spider Figure for the IMDB dataset

A.3 Detailed explainability techniques
evaluation results.

(a) Transformer

(b) CNN

(c) LSTM

Figure 4: Diagnostic property evaluation for all ex-
plainability techniques, on the IMDB dataset. The ↗
and ↙ signs following the names of each explainabil-
ity method indicate that higher, correspondingly lower,
values of the property measure are better.
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Explain. e-SNLI IMDB TSE
MAP MAP RI FLOPs MAP MAP RI FLOPs MAP MAP RI FLOPs

Random .297 (±.001) – 6.12e+3 (±4.6e+1) .079 (±.001) – 9.41e+4 (±1.8e+2) .573 (±.001) – 4.62e+3 (±2.2e+1)

Transformer
ShapSampl .511 (±.004) .292 (±.011) 1.78e+7 (±5.5e+5) .168 (±.003) .084 (±.001) 3.00e+9 (±1.3e+8) .716 (±.003) .575 (±.027) 1.29e+7 (±2.0e+6)
LIME .465 (±.008) .264 (±.004) 2.39e+5 (±1.5e+4) .127 (±.004) .075 (±.004) 4.98e+8 (±1.4e+8) .745 (±.003) .570 (±.028) 2.82e+7 (±1.6e+6)
Occlusion .537 (±.014) .292 (±.009) 6.33e+5 (±1.0e+3) .091 (±.001) .084 (±.001) 8.05e+7 (±4.5e+5) .710 (±.008) .577 (±.012) 5.86e+5 (±1.6e+2)
Saliencyµ .614 (±.003) .255 (±.008) 5.38e+4 (±1.8e+2) .187 (±.005) .079 (±.001) 6.59e+5 (±1.8e+3) .725 (±.011) .499 (±.002) 4.93e+4 (±2.1e+2)
Saliency`2 .615 (±.003) .255 (±.009) 5.39e+4 (±1.3e+2) .188 (±.006) .078 (±.001) 6.62e+5 (±8.4e+2) .726 (±.014) .498 (±.001) 4.93e+4 (±1.4e+2)
InputXGradµ .356 (±.005) .280 (±.016) 5.38e+4 (±1.8e+2) .118 (±.003) .083 (±.001) 6.60e+5 (±4.5e+3) .620 (±.008) .558 (±.011) 4.92e+4 (±1.4e+2)
InputXGrad`2 .624 (±.004) .254 (±.013) 5.39e+4 (±1.5e+2) .193 (±.005) .079 (±.001) 6.62e+5 (±2.1e+3) .774 (±.009) .499 (±.005) 4.92e+4 (±8.0e+1)
GuidedBPµ .340 (±.012) .281 (±.025) 5.39e+4 (±1.8e+2) .109 (±.003) .086 (±.005) 6.54e+5 (±7.5e+3) .589 (±.006) .567 (±.008) 4.94e+4 (±4.1e+2)
GuidedBP`2 .615 (±.003) .255 (±.009) 5.38e+4 (±1.1e+2) .189 (±.005) .079 (±.001) 6.59e+5 (±2.8e+3) .726 (±.012) .498 (±.001) 4.97e+4 (±4.2e+2)

CNN
ShapSampl .471 (±.003) .298 (±.008) 3.79e+7 (±3.1e+3) .119 (±.004) .084 (±.001) 1.26e+7 (±1.6e+5) .789 (±.004) .586 (±.017) 4.53e+6 (±2.1e+4)
LIME .466 (±.002) .300 (±.017) 1.81e+4 (±1.2e+3) .125 (±.005) .079 (±.004) 5.39e+7 (±1.9e+4) .737 (±.002) .581 (±.021) 1.52e+4 (±7.1e+1)
Occlusion .487 (±.003) .298 (±.006) 6.06e+4 (±2.9e+2) .090 (±.001) .084 (±.001) 3.36e+5 (±2.6e+3) .760 (±.004) .580 (±.006) 1.40e+4 (±3.6e+1)
Saliencyµ .600 (±.002) .339 (±.007) 1.08e+4 (±5.6e+1) .114 (±.005) .091 (±.001) 4.28e+3 (±2.3e+2) .816 (±.003) .593 (±.008) 4.16e+3 (±1.9e+1)
Saliency`2 .600 (±.002) .339 (±.007) 1.06e+4 (±5.6e+1) .115 (±.005) .090 (±.001) 4.29e+3 (±9.9e+1) .815 (±.003) .596 (±.009) 4.16e+3 (±1.2e+1)
InputXGradµ .435 (±.001) .294 (±.014) 1.07e+4 (±2.3e+1) .121 (±.003) .086 (±.002) 4.27e+3 (±1.8e+2) .736 (±.002) .572 (±.011) 4.16e+3 (±1.2e+1)
InputXGrad`2 .580 (±.001) .280 (±.003) 1.06e+4 (±6.5e+1) .113 (±.004) .093 (±.002) 4.09e+3 (±1.8e+2) .774 (±.003) .501 (±.006) 4.12e+3 (±2.7e+1)
GuidedBPµ .269 (±.001) .299 (±.017) 1.08e+4 (±1.7e+2) .076 (±.002) .086 (±.002) 4.27e+3 (±2.2e+2) .501 (±.006) .573 (±.013) 4.32e+3 (±4.0e+2)
GuidedBP`2 .600 (±.002) .339 (±.007) 1.07e+4 (±3.4e+1) .114 (±.005) .091 (±.002) 4.21e+3 (±2.2e+2) .815 (±.003) .594 (±.009) 4.14e+3 (±1.7e+1)

LSTM
ShapSampl .396 (±.012) .291 (±.008) 8.42e+5 (±1.2e+4) .086 (±.001) .084 (±.000) 2.30e+8 (±2.5e+5) .605 (±.034) .588 (±.020) 1.12e+7 (±2.1e+6)
LIME .429 (±.012) .309 (±.018) 1.68e+5 (±2.1e+5) .089 (±.001) .081 (±.002) 3.00e+8 (±1.8e+5) .638 (±.025) .588 (±.021) 5.20e+4 (±4.1e+3)
Occlusion .358 (±.003) .281 (±.007) 2.46e+5 (±5.7e+0) .086 (±.002) .083 (±.002) 1.18e+6 (±1.1e+3) .694 (±.011) .578 (±.016) 3.71e+4 (±2.7e+0)
Saliencyµ .502 (±.008) .411 (±.011) 5.11e+3 (±6.8e+0) .108 (±.001) .106 (±.000) 3.04e+3 (±7.7e+1) .710 (±.009) .546 (±.000) 1.11e+3 (±2.8e+0)
Saliency`2 .502 (±.008) .410 (±.010) 5.12e+3 (±4.6e+0) .108 (±.002) .106 (±.002) 3.07e+3 (±3.9e+1) .710 (±.010) .546 (±.001) 1.10e+3 (±1.4e+0)
InputXGradµ .364 (±.004) .349 (±.027) 5.12e+3 (±7.2e+0) .098 (±.002) .096 (±.002) 3.06e+3 (±7.0e+1) .570 (±.010) .601 (±.017) 1.11e+3 (±2.2e+0)
InputXGrad`2 .511 (±.007) .389 (±.004) 5.12e+3 (±4.2e+0) .110 (±.001) .107 (±.000) 3.05e+3 (±9.9e+1) .697 (±.007) .544 (±.001) 1.10e+3 (±1.6e+0)
GuidedBPµ .333 (±.009) .382 (±.033) 5.11e+3 (±4.4e+0) .102 (±.005) .098 (±.003) 3.06e+3 (±1.0e+2) .527 (±.005) .570 (±.031) 1.10e+3 (±2.2e+0)
GuidedBP`2 .502 (±.009) .410 (±.009) 5.10e+3 (±2.5e+1) .109 (±.001) .107 (±.001) 3.08e+3 (±9.2e+1) .711 (±.009) .547 (±.001) 1.10e+3 (±2.4e+0)

Table 5: Evaluation of the explainability techniques with Human Agreement (HA) and time for computation. HA is measured with Mean Average Precision (MAP) with the
gold human annotations, MAP of a Randomly initialized model (MAP RI). The time is computed with FLOPs. The presented numbers are averaged over five different models
and the standard deviation of the scores is presented in brackets. Explainability methods with the best MAP for a particular dataset and model are in bold, while the best MAP
across all models for a dataset is underlined as well. Methods that have MAP worse than the randomly generated saliency are in red.



3271

Explain. e-SNLI IMDB TSE

Random 56.05 (±0.71) 49.26 (±1.94) 56.45 (±2.37)

Transformer

ShapSampl 56.05 (±0.71) 65.84 (±11.8) 52.99 (±4.24)
LIME 48.14 (±10.8) 59.04 (±13.7) 42.17 (±7.89)
Occlusion 55.24 (±3.77) 69.00 (±6.22) 52.23 (±4.29)
Saliencyµ 37.98 (±2.18) 49.32 (±9.01) 39.20 (±3.06)
Saliency`2 38.01 (±2.19) 49.05 (±9.16) 39.29 (±3.14)
InputXGradµ 56.98 (±1.89) 64.47 (±8.70) 55.52 (±2.59)
InputXGrad`2 37.05 (±2.29) 50.22 (±8.85) 37.04 (±2.69)
GuidedBPµ 53.43 (±1.00) 67.68 (±6.94) 57.56 (±2.60)
GuidedBP`2 38.01 (±2.19) 49.47 (±8.89) 39.26 (±3.18)

CNN

ShapSampl 51.78 (±2.24) 59.69 (±8.37) 64.72 (±1.75)
LIME 56.16 (±1.67) 59.09 (±8.48) 65.78 (±1.59)
Occlusion 54.32 (±0.94) 59.86 (±7.78) 61.17 (±1.48)
Saliencyµ 34.26 (±1.78) 49.61 (±5.26) 35.70 (±2.94)
Saliency`2 34.16 (±1.81) 49.04 (±5.60) 35.67 (±2.91)
InputXGradµ 47.06 (±3.82) 62.05 (±7.54) 64.45 (±2.99)
InputXGrad`2 31.55 (±2.83) 49.20 (±5.96) 35.86 (±3.22)
GuidedBPµ 47.68 (±2.65) 67.03 (±4.36) 44.93 (±1.57)
GuidedBP`2 34.16 (±1.81) 49.80 (±5.99) 35.60 (±2.91)

LSTM

ShapSampl 51.05 (±4.47) 44.05 (±3.06) 53.97 (±6.00)
LIME 51.93 (±7.73) 44.41 (±3.04) 54.95 (±3.19)
Occlusion 54.73 (±3.12) 45.01 (±3.84) 48.68 (±2.28)
Saliencyµ 38.29 (±1.77) 35.98 (±2.11) 37.20 (±3.48)
Saliency`2 38.26 (±1.84) 36.22 (±2.04) 37.23 (±3.50)
InputXGradµ 49.52 (±1.81) 43.57 (±4.98) 48.71 (±3.23)
InputXGrad`2 37.95 (±2.06) 36.03 (±1.97) 36.75 (±3.35)
GuidedBPµ 44.48 (±2.12) 46.00 (±3.20) 43.72 (±5.69)
GuidedBP`2 38.17 (±1.80) 35.87 (±1.99) 37.21 (±3.48)

Table 6: Faithfulness-AUC for thresholds ∈ [0, 10, 20, . . . , 100]. Lower scores indicate the ability of the saliency
approach to assign higher scores to words more responsible for the final prediction. The presented scores are
averaged over the different random initializations and the standard deviation is shown in brackets. Explainability
methods with the smallest AUC for a particular dataset and model are in bold, while the smallest AUC across all
models for a dataset is underlined as well. Methods that have AUC worse than the randomly generated saliency
are in red.
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e-SNLI IMDB TSE
Explain. MAE MAX MAE-up MAX-up MAE MAX MAE-up MAX-up MAE MAX MAE-up MAX-up

Random .087 (±.004) .527 (±.007) .276 (±.005) .377 (±.002) .130 (±.007) .286 (±.014) .160 (±.003) .251 (±.008) .092 (±.009) .466 (±.021) .260 (±.017) .428 (±.064)

Transformer
ShapSampl .071 (±.005) .456 (±.037) .158 (±.029) .437 (±.046) .071 (±.008) .238 (±.036) .120 (±.033) .213 (±.035) .073 (±.012) .408 (±.043) .169 (±.052) .415 (±.030)
LIME .068 (±.002) .368 (±.151) .136 (±.028) .395 (±.128) .077 (±.008) .288 (±.024) .184 (±.018) .260 (±.021) .084 (±.009) .521 (±.072) .232 (±.013) .661 (±.225)
Occlusion .074 (±.004) .499 (±.020) .224 (±.006) .518 (±.048) .085 (±.011) .306 (±.015) .196 (±.015) .252 (±.011) .085 (±.011) .463 (±.035) .247 (±.015) .482 (±.091)
Saliencyµ .078 (±.005) .544 (±.014) .269 (±.004) .416 (±.043) .083 (±.009) .303 (±.008) .197 (±.017) .269 (±.023) .085 (±.012) .474 (±.021) .248 (±.017) .467 (±.091)
Saliency`2 .078 (±.005) .565 (±.051) .259 (±.007) .571 (±.095) .083 (±.009) .306 (±.017) .195 (±.021) .245(±.004) .085 (±.012) .465 (±.021) .255 (±.012) .479 (±.074)
InputXGradµ .079 (±.005) .502 (±.015) .242 (±.006) .518 (±.031) .084 (±.011) .310 (±.011) .198 (±.013) .246 (±.008) .085 (±.011) .463 (±.015) .237 (±.010) .480 (±.071)
InputXGrad`2 .078 (±.005) .568 (±.057) .258 (±.007) .581 (±.096) .083 (±.011) .301 (±.014) .193 (±.023) .249 (±.016) .086 (±.013) .469 (±.022) .252 (±.016) .480 (±.087)
GuidedBPµ .080 (±.005) .505 (±.016) .242 (±.008) .519 (±.037) .084 (±.011) .308 (±.009) .196 (±.014) .245 (±.014) .085 (±.011) .456 (±.014) .237 (±.013) .494 (±.069)
GuidedBP`2 .078 (±.005) .565 (±.051) .258 (±.007) .573 (±.095) .080 (±.012) .306 (±.009) .192 (±.018) .244 (±.008) .086 (±.012) .503 (±.053) .261 (±.017) .450 (±.081)

CNN
ShapSampl .103 (±.001) .439 (±.020) .133 (±.003) .643 (±.032) .077 (±.018) .210 (±.041) .085 (±.023) .196 (±.026) .093 (±.002) .372 (±.011) .148 (±.004) .479 (±.030)
LIME .125 (±.003) .498 (±.018) .190 (±.006) .494 (±.028) .128 (±.006) .289 (±.019) .156 (±.003) .260 (±.011) .103 (±.001) .469 (±.027) .202 (±.014) .633 (±.090)
Occlusion .119 (±.004) .492 (±.018) .176 (±.007) .507 (±.037) .130 (±.007) .289 (±.018) .160 (±.006) .254 (±.005) .114 (±.002) .463 (±.018) .250 (±.007) .418 (±.035)
Saliencyµ .137 (±.002) .496 (±.011) .220 (±.006) .399 (±.010) .129 (±.007) .288 (±.021) .159 (±.003) .253 (±.013) .115 (±.002) .467 (±.014) .245 (±.007) .425 (±.028)
Saliency`2 .140 (±.003) .492 (±.009) .225 (±.005) .354 (±.009) .130 (±.006) .286 (±.019) .161 (±.004) .250 (±.005) .114 (±.002) .475 (±.016) .248 (±.006) .405 (±.031)
InputXGradµ .110 (±.001) .436 (±.014) .153 (±.007) .460 (±.009) .071 (±.004) .191 (±.010) .071 (±.005) .190 (±.010) .090 (±.002) .379 (±.012) .135 (±.004) .477 (±.025)
InputXGrad`2 .140 (±.003) .492 (±.009) .225 (±.005) .355 (±.007) .130 (±.007) .285 (±.019) .160 (±.004) .251 (±.011) .114 (±.002) .475 (±.014) .248 (±.006) .416 (±.033)
GuidedBPµ .140 (±.003) .485 (±.011) .225 (±.005) .367 (±.023) .129 (±.006) .286 (±.019) .159 (±.003) .253 (±.011) .114 (±.002) .462 (±.013) .234 (±.011) .441 (±.036)
GuidedBP`2 .140 (±.003) .492 (±.009) .225 (±.005) .353 (±.008) .130 (±.007) .289 (±.018) .159 (±.004) .252 (±.011) .114 (±.002) .473 (±.015) .249 (±.006) .404 (±.029)

LSTM
ShapSampl .118 (±.003) .622 (±.035) .131 (±.005) .648 (±.054) .060 (±.018) .279 (±.065) .160 (±.014) .277 (±.038) .087 (±.007) .433 (±.053) .147 (±.015) .393 (±.029)
LIME .127 (±.004) .512 (±.052) .145 (±.009) .490 (±.040) .069 (±.018) .300 (±.051) .209 (±.024) .267 (±.031) .090 (±.007) .667 (±.150) .218 (±.010) .864 (±.362)
Occlusion .147 (±.003) .579 (±.065) .172 (±.007) .593 (±.083) .069 (±.017) .304 (±.055) .216 (±.014) .324 (±.032) .099 (±.006) .509 (±.015) .259 (±.012) .723 (±.063)
Saliencyµ .163 (±.002) .450 (±.008) .195 (±.008) .398 (±.031) .069 (±.018) .301 (±.051) .208 (±.026) .259 (±.022) .101 (±.007) .518 (±.013) .271 (±.008) .469 (±.071)
Saliency`2 .163 (±.002) .448 (±.011) .195 (±.008) .399 (±.034) .070 (±.018) .299 (±.051) .206 (±.024) .263 (±.027) .101 (±.007) .523 (±.011) .273 (±.008) .441 (±.051)
InputXGradµ .161 (±.002) .454 (±.018) .193 (±.007) .502 (±.033) .066 (±.018) .295 (±.059) .201 (±.033) .262 (±.014) .098 (±.007) .527 (±.005) .268 (±.008) .425 (±.035)
InputXGrad`2 .163 (±.002) .445 (±.011) .195 (±.007) .394 (±.029) .068 (±.018) .303 (±.050) .201 (±.031) .277 (±.024) .101 (±.007) .523 (±.008) .273 (±.007) .445 (±.038)
GuidedBPµ .161 (±.001) .453 (±.014) .192 (±.007) .516 (±.058) .068 (±.019) .298 (±.055) .200 (±.024) .287 (±.045) .097 (±.006) .523 (±.017) .260 (±.016) .460 (±.045)
GuidedBP`2 .163 (±.002) .446 (±.010) .195 (±.007) .396 (±.042) .069 (±.017) .300 (±.050) .204 (±.024) .279 (±.025) .101 (±.007) .525 (±.010) .273 (±.007) .474 (±.051)

Table 7: Confidence Indication experiments are measured with the Mean Absolute Error (MAE) of the generated saliency scores when used to predict the confidence of the
class predicted by the model and the Maximum Error (MAX). We present the result with and without up-sampling(MAE-up, MAX-up) of the model confidence. The presented
measures are an average over the set of models trained from from different random seeds. The standard deviation of the scores is presented in brackets. AVG Conf. is the average
confidence of the model for the predicted class. The best results for a particular dataset and model are in bold and the best results across a dataset are also underlined. Lower
results are better.
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Explain. e-SNLI IMDB TSE

Transformer

Random -0.004 (2.6e-01) -0.035 (1.4e-01) 0.003 (6.1e-01)
ShapSampl 0.310 (0.0e+00) 0.234 (3.6e-12) 0.259 (0.0e+00)
LIME 0.519 (0.0e+00) 0.269 (3.0e-31) 0.110 (2.0e-29)
Occlusion 0.215 (0.0e+00) 0.341 (2.6e-50) 0.255 (0.0e+00)
Saliencyµ 0.356 (0.0e+00) 0.423 (3.9e-79) 0.294 (0.0e+00)
Saliency`2 0.297 (0.0e+00) 0.405 (6.9e-72) 0.289 (0.0e+00)
InputXGradµ -0.102 (2.0e-202) 0.426 (2.5e-80) -0.010 (1.3e-01)
InputXGrad`2 0.311 (0.0e+00) 0.397 (3.8e-69) 0.292 (0.0e+00)
GuidedBPµ 0.064 (1.0e-79) -0.083 (4.2e-04) -0.005 (4.9e-01)
GuidedBP`2 0.297 (0.0e+00) 0.409 (1.2e-73) 0.293 (0.0e+00)

CNN

Random -0.003 (4.0e-01) 0.426 (2.6e-106) -0.002 (7.4e-01)
ShapSampl 0.789 (0.0e+00) 0.537 (1.4e-179) 0.704 (0.0e+00)
LIME 0.790 (0.0e+00) 0.584 (1.9e-219) 0.730 (0.0e+00)
Occlusion 0.730 (0.0e+00) 0.528 (2.4e-172) 0.372 (0.0e+00)
Saliencyµ 0.701 (0.0e+00) 0.460 (4.5e-126) 0.320 (0.0e+00)
Saliency`2 0.819 (0.0e+00) 0.583 (4.0e-218) 0.499 (0.0e+00)
InputXGradµ 0.136 (0.0e+00) 0.331 (1.2e-62) 0.002 (7.5e-01)
InputXGrad`2 0.816 (0.0e+00) 0.585 (8.6e-221) 0.495 (0.0e+00)
GuidedBPµ 0.160 (0.0e+00) 0.373 (5.5e-80) 0.173 (6.3e-121)
GuidedBP`2 0.819 (0.0e+00) 0.578 (2.4e-214) 0.498 (0.0e+00)

LSTM

Random 0.004 (1.8e-01) 0.002 (9.2e-01) 0.010 (1.8e-01)
ShapSampl 0.657 (0.0e+00) 0.382 (1.7e-63) 0.502 (0.0e-00)
LIME 0.700 (0.0e+00) 0.178 (3.3e-14) 0.540 (0.0e-00)
Occlusion 0.697 (0.0e+00) 0.498 (1.7e-113) 0.454 (0.0e-00)
Saliencyµ 0.645 (0.0e+00) 0.098 (3.1e-05) 0.667 (0.0e-00)
Saliency`2 0.662 (0.0e+00) 0.132 (1.8e-08) 0.596 (0.0e-00)
InputXGradµ 0.026 (1.9e-14) -0.032 (1.7e-01) 0.385 (0.0e-00)
InputXGrad`2 0.664 (0.0e+00) 0.133 (1.5e-08) 0.604 (0.0e-00)
GuidedBPµ 0.144 (0.0e+00) 0.122 (2.0e-07) 0.295 (0.0e-00)
GuidedBP`2 0.663 (0.0e+00) 0.139 (3.1e-09) 0.598 (0.0e-00)

Table 8: Rationale Consistency Spearman’s ρ correlation. The estimated p-value for the correlation is provided in
the brackets. The best results for a particular dataset and model are in bold and the best results across a dataset are
also underlined. Correlation lower that the one of the randomly sampled saliency scores are colored in red.
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Transformer

Random 0.047 (2.7e-04) 0.127 (6.6e-07)/ 0.121 (2.5e-01)
ShapSampl 0.285 (1.8e-02) 0.078 (5.8e-04) 0.308 (3.4e-36)
LIME 0.372 (3.1e-90) 0.236 (4.6e-07) 0.413 (3.4e-120)
Occlusion 0.215 (9.6e-02) 0.003 (2.0e-04) 0.235 (7.3e-05)
Saliencyµ 0.378 (4.3e-57) 0.023 (4.3e-02) 0.253 (1.4e-20)
Saliency`2 0.027 (3.0e-05) -0.043 (5.6e-02) 0.260 (6.8e-21)
InputXGradµ 0.319 (3.0e-03) 0.008 (1.2e-01) 0.193 (7.5e-05)
InputXGrad`2 0.399 (1.9e-78) 0.028 (2.3e-03) 0.247 (4.9e-17)
GuidedBPµ 0.400 (6.7e-31) 0.017 (1.9e-01) 0.228 (5.2e-09)
GuidedBP`2 0.404 (1.4e-84) 0.019 (4.3e-04) 0.255 (3.1e-20)

CNN

Random 0.018 (2.4e-01) 0.115 (1.8e-04) 0.008 (2.0e-01)
ShapSampl 0.015 (1.8e-01) -0.428 (5.3e-153) 0.037 (1.4e-01)
LIME 0.000 (4.4e-02) 0.400 (1.4e-126) 0.023 (4.0e-01)
Occlusion -0.076 (6.5e-02) -0.357 (1.9e-85) 0.041 (1.7e-01)
Saliencyµ 0.381 (6.9e-91) 0.431 (1.1e-146) -0.100 (3.9e-06)
Saliency`2 0.391 (1.7e-98) 0.427 (3.5e-135) -0.100 (3.7e-06)
InputXGradµ 0.171 (5.1e-04) 0.319 (1.4e-69) 0.024 (3.5e-01)
InputXGrad`2 0.399 (1.0e-93) 0.428 (1.4e-132) -0.076 (1.2e-03)
GuidedBPµ 0.091 (7.9e-02) 0.375 (5.7e-109) -0.032 (1.1e-01)
GuidedBP`2 0.391 (1.7e-98) 0.432 (3.5e-140) -0.102 (1.7e-06)

LSTM

Random 0.018 (3.9e-01) 0.037 (1.8e-01) 0.016 (9.2e-03)
ShapSampl 0.398 (3.5e-81) 0.230 (8.9e-03) 0.205 (2.1e-16)
LIME 0.415 (1.2e-80) 0.079 (8.6e-04) 0.207 (4.3e-16)
Occlusion 0.363 (1.1e-37) 0.429 (7.5e-137) 0.237 (2.9e-29)
Saliencyµ 0.158 (1.7e-17) -0.177 (1.6e-10) 0.065 (5.8e-03)
Saliency`2 0.160 (7.5e-19) -0.168 (2.0e-15) 0.096 (8.2e-03)
InputXGradµ 0.142 (3.3e-06) -0.152 (1.2e-14) 0.106 (2.8e-02)
InputXGrad`2 0.183 (7.0e-24) -0.175 (4.7e-17) 0.089 (8.4e-03)
GuidedBPµ 0.163 (1.9e-12) -0.060 (4.7e-02) 0.077 (1.2e-02)
GuidedBP`2 0.169 (1.8e-12) -0.214 (5.8e-16) 0.115 (4.3e-02)

Table 9: Dataset Consistency results with Spearman ρ. The estimated p-value for the correlation is provided in the
brackets. The best results for a particular dataset and model are in bold and the best results across a dataset are also
underlined. Correlation lower that the one of the randomly samples saliency scores are colored in red.


