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Abstract
While neural sequence learning methods have
made significant progress in single-document
summarization (SDS), they produce unsatis-
factory results on multi-document summariza-
tion (MDS). We observe two major challenges
when adapting SDS advances to MDS: (1)
MDS involves larger search space and yet
more limited training data, setting obstacles
for neural methods to learn adequate represen-
tations; (2) MDS needs to resolve higher in-
formation redundancy among the source docu-
ments, which SDS methods are less effective
to handle. To close the gap, we present RL-
MMR, Maximal Margin Relevance-guided
Reinforcement Learning for MDS, which uni-
fies advanced neural SDS methods and sta-
tistical measures used in classical MDS. RL-
MMR casts MMR guidance on fewer promis-
ing candidates, which restrains the search
space and thus leads to better representation
learning. Additionally, the explicit redundancy
measure in MMR helps the neural represen-
tation of the summary to better capture re-
dundancy. Extensive experiments demonstrate
that RL-MMR achieves state-of-the-art per-
formance on benchmark MDS datasets. In par-
ticular, we show the benefits of incorporating
MMR into end-to-end learning when adapting
SDS to MDS in terms of both learning effec-
tiveness and efficiency.1

1 Introduction

Text summarization aims to produce condensed
summaries covering salient and non-redundant in-
formation in the source documents. Recent studies
on single-document summarization (SDS) bene-
fit from the advances in neural sequence learning
(Nallapati et al., 2016; See et al., 2017; Chen and
Bansal, 2018; Narayan et al., 2018) as well as pre-
trained language models (Liu and Lapata, 2019;

1Code can be found at https://github.com/
morningmoni/RL-MMR.

Lewis et al., 2019; Zhang et al., 2020) and make
great progress. However, in multi-document sum-
marization (MDS) tasks, neural models are still
facing challenges and often underperform classi-
cal statistical methods built upon handcrafted fea-
tures (Kulesza and Taskar, 2012).

We observe two major challenges when adapt-
ing advanced neural SDS methods to MDS: (1)
Large search space. MDS aims at producing sum-
maries from multiple source documents, which ex-
ceeds the capacity of neural SDS models (See et al.,
2017) and sets learning obstacles for adequate rep-
resentations, especially considering that MDS la-
beled data is more limited. For example, there are
287K training samples (687 words on average) on
the CNN/Daily Mail SDS dataset (Nallapati et al.,
2016) and only 30 on the DUC 2003 MDS dataset
(6,831 words). (2) High redundancy. In MDS,
the same statement or even sentence can spread
across different documents. Although SDS models
adopt attention mechanisms as implicit measures to
reduce redundancy (Chen and Bansal, 2018), they
fail to handle the much higher redundancy of MDS
effectively (Sec. 4.2.3).

There have been attempts to solve the aforemen-
tioned challenges in MDS. Regarding the large
search space, prior studies (Lebanoff et al., 2018;
Zhang et al., 2018) perform sentence filtering us-
ing a sentence ranker and only take top-ranked
K sentences. However, such a hard cutoff of the
search space makes these approaches insufficient
in the exploration of the (already scarce) labeled
data and limited by the ranker since most sentences
are discarded,2 albeit the discarded sentences are
important and could have been favored. As a re-
sult, although these studies perform better than
directly applying their base SDS models (See et al.,

2K is set to 7 in Lebanoff et al. (2018) and 15 in Zhang
et al. (2018). One document set in DUC 2004 (Paul and James,
2004), for example, averages 265.4 sentences.

https://github.com/morningmoni/RL-MMR
https://github.com/morningmoni/RL-MMR
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2017; Tan et al., 2017) to MDS, they do not out-
perform state-of-the-art MDS methods (Gillick and
Favre, 2009; Kulesza and Taskar, 2012). Regarding
the high redundancy, various redundancy mea-
sures have been proposed, including heuristic post-
processing such as counting new bi-grams (Cao
et al., 2016) and cosine similarity (Hong et al.,
2014), or dynamic scoring that compares each
source sentence with the current summary like
Maximal Marginal Relevance (MMR) (Carbonell
and Goldstein, 1998). Nevertheless, these methods
still use lexical features without semantic represen-
tation learning. One extension (Cho et al., 2019) of
these studies uses capsule networks (Hinton et al.,
2018) to improve redundancy measures. However,
its capsule networks are pre-trained on SDS and
fixed as feature inputs of classical methods without
end-to-end representation learning.

In this paper, we present a deep RL frame-
work, MMR-guided Reinforcement Learning (RL-
MMR) for MDS, which unifies advances in SDS
and one classical MDS approach, MMR (Carbonell
and Goldstein, 1998) through end-to-end learning.
RL-MMR addresses the MDS challenges as fol-
lows: (1) RL-MMR overcomes the large search
space through soft attention. Compared to hard
cutoff, our soft attention favors top-ranked candi-
dates of the sentence ranker (MMR). However, it
does not discard low-ranked ones, as the ranker
is imperfect, and those sentences ranked low may
also contribute to a high-quality summary. Soft
attention restrains the search space while allowing
more exploration of the limited labeled data, lead-
ing to better representation learning. Specifically,
RL-MMR infuses the entire prediction of MMR
into its neural module by attending (restraining)
to important sentences and downplaying the rest
instead of completely discarding them. (2) RL-
MMR resolves the high redundancy of MDS in
a unified way: the explicit redundancy measure
in MMR is incorporated into the neural represen-
tation of the current state, and the two modules
are coordinated by RL reward optimization, which
encourages non-redundant summaries.

We conduct extensive experiments and ab-
lation studies to examine the effectiveness of
RL-MMR. Experimental results show that RL-
MMR achieves state-of-the-art performance on
the DUC 2004 (Paul and James, 2004) and
TAC 2011 (Owczarzak and Dang, 2011) datasets
(Sec. 4.2.1). A comparison between various com-

bination mechanisms demonstrates the benefits of
soft attention in the large search space of MDS
(Sec. 4.2.2). In addition, ablation and manual stud-
ies confirm that RL-MMR is superior to apply-
ing either RL or MMR to MDS alone, and MMR
guidance is effective for redundancy avoidance
(Sec. 4.2.3).

Contributions. (1) We present an RL-based MDS
framework that combines the advances of classi-
cal MDS and neural SDS methods via end-to-end
learning. (2) We show that our proposed soft at-
tention is better than the hard cutoff of previous
methods for learning adequate neural representa-
tions. Also, infusing the neural representation of
the current summary with explicit MMR measures
significantly reduces summary redundancy. (3) We
demonstrate that RL-MMR achieves new state-of-
the-art results on benchmark MDS datasets.

2 Problem Formulation

We define D = {D1, D2, ..., DN} as a set of doc-
uments on the same topic. Each document set D
is paired with a set of (human-written) reference
summariesR. For the convenience of notation, we
denote the j-th sentence in D as sj when concate-
nating the documents in D. We focus on extractive
summarization where a subset of sentences inD are
extracted as the system summaryE. A desired sys-
tem summary E covers salient and non-redundant
information in D. E is compared with the refer-
ence summariesR for evaluation.

3 The RL-MMR Framework

Overview. At a high level, RL-MMR infuses
MMR guidance into end-to-end training of the
neural summarization model. RL-MMR uses hi-
erarchical encoding to efficiently encode the sen-
tences in multiple documents and obtains the neu-
ral sentence representationAj . RL-MMR models
salience by combining MMR and sentence rep-
resentation Aj , and measures redundancy by in-
fusing MMR with neural summary representation
zt, which together form the state representation
gt. At each time step, one sentence is extracted
based on the MMR-guided sentence representa-
tion and state representation, and compared with
the reference, the result (reward) of which is then
back-propagated for the learning of both neural
representation and MMR guidance. An illustrative
figure of RL-MMR is shown in Fig. 1.
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Figure 1: An overview of the proposed MDS framework RL-MMR. Neural sentence representation Aj is
obtained through sentence-level convolutional encoder and document-level bi-LSTM encoder. MMR guidance is
incorporated into neural sentence representation Aj and state representation gt through soft attention and end-to-
end learned through reward optimization.

In the following, we first describe MMR and the
neural sentence representation. We then introduce
the neural sentence extraction module and how we
incorporate MMR guidance into it for better MDS
performance. Finally, we illustrate how neural rep-
resentation and MMR guidance are jointly learned
via end-to-end reinforcement learning.

3.1 Maximal Marginal Relevance

Maximal Marginal Relevance (MMR) (Carbonell
and Goldstein, 1998) is a general summarization
framework that balances summary salience and re-
dundancy. Formally, MMR defines the score of
a sentence sj at time t as mt

j = λS(sj ,D) −
(1 − λ)maxe∈Et R(sj , e), where λ ∈ [0, 1] is
the weight balancing salience and redundancy.
S(sj ,D) measures how salient a sentence sj is,
estimated by the similarity between sj and D.
S(sj ,D) does not change during the extraction
process. Et consists of sentences that are already
extracted before time t. maxe∈Et R(sj , e) mea-
sures the redundancy between sj and each ex-
tracted sentence e and finds the most redundant pair.
maxe∈Et R(sj , e) is updated as the size of Et in-
creases. Intuitively, if sj is similar to any sentence
e ∈ Et, it would be deemed redundant and less
favored by MMR. There are various options regard-
ing the choices of S(sj ,D) and R(sj , e), which
we compare in Sec. 4.2.4.

We denote the (index of the) sentence extracted
at time t as et. MMR greedily extracts one sen-
tence at a time according to the MMR score:
et = argmax sj∈D\Et

mt
j . Heuristic and determin-

istic algorithms like MMR are rather efficient and
work reasonably well in some cases. However, they
lack holistic modeling of summary quality and the
capability of end-to-end representation learning.

3.2 Neural Sentence Representation

To embody end-to-end representation learning, we
leverage the advances in SDS neural sequence
learning methods. Unlike prior studies on adapt-
ing SDS to MDS (Lebanoff et al., 2018), which
concatenates all the documents chronologically
and encodes them sequentially, we adapt hierar-
chical encoding for better efficiency and scalability.
Specifically, we first encode each sentence sj via a
CNN (Kim, 2014) to obtain its sentence representa-
tion. We then separately feed the sentence represen-
tations in each document Di to a bi-LSTM (Huang
et al., 2015). The bi-LSTM generates a contextual-
ized representation for each sentence sj , denoted by
hj . We form an action matrix A using hj , where
the j-th row Aj corresponds to the j-th sentence
(sj) in D. A pseudo sentence indicating the STOP
action, whose representation is randomly initial-
ized, is also included inA, and sentence extraction
is finalized when the STOP action is taken (Mao
et al., 2018, 2019).

3.3 Neural Sentence Extraction

We briefly describe the SDS sentence extraction
module (Chen and Bansal, 2018) that we base our
work on, and elaborate in Sec 3.4 how we adapt it
for better MDS performance with MMR guidance.

The probability of neural sentence extraction
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is measured through a two-hop attention mecha-
nism. Specifically, we first obtain the neural sum-
mary representation zt by feeding previously ex-
tracted sentences (Aei) to an LSTM encoder. A
time-dependent state representation gt that consid-
ers both sentence representationAj and summary
representation zt is obtained by the glimpse opera-
tion (Vinyals et al., 2016):

atj = vᵀ
1 tanh(W1Aj +W2zt), (1)

αt = softmax(at), (2)

gt =
∑
j

αt
jW1Aj , (3)

whereW1,W2, v1 are model parameters. at repre-
sents the vector composed of atj . With zt, the atten-
tion weights αt

j are aware of previous extraction.
Finally, the sentence representationAj is attended
again to estimate the extraction probability.

ptj =

{
vᵀ
2 tanh(W3Aj +W4gt) if sj 6= ei, ∀i < t

−∞ otherwise,
(4)

whereW3,W4, v2 are model parameters and pre-
viously extracted sentences {ei} are excluded.

The summary redundancy here is handled im-
plicitly by gt. Supposedly, a redundant sentence
sj would receive a low attention weight atj after
comparing Aj and zt in Eq. 1. However, we find
such latent modeling insufficient for MDS due to
its much higher degree of redundancy. For ex-
ample, when news reports start with semantically
similar sentences, using latent redundancy avoid-
ance alone leads to repeated summaries (App B
Table 8). Such observations motivate us to incorpo-
rate MMR, which models redundancy explicitly, to
guide the learning of sentence extraction for MDS.

3.4 MMR-guided Sentence Extraction
In this section, we describe several strategies of in-
corporating MMR into sentence extraction, which
keeps the neural representation for expressiveness
while restraining the search space to fewer promis-
ing candidates for more adequate representation
learning under limited training data.

Hard Cutoff. One straightforward way of incorpo-
rating MMR guidance is to only allow extraction
from the top-ranked sentences of MMR. We denote
the sentence list ranked by MMR scores mt

j as
M t. Given ptj – the neural probability of sentence
extraction before softmax, we set the probability
of the sentences after the first K sentences inM t

to −∞. In this way, the low-ranked sentences in
MMR are never selected and thus never included
in the extracted summary. We denote this variant
as RL-MMRHARD-CUT.

There are two limitations of conducting hard
cutoff in the hope of adequate representation learn-
ing: (L1) Hard cutoff ignores the values of MMR
scores and simply uses them to make binary deci-
sions. (L2) While hard cutoff reduces the search
space, the decision of the RL agent is limited as it
cannot extract low-ranked sentences and thus lacks
exploration of the (already limited) training data.
To tackle L1, a simple fix is to combine the MMR
score mt

j with the extraction probability measured
by the neural sentence representation.

ptj =


βvᵀ

2 tanh(W3Aj +W4gt) + (1− β)FF(mt
j)

if sj 6= ei, ∀i < t and sj ∈M t
1:K

−∞ otherwise,
(5)

where β ∈ [0, 1] is a constant. FF(·) is a two-layer
feed-forward network that enables more flexibility
than using raw MMR scores, compensating for the
magnitude difference between the two terms. We
denote this variant as RL-MMRHARD-COMB.

Soft Attention. To deal with L2, we explore
soft variants that do not completely discard the
low-ranked sentences but encourage the extrac-
tion of top-ranked sentences. The first variant,
RL-MMRSOFT-COMB, removes the constraint of
sj ∈ M t

1:K in Eq. 5. This variant solves L2 but
may re-expose the RL agent to L1 since its MMR
module and neural module are loosely coupled and
there is a learnable layer in their combination.

Therefore, we design a second variant,
RL-MMRSOFT-ATTN, which addresses both L1 and
L2 by tightly incorporating MMR into neural rep-
resentation learning via soft attention. Specifically,
the MMR scores are first transformed and normal-
ized: µt = softmax(FF(mt)), and then used to
attend neural sentence representationAj before the
two-hop attention: A′

j = µt
jAj . The state repre-

sentation gt, which captures summary redundancy,
is also impacted by MMR through the attention
between summary representation zt and MMR-
guided sentence representation A′

j in Eq. 1. L1
is addressed as µt represents the extraction proba-
bility estimated by MMR. L2 is resolved since the
top-ranked sentences in MMR receive high atten-
tion, which empirically is enough to restrain the
decision of the RL agent, while the low-ranked sen-
tences are downplayed but not discarded, allowing
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more exploration of the search space.

3.5 MDS with Reinforcement Learning

The guidance of MMR is incorporated into neu-
ral representation learning through end-to-end RL
training. Specifically, we formulate extractive
MDS as a Markov Decision Process, where the
state is defined by (D \Et, gt). At each time step,
one action is sampled from A given ptj , and its
reward is measured by comparing the extracted
sentence et with the referenceR via ROUGE (Lin,
2004), i.e., rt = ROUGE-LF1(et,R). At the final
step T when the STOP action is taken, an overall
estimation of the summary quality is measured by
rT = ROUGE-1F1(E,R). Reward optimization
encourages salient and non-redundant summaries –
intermediate rewards focus on the sentence salience
of the current extracted sentence and the final re-
ward captures the salience and redundancy of the
entire summary.

Similar to prior RL-based models on
SDS (Paulus et al., 2018; Chen and Bansal,
2018; Narayan et al., 2018), we use policy
gradient (Williams, 1992) as the learning algorithm
for model parameter updates. In addition, we
adopt Advantage Actor-Critic (A2C) optimization
– a critic network is added to enhance the stability
of vanilla policy gradient. The critic network has a
similar architecture to the one described in Sec. 3.2
and uses the sentence representationA to generate
an estimation of the discounted reward, which is
then used as the baseline subtracted from the actual
discounted reward before policy gradient updates.

4 Experiments

We conduct extensive experiments to examine RL-
MMR with several key questions: (Q1) How does
RL-MMR perform compared to state-of-the-art
methods? (Q2) What are the advantages of soft at-
tention over hard cutoff in learning adequate neural
representations under the large search space? (Q3)
How crucial is the guidance of MMR for adapting
SDS to MDS in the face of high redundancy?

4.1 Experimental Setup

Datasets. We take the MDS datasets from DUC
and TAC competitions which are widely used in
prior studies (Kulesza and Taskar, 2012; Lebanoff
et al., 2018). Following convention (Wang et al.,
2017; Cao et al., 2017; Cho et al., 2019), DUC 2004
(trained on DUC 2003) and TAC 2011 (trained on

TAC 2008-2010) are used as the test sets. We use
DUC 2004 as the validation set when evaluated
on TAC 2011 and vice versa. More details of the
dataset statistics are in App. A.1.

Evaluation Metrics. In line with recent work (Li
et al., 2017; Lebanoff et al., 2018; Zhang et al.,
2018; Cho et al., 2019), we measure ROUGE-
1/2/SU4 F1 scores (Lin, 2004). The evaluation
parameters are set according to Hong et al. (2014)
with stemming and stopwords not removed. The
output length is limited to 100 words. These setups
are the same for all compared methods.3

Compared Methods. We compare RL-MMR
with both classical and neural MDS methods. Note
that some previous methods are incomparable due
to differences such as length limit (100 words or
665 bytes) and evaluation metric (ROUGE F1 or
recall). Details of each method and differences in
evaluation can be found in App. A.

For extractive methods, we compare with
SumBasic (Vanderwende et al., 2007), KL-
Summ (Haghighi and Vanderwende, 2009),
LexRank (Erkan and Radev, 2004), Centroid (Hong
et al., 2014), ICSISumm (Gillick and Favre,
2009), rnn-ext + RL (Chen and Bansal, 2018),
DPP (Kulesza and Taskar, 2012), and DPP-Caps-
Comb (Cho et al., 2019). For abstractive methods,
we compare with Opinosis (Ganesan et al., 2010),
Extract+Rewrite (Song et al., 2018), PG (See et al.,
2017), and PG-MMR (Lebanoff et al., 2018).

We use RL-MMRSOFT-ATTN as our default model
unless otherwise mentioned. Implementation de-
tails can be found in App. A.4. We also report
Oracle, an approximate upper bound that greedily
extracts sentences to maximize ROUGE-1 F1 given
the reference summaries (Nallapati et al., 2017).

4.2 Experimental Results
4.2.1 Comparison with the State-of-the-art
To answer Q1, we compare RL-MMR with state-
of-the-art summarization methods and list the com-
parison results in Tables 1 and 2.

On DUC 2004, we observe that rnn-ext + RL,
which we base our framework on, fails to achieve
satisfactory performance even after fine-tuning.
The large performance gains of RL-MMR over
rnn-ext + RL demonstrates the benefits of guiding
SDS models with MMR when adapting them to
MDS. A similar conclusion is reached when com-
paring PG and PG-MMR. However, the hard cutoff

3Parameters of ROUGE: -2 4 -U -r 1000 -n 2 -l 100 -m.
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Method DUC 2004
R-1 R-2 R-SU4

Opinosis 27.07 5.03 8.63
Extract+Rewrite 28.90 5.33 8.76
SumBasic 29.48 4.25 8.64
KLSumm 31.04 6.03 10.23
LexRank 34.44 7.11 11.19
Centroid 35.49 7.80 12.02
ICSISumm 37.31 9.36 13.12
PG 31.43 6.03 10.01
PG-MMR 36.88 8.73 12.64
rnn-ext + RL (pre-train) 32.76 6.09 10.36
rnn-ext + RL (fine-tune) 35.93 8.60 12.53
DPP 38.10 9.14 13.40
DPP-Caps-Comb† 37.97 9.68 13.53
RL-MMR (ours) 38.56 10.02 13.80

Oracle 39.67 10.07 14.31

Table 1: ROUGE F1 of compared methods on DUC
2004. †We re-evaluate DPP-Caps-Comb (Cho et al.,
2019) using author-released output as we found its re-
sults did not follow the 100-word length limit.

Method TAC 2011
R-1 R-2 R-SU4

Opinosis 25.15 5.12 8.12
Extract+Rewrite 29.07 6.11 9.20
SumBasic 31.58 6.06 10.06
KLSumm 31.23 7.07 10.56
LexRank 33.10 7.50 11.13
PG 31.44 6.40 10.20
PG-MMR 37.17 10.92 14.04
rnn-ext + RL (pre-train) 33.45 7.37 11.28
rnn-ext + RL (fine-tune) 37.13 10.72 14.16
DPP 36.95 9.83 13.57
DPP-Caps-Comb† 37.51 11.04 14.16
RL-MMR (ours) 39.65 11.44 15.02

Oracle 42.44 13.85 16.90

Table 2: Results of automatic evaluation (ROUGE
F1) on TAC 2011. †The output of DPP-Caps-Comb is
again re-evaluated by limiting to 100 words.

in PG-MMR and the lack of in-domain fine-tuning
lead to its inferior performance. DPP and DPP-
Caps-Comb obtain decent performance but could
not outperform RL-MMR due to the lack of end-
to-end representation learning. Lastly, RL-MMR
achieves new state-of-the-art results, approaching
the performance of Oracle, which has access to the
reference summaries, especially on ROUGE-2. We
observe similar trends on TAC 2011 in which RL-
MMR again achieves state-of-the-art performance.
The improvement over compared methods is espe-
cially significant on ROUGE-1 and ROUGE-SU4.

4.2.2 Analysis of RL-MMR Combination
We answer Q2 by comparing the performance of
various combination mechanisms for RL-MMR.

Performance Comparison. As shown in Ta-
ble 3, RL-MMRHARD-COMB performs better than
RL-MMRHARD-CUT, showing the effectiveness of
using MMR scores instead of degenerating them
into binary values. We test RL-MMRSOFT-COMB

with different β but it generally performs much
worse than other variants, which implies that
naively incorporating MMR into representation
learning through weighted average may loosen the
guidance of MMR, losing the benefits of both mod-
ules. Infusing MMR via soft attention of the action
space performs the best, demonstrating the effec-
tiveness of MMR guidance in RL-MMRSOFT-ATTN

for sentence representation learning.

Combination DUC 2004
R-1 R-2 R-SU4

HARD-CUT 38.19 9.26 13.43
HARD-COMB 38.45 9.35 13.64
SOFT-COMB 37.70 8.90 12.98
SOFT-ATTN 38.56 10.02 13.80

Table 3: Comparison of RL-MMR variants with dif-
ferent combination mechanisms.

Hard Cutoff vs. Soft Attention. We fur-
ther compare the extracted summaries of MMR,
RL-MMRHARD-CUT, and RL-MMRSOFT-ATTN to ver-
ify the assumption that there are high-quality sen-
tences not ranked highly by MMR and thus ne-
glected by the hard cutoff. In our analysis, we find
that when performing soft attention, 32% (12%) of
extracted summaries contain low-ranked sentences
that are not from M1

1:K when K = 1 (K = 7).
We then evaluate those samples with low-ranked
sentences extracted and conduct a pairwise com-
parison. On average, we observe a gain of 18.9%
ROUGE-2 F1 of RL-MMRSOFT-ATTN over MMR,
and 2.71% over RL-MMRHARD-CUT, which demon-
strates the benefits of soft attention.

Degree of RL-MMR Combination. To study the
effect of RL-MMR combination in different de-
grees, we vary the cutoff K in RL-MMRHARD-CUT

and analyze performance changes. As listed in Ta-
ble 4, a smallK(= 1) imposes tight constraints and
practically degrades RL-MMR to vanilla MMR.
A large K(= 50) might be too loose to limit the
search space effectively, resulting in worse per-
formance than a K(= 7, 10) within the proper
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range. When K is increased to 100, the impact
of MMR further decreases but still positively influ-
ences model performance compared to the vanilla
RL (K =∞), especially on ROUGE-1.

K DUC 2004 TAC 2011
R-1 R-2 R-SU4 R-1 R-2 R-SU4

1 37.91 8.83 13.10 38.54 10.83 14.43
7 38.19 9.26 13.43 39.22 11.10 14.78
10 38.22 9.24 13.49 39.13 11.07 14.63
50 38.12 9.23 13.42 38.60 11.05 14.55
100 36.92 8.98 12.98 37.94 10.92 14.20
∞ 35.93 8.60 12.53 37.13 10.72 14.16

Table 4: Performance changes of RL-MMRHARD-CUT

when different cutoffs (K) are used.

4.2.3 Effectiveness of MMR Guidance
To answer Q3, we compare RL-MMR with vanilla
RL without MMR guidance in terms of both train-
ing and test performance. We also inspect details
such as runtime and quality of their extracted sum-
maries (provided in App.B).

Training Performance. To examine whether
MMR guidance helps with the learning efficiency
of MDS, we plot the learning curves of vanilla RL
and RL-MMRHARD-CUT in Fig. 2. RL-MMR re-
ceives a significantly better initial reward on the
training set because MMR provides prior knowl-
edge to extract high-quality sentences. In addition,
RL-MMR has lower variance and achieves faster
convergence than RL due to MMR guidance. Note
that the final reward of vanilla RL on the plateau
is higher than RL-MMR, which is somewhat ex-
pected since RL can achieve better fitting on the
training set when it has less guidance (constraint).
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Figure 2: The learning curves of RL and RL-MMR
on DUC 2004. RL training is more stable and con-
verges faster when equipped with MMR.

Test Performance. We compare the test perfor-
mance of vanilla RL and RL-MMR in Table 5. De-
spite the fact that vanilla RL obtains better training
performance, its test performance is significantly
worse than RL-MMR. Such a contradiction indi-

cates that vanilla RL overfits on the training set
and does not generalize well, again demonstrating
the benefits of MMR guidance. We also find that,
perhaps surprisingly, MMR outperforms vanilla
RL even when RL is fine-tuned using in-domain
training data. We thus believe that MMR and its
methodology are underestimated by prior studies
and should be explored further. Finally, RL-MMR
achieves significantly better results than either RL
or MMR alone, demonstrating the superiority of
combining RL with MMR for MDS.

Method DUC 2004 TAC 2011
R-1 R-2 R-SU4 R-1 R-2 R-SU4

RL (pre-train) 32.76 6.09 10.36 33.45 7.37 11.28
RL (fine-tune) 35.93 8.60 12.53 37.13 10.72 14.16
MMR 37.90 8.83 13.10 38.53 10.83 14.44
RL-MMR 38.56 10.02 13.80 39.65 11.44 15.02

Table 5: Comparison of MMR, RL, and RL-MMR
further shows the effectiveness of MMR guidance.

4.2.4 Ablation of MMR
In this section, we conduct more ablation of MMR
given its decent performance. We study the balance
between salience and redundancy, and the perfor-
mance of different similarity measures. Specif-
ically, we use TF-IDF and BERT (Devlin et al.,
2019) as the sentence (document) representation
and measure cosine similarity in S(sj ,D) and
R(sj , e). We also explore whether a semantic tex-
tual similarity model, SNN (Latkowski, 2018), is
more effective in measuring redundancy R(sj , e)
than TF-IDF. The TF-IDF features are estimated
on the MDS datasets while the neural models are
pre-trained on their corresponding tasks.
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Figure 3: Performance comparison under different
salience-redundancy balances (y-axis), and various
weighted combinations of TF-IDF and BERT (Left)
or SNN (Right) for similarity measure (x-axis). DUC
2004, ROUGE-1 F1, and R(sj , e) are used for illustra-
tion. The results of other setups are similar.

Balance between Salience and Redundancy. By
examining the y-axis in Fig. 3, we observe that con-
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Reference Summary: PKK leader Ocalan was arrested on
arrival at the Rome airport. He asked for asylum. Turkey
pressured Italy to extradite Ocalan, whom they consider a
terrorist. Kurds in Europe flocked to Rome to show their
support. About 1,500 staged a hunger strike outside the
hospital where he was held. Italy began a border crack-
down to stop Kurds flocking to Rome. Greek media and
officials oppose extradition. Romanian Kurds staged a 1-
day business shutdown to protest his arrest. In a Turkish
prison, an Italian prisoner was taken hostage. The Turkish
president needed extra security for a trip to Austria. This is
Italy’s Prime Minister D’Alema’s first foreign policy test.

DPP-Caps-Comb: 1. Turkey has asked for his extradi-
tion and Ocalan has asked for political asylum.
2. Turkey stepped up the pressure on Italy for the extra-
dition of captured Kurdish rebel leader Abdullah Ocalan,
warning Sunday that granting him asylum would amount to
opening doors to terrorism.
3. If Italy sends Ocalan back to Turkey, he’ll be tortured
for certain, said Dino Frisullo, an Italian supporter among
the singing, chanting Kurds outside the military hospital.
4. Thousands of Kurds living in Romania closed down
restaurants, shops and companies to protest the arrest of
leader Abdullah Ocalan by Italian authorities, a newspaper
reported Tuesday.
5. Turkey wants Italy to extradite the rebel, Abdullah
Ocalan, leader of the Kurdistan Workers’ Party, which is
seeking Kurdish autonomy in southeastern Turkey.

MMR: 1. Turkey wants Italy to extradite the rebel, Abdullah
Ocalan, leader of the Kurdistan Workers’ Party, which is seeking
Kurdish autonomy in southeastern Turkey.
2. Earlier Monday, while members of D’Alema’s government
met with Turkish officials who were in Rome for a European
ministerial meeting, thousands of Kurds flooded into Rome to
hold a demonstration and hunger strike in support of Ocalan.
3. The extra effort was prompted by the arrest last week in
Rome of Abdullah Ocalan, the chief of the Turkish Workers Party
PKK, Zehetmayr said.
4. If Italy sends the Kurd leader back to Turkey, he’ll be
tortured for certain, said Dino Frisullo, an Italian supporter
among the singing, chanting Kurds outside the military hospital.

RL-MMR: 1. Turkey wants Italy to extradite the rebel, Ab-
dullah Ocalan, leader of the Kurdistan Workers’ Party, which is
seeking Kurdish autonomy in southeastern Turkey.
2. In Rome, 1,500 Kurds massed for a second day of demonstra-
tions outside the military hospital where Ocalan is believed
to be held.
3. Thousands of Kurds living in Romania closed down
restaurants, shops and companies to protest the arrest of
leader Abdullah Ocalan by Italian authorities, a newspaper re-
ported Tuesday.
4. Greek media and officials leveled strong opposition Sun-
day to the possible extradition of Abdullah Ocalan, the arrested
Kurdish guerrilla leader, to Greece’s traditional rival Turkey.

Table 6: System summaries of different methods. Text spans matched (unmatched) with the reference summary
are in blue (green). Redundant spans are in red. Spans of the reference covered by RL-MMR are also in blue.

sidering both salience and redundancy (best λ =
0.5 ˜ 0.8) performs much better than only consid-
ering salience (λ = 1) regardless of the specific
measures, further indicating the necessity of ex-
plicit redundancy avoidance in MDS.

Comparison of Similarity Measures. By vary-
ing the x values in Fig. 3, TF-IDF and neural es-
timations are combined using different weights.
Although BERT and SNN (combined with TF-
IDF) perform slightly better at times, they often
require careful hyper-parameter tuning (both x and
y). Hence, We use TF-IDF as the representation in
MMR throughout our experiments.

4.2.5 Output Analysis

We analyze the outputs of the best-performing
methods in Table 6. DPP-Caps-Comb still seems
to struggle with redundancy as it extracts three sen-
tences with similar semantics (“Turkey wants Italy
to extradite Ocalan”). MMR and DPP-Caps-Comb
both extract one sentence regarding a hypothesis
that “Ocalan will be tortured”, which is not found
in the reference. RL-MMR has a more salient and
non-redundant summary, as it is end-to-end trained
with advances in SDS for sentence representation
learning while maintaining the benefits of classical
MDS approaches. In contrast, MMR alone only
considers lexical similarity; The redundancy mea-

sure in DPP-Caps-Comb is pre-trained on one SDS
dataset with weak supervision and fixed during the
training of DPP.

5 Related Work

Multi-document Summarization. Classical
MDS explore both extractive (Erkan and Radev,
2004; Haghighi and Vanderwende, 2009) and ab-
stractive methods (Barzilay et al., 1999; Ganesan
et al., 2010). Many neural MDS methods (Ya-
sunaga et al., 2017; Zhang et al., 2018) are merely
comparable or even worse than classical methods
due to the challenges of large search space and lim-
ited training data. Unlike DPP-Caps-Comb (Cho
et al., 2019) that incorporates neural measures into
classical MDS as features, RL-MMR opts for the
opposite by endowing SDS methods with the ca-
pability to conduct MDS, enabling the potential of
further improvement with advances in SDS.

Bridging SDS and MDS. Initial trials adapting
SDS models to MDS (Lebanoff et al., 2018; Zhang
et al., 2018) directly reuse SDS models (See et al.,
2017; Tan et al., 2017). To deal with the large
search space, a sentence ranker is used in the
adapted models for candidate pruning. Specifically,
Lebanoff et al. (2018) leverages MMR (Carbonell
and Goldstein, 1998) to rank sentences, allowing
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only the words in the top-ranked sentences to ap-
pear in the generated summary. Similarly, Zhang
et al. (2018) uses topic-sensitive PageRank (Haveli-
wala, 2002) and computes attention only for the
top-ranked sentences. Unlike RL-MMR, these
adapted models use hard cutoff and (or) lack end-
to-end training, failing to outperform state-of-the-
art methods designed specifically for MDS (Gillick
and Favre, 2009; Kulesza and Taskar, 2012).

6 Conclusion

We present a reinforcement learning framework for
MDS that unifies neural SDS advances and Max-
imal Marginal Relevance (MMR) through end-to-
end learning. The proposed framework leverages
the benefits of both neural sequence learning and
statistical measures, bridging the gap between SDS
and MDS. We conduct extensive experiments on
benchmark MDS datasets and demonstrate the su-
perior performance of the proposed framework, es-
pecially in handling the large search space and high
redundancy of MDS. In the future, we will investi-
gate the feasibility of incorporating classical MDS
guidance to abstractive models with large-scale
pre-training (Gu et al., 2020) and more challeng-
ing settings where each document set may contain
hundreds or even thousands of documents.
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A Experimental Details

A.1 Dataset Statistics
We list in Table 7 the details of datasets used in
our experiments. SDS methods usually take the
first 256 or 512 words in the document as model
input, which is infeasible for the input size of MDS
(5,000 to 7,000 words on average).

Dataset #D
∑
|D|

∑
|Di| min

∑
|Di| max

∑
|Di|

∑
|sj |

DUC 2003 30 298 259.0 98 502 6830.5
DUC 2004 50 500 265.4 152 605 6987.1
TAC 2008-2010 138 1380 236.9 41 649 5978.4
TAC 2011 44 440 204.9 48 486 5146.0

Table 7: Dataset statistics. #D and
∑
|D| denote the

number of document sets and the number of documents
in total.

∑
|Di|, min

∑
|Di|, and max

∑
|Di| denote

the average / min / max number of sentences in a docu-
ment set.

∑
|sj | denotes the average number of words

in a document set.

A.2 Remarks on Experimental Setup
We note that there are plenty of inconsistencies in
the previous work on MDS and some results can-
not be directly compared with ours. Specifically,
there are three major differences that may lead to
incomparable results as follows. First, while in
the original DUC competitions an output length of
665 bytes is adopted, more recent studies mostly
take a length limit of 100 words following Hong
et al. (2014), and some do not have any length
limit (usually resulting in higher numbers). Sec-
ond, some papers report ROUGE recall (Yasunaga
et al., 2017; Wang et al., 2017; Cao et al., 2017;
Nayeem et al., 2018; Gao et al., 2019) while others
(including ours) report ROUGE F1 following the
trend on SDS (Lebanoff et al., 2018; Zhang et al.,
2018; Cho et al., 2019). Third, while DUC 2004
and TAC 2011 are usually used as test sets, the
training sets used in different studies often vary.
We follow the same setup as the compared methods
to ensure a fair comparison.

A.3 Description of Extractive Baselines
SumBasic (Vanderwende et al., 2007) is based on
word frequency and hypothesizes that the words
occurring frequently are likely to be included in
the summary. KLSumm (Haghighi and Vander-
wende, 2009) greedily extracts sentences as long
as they can lead to a decrease in KL divergence.
LexRank (Erkan and Radev, 2004) computes sen-
tence salience based on eigenvector centrality in a
graph-based representation. Centroid (Hong et al.,

2014) measures sentence salience based on its co-
sine similarity with the document centroid, which
is similar to the salience measure in MMR. IC-
SISumm (Gillick and Favre, 2009) uses integer
linear programming (ILP) to extract a globally opti-
mal set of sentences that can cover the most impor-
tant concepts in the document set. DPP (Kulesza
and Taskar, 2012) handles sentence salience and
redundancy through the determinantal point pro-
cesses, in which many handcrafted features such
as sentence length, sentence position, and personal
pronouns are used. DPP-Caps-Comb (Cho et al.,
2019) improves upon DPP (Kulesza and Taskar,
2012) by replacing or combining the existing sen-
tence salience and redundancy measures with cap-
sule networks (Hinton et al., 2018). rnn-ext +
RL (Chen and Bansal, 2018) is the SDS method
that we base our work on. It is pre-trained on
the CNN/Daily Mail SDS dataset (Nallapati et al.,
2016), and we test its performance with or with-
out fine-tuning on the MDS training set. The pre-
trained abstractor in rnn-ext + RL is not used as we
found it consistently leads to worse performance.

A.4 Description of Abstractive Baselines
Opinosis (Ganesan et al., 2010) generates sum-
maries by finding salient paths on a word
co-occurrence graph of the documents. Ex-
tract+Rewrite (Song et al., 2018) scores sentences
by LexRank (Erkan and Radev, 2004) and employs
an encoder-decoder model pre-trained on Giga-
word (Graff et al., 2003) to generate a title-like
summary for each sentence. PG (See et al., 2017)
is one typical abstractive summarization method
for SDS that conducts sequence-to-sequence learn-
ing with copy mechanism. PG-MMR (Lebanoff
et al., 2018) adapts PG (See et al., 2017) to MDS
by concatenating all of the documents in one doc-
ument set and running pre-trained PG under the
constraints of MMR on its vocabulary.

A.5 Implementation Details
Following common practice, we only consider ex-
tracting sentences with reasonable length (i.e., 8 to
55 words) (Erkan and Radev, 2004; Yasunaga et al.,
2017). We filter sentences that start with a quota-
tion mark or do not end with a period (Wong et al.,
2008; Lebanoff et al., 2018). For MMR, we set
λ = 0.6 following Lebanoff et al. (2018). By de-
fault, we use TF-IDF features and cosine similarity
for both sentence salience and redundancy mea-
surement in MMR. We prefer such measurements
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RL for SDS RL for MDS

MMR-guided RL for MDS

MMR RL

Figure 4: We use the same shape to denote semanti-
cally similar sentences. Directly applying RL to MDS
encounters large search space and high redundancy, re-
sulting in repeated summaries. MMR guides RL by
attending to salient and non-redundant candidates.

instead of ROUGE-based measures (Lebanoff et al.,
2018) and advanced neural-based measures (Cho
et al., 2019; Devlin et al., 2019; Latkowski, 2018)
as they are faster to compute and comparable in
performance. We pre-train rnn-ext + RL (Chen
and Bansal, 2018) on the CNN/Daily Mail SDS
dataset (Nallapati et al., 2016) as in Lebanoff
et al. (2018) but continue fine-tuning on the in-
domain training set. We train RL-MMR using
an Adam optimizer with learning rate 5e-4 for
RL-MMRSOFT-ATTN and 1e-3 for the other variants
without weight decay. we tested various reward
functions, such as different ROUGE metrics, the
MMR scores, and intrinsic measures based on sen-
tence representation, and found them comparable
or worse than the current one. One may also use
other semantic metrics such as MoverScore (Zhao
et al., 2019) and FAR (Mao et al., 2020).

B Detailed Analysis of RL-MMR

Additional Illustration. We provide an illustra-
tion in Fig. 4 to better elucidate the motivation of
RL-MMR. Note that RL-MMR is mostly based
on SDS architectures while achieving state-of-the-
art performance on MDS, while existing combina-
tion approaches that achieve decent performance
(e.g., DPP-Caps) are based on MDS architectures.

Runtime and Memory Usage. RL-MMR is time
and space efficient for two reasons. First, its hier-
archical sentence encoding is much faster than a
word-level sequence encoding mechanism while
still capturing global context. Second, the guidance
of MMR provides RL-MMR with a “warmup” ef-
fect, leading to faster convergence. In our experi-
ments, one epoch of RL-MMR takes 0.87 to 0.91s

on a GTX 1080 GPU with less than 1.2 GB mem-
ory usage. The number of epochs is set to 10,000
and we adopt early stopping – the training pro-
cess terminates if RL-MMR cannot achieve better
results on the validation set after 30 continuous
evaluations. As a result, the runs often terminate
before 5,000 epochs, and the overall training time
ranges from 40 to 90 minutes.

Detailed Examples. In Table 8, we show the ex-
tracted summaries of vanilla RL and RL-MMR
for the same document set. Without the guidance
of MMR, the RL agent is much more likely to
extract redundant sentences. In the first example,
RL extracts two semantically equivalent sentences
from two different documents. These two sentences
would have similar sentence representation hi

j , and
the latent state representation gt itself might not be
enough to avoid redundant extraction. In contrast,
RL-MMR selects diverse sentences after extract-
ing the same original sentence as RL thanks to the
explicit redundancy measure in MMR. In the sec-
ond example, the issue of redundancy in RL is even
more severe – all four extracted sentences of RL are
covering the same aspect of the news. RL-MMR
again balances sentence salience and redundancy
better than vanilla RL, favoring diverse sentences.
Such results imply that pure neural representation
is insufficient for redundancy avoidance in MDS
and that classical approaches can serve as a com-
plement.
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RL: 1. President Clinton made an unusual, direct appeal to North Korea on Saturday to set aside any nuclear ambitions in
favor of strengthening ties to South Korea and the United States.
2. SEOUL, South Korea (AP) U.S. President Bill Clinton won South Korea’s support Saturday for confronting North Korea
over a suspected nuclear site, and he warned the North’s communist leaders not to squander an historic chance to make a
lasting peace on the peninsula.
3. SEOUL, South Korea (AP) U.S. President Bill Clinton won South Korea’s support Saturday for confronting North Korea
over a suspected nuclear site, and he warned the North’s communist leaders not to squander a chance to achieve lasting
peace on the peninsula.

RL-MMR: 1. SEOUL, South Korea (AP) U.S. President Bill Clinton won South Korea’s support ... an historic chance to
make a lasting peace on the peninsula.
2. The North Koreans have denied that the complex, which is being built on a mountainside about 25 miles northeast of
Yongbyon, the former North Korean nuclear research center, is intended to be used for a nuclear weapons program.
3. The United States and North Korea are set to resume talks Friday about inspections of an underground North Korean site
suspected of being used to produce nuclear weapons.

RL: 1. Galina Starovoitova, 52, a leader of the liberal Russia’s Democratic Choice party, was shot dead by unidentified
assailants on the stairs of her apartment building in St. Petersburg on Friday night.
2. A liberal lawmaker who planned to run for president in Russia’s next elections was shot to death Friday in St. Petersburg,
police said.
3. A liberal lawmaker who planned to run for president in Russia’s next elections was shot to death Friday in St. Petersburg,
police said.
4. A liberal lawmaker who planned to run for president in Russia’s next elections was killed Friday in St. Petersburg, a
news report said.

RL-MMR: 1. Galina Starovoitova, 52, a leader of the liberal Russia’s Democratic Choice party, was shot dead by
unidentified assailants on the stairs of her apartment...
2. Starovoitova tried to run for president in the 1996 elections but her registration was turned down for technical reasons.
3. Like that fictional crime, which shone a light on social ferment in the St. Petersburg of its day, the death of Starovoitova
was immediately seized upon as a seminal event in the Russia of the late 1990s.
4. She was a member of the Russian parliament and a recently declared candidate for governor of the region around St.
Petersburg.

Table 8: Case studies reveal the insufficient redundancy measure in vanilla RL. Note that the 2nd and 3rd
extracted sentences of RL in the second example are the same but from different documents, which is quite typical
in news reports.


