
Proceedings of the 3rd Workshop on e-Commerce and NLP (ECNLP 3), pages 64–68
Online, July 10, 2020. c©2020 Association for Computational Linguistics

64

ACL 2020 ECNLP3 
 

1 
 
 

000 
00100 
00101 
00102 
00103 
00104 
00105 
00106 
00107 
00108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 

000 
001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 
019 
020 
021 
022 
023 
024 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 
038 
039 
040 
041 
042 
043 
044 
045 
046 
047 
048 
049 
 

 

050 
051 
052 
053 
054 
055 
056 
057 
058 
059 
060 
061 
062 
063 
064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
077 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 
088 
089 
090 
091 
092 
093 
094 
095 
096 
097 
098 
099 

 
 
 
 
 

 

Abstract 

In e-commerce system, category prediction 
is to automatically predict categories of 
given texts. Different from traditional 
classification where there are no relations 
between classes, category prediction is 
reckoned as a standard hierarchical 
classification problem since categories are 
usually organized as a hierarchical tree. In 
this paper, we address hierarchical category 
prediction. We propose a Deep 
Hierarchical Classification framework, 
which incorporates the multi-scale 
hierarchical information in neural networks 
and introduces a representation sharing 
strategy according to the category tree. We 
also define a novel combined loss function 
to punish hierarchical prediction losses. 
The evaluation shows that the proposed 
approach outperforms existing approaches 
in accuracy. 

1 Introduction 

Category Prediction (CP), which aims to 
recognize the intent categories of given texts, is 
regarded as one of the most fundamental machine 
learning tasks in e-commerce system (Ali et al., 
2016). For example, this predicted category 
information will influence product ranking in 
search and recommendation system. 

Different from the traditional classification 
(Yann et al., 1998; Larkey and Croft, 1996) CP is 
formally categorized as a hierarchical 
classification task since categories in most e-
commerce websites are organized as a hierarchical 
tree (we consider the situation that the categories 
are organized as a hierarchical tree, but not a 
directed acyclic graph). Figure 1.(a) shows a 
simplified fragment of one category architecture. 
Apart from CP, there are also many other tasks 
belonging to hierarchical classification, e.g., image 
classification shown in Figure 1.(b). 

For simplicity, most practical approaches ignore 
the relation information between classes (hereafter 
referred to as flat classification). These approaches 
are easily implemented, but disadvantage in 
accuracy (Rohit et al., 2013). In academy, the 
hierarchical classification problem is not well-
studied as well (Silla and Freitas., 2011). Except 
these flat approaches, published studies are mainly 
divided into two directions: the local approaches, 
and the global approaches (Carlos and Freitas., 
2009). The local approaches learn multiple 
independent classifiers, each classifier either for 
per node, or for per parent node or for per layer. 
Taking the local approach for per layer as an 
example, for Figure 1.(b) it will train two 
independent classifiers for layer_1 and layer_leaf, 
respectively. The global approaches regard all 
none-root nodes as the classes to predict. Only one 
classifier is trained for all these none-root classes. 
We argue that all these approaches either do not 
consider the hierarchical structure at all (i.e., the 
flat approaches), or take implicit or tiny 
consideration of the class hierarchy. 

 
Figure 1. Hierarchical Classification Tasks  

The main challenges in hierarchical 
classification are at two aspects: hierarchical 
representation in classification model and 
hierarchical inconsistency in training process. 
Hierarchical representation means researchers may 
select Naive Bayesian (Larkey and Croft, 1996), 
Support Vector Machine (Chang and Lin, 2009), 
and Neural Networks (Jurgen Schmidhuber, 2015) 
as their classification models. But the hierarchical 
information fails to be explicitly incorporated in 
these models. Consequentially, it is hard for these 
models to learn the complex hierarchical 
information. The hierarchical inconsistency means 
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if a text is predicted as “appeal” in the layer_1, but 
as “laptop” in the leaf layer during training phase 
in Figure 1.(a), none approach can deal with this 
inconsistency as far as we known. 

To solve these two problems, we propose a 
general Deep Hierarchical Classification (DHC) 
framework. Firstly, according to hierarchical 
representation, our DHC approach directly 
incorporates class hierarchy information in neural 
network. DHC first generates one hierarchical 
layer representation for per layer. Inspired by the 
idea that sibling classes under one parent class 
must share certain common information, we 
introduce a hierarchical representation sharing 
strategy that the representation of one lower layer 
should include the representation information 
about its upper layer. This sharing strategy is 
recursively carried on in a top-down manner 
according to the class hierarchy. As a result, the 
classification model is forced to learn this structure 
information, and the class hierarchy information is 
“explicitly” involved in the model. Secondly, 
according to hierarchical inconsistency, we define 
a hierarchical loss function composed of the layer 
loss and the dependence loss. The layer loss 
defines the training loss within layers, which is the 
same to the loss in traditional flat classification. 
The proposed dependence loss defines the loss 
between layers. When predictions of two 
successive layers are inconsistent (i.e., these two 
predicted classes are not in a parent-child 
relationship), we will add an additional 
dependence loss to compel the classification model 
to learn this relation information. The dependence 
loss function is hierarchy-related and is regarded as 
a punishment when predictions are not consistent 
with the category structure. By this way, we can 
deal with the hierarchical inconsistency during the 
training process.  

DHC can be regarded as a general hierarchical 
classification framework, we evaluate it with text 
and image classification. For text classification, we 
collect query-category and title-category pairs 
from one e-commence website. For image 
classification we adopt the commonly-used 
cifar100 dataset. Taking advantage of hierarchical 
representation and hierarchical loss function, the 
DHC approach significantly improves the 
accuracy. Our main contributions include the novel 
DHC framework and the hierarchical 
representation and hierarchical loss which are first 

proposed as far as we know. All of them will be 
detailed in the following sections. 

2 Deep Hierarchical Classification 

Mathematically, the hierarchical classification task 
can be formulated as: Given: 
Input 𝑋: 𝑋 can denote the text or the image inputs. 
Category tree 𝒯 : Categories are organized by a 
category tree 𝒯  with L hierarchical layers. The 
categories (i.e., classes to predict) are denoted by 
𝑌. Categories of different layers are dependent as 
𝑌$ ⇒ 𝑌$&' ⇒ ⋯ ⇒	𝑌' ( ⇒  denotes the IS-A 
relation in category tree 𝒯.)  
Output: Categories of input 𝑋: Predict categories 
of the given input 𝑋 . Since categories are 
hierarchically related, it is possible to predict the 
leaf class and infer the classes of all the other layers 
according to category tree 𝒯. 

In the DHC approach, we defines a neural 
network model 𝒩(𝜃) where 𝜃 are the parameters 
to be estimated. Taking a three-layer hierarchical 
classification problem as an example, we show the 
DHC neural network in Figure 2. The neural 
network is composed of three parts: Flat Neural 
Network (FNN), Hierarchical Embedding 
Network (HEN) and Hierarchical Loss Network 
(HLN). We will further discuss these three parts. 

 
Figure 2. Deep Hierarchical Classification (Take three-
layer hierarchical classification as example) 

2.1 Flat Neural Network 

Given an input 𝑋, FNN is used to generate a root 
representation. For our main contributions lay in 
the HEN and HLN, we can adopt a state-of-the-art 
neural network in practice. Let 𝒩./01(𝜃./01) 
denote this flat neural network, the output is 
viewed as the root representation 𝑅3 

𝑹𝟎 = 𝓝𝒇𝒍𝒂𝒕(𝑿, 𝜽𝒇𝒍𝒂𝒕) (1) 
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2.2 Hierarchical Embedding Network 

With the root representation, HEN aims to produce 
hierarchical representations for every layers. For 
the 𝑙@A  layer, we first produce the independent 
representation 𝑅/B , i.e., 

𝑹𝒍B = 𝑾𝒓𝒍 ∗ 𝑹𝟎 (2) 
where 𝑊G/  represents the weights for the 
independent layer representation. The independent 
layer representation is hierarchical-free. As 
mentioned, classes belonging to the same parent 
class share certain common information. The 
representation of one lower layer should include 
the representation information about its upper 
layer. Thus, the hierarchical representation 𝑅/  is 
computed by concatenating the independent 
representations of all previous layers denoting by 

𝑹𝒍 = 𝑹𝒍&𝟏⨁𝑹𝒍B				𝒇𝒐𝒓	𝒍 ≠ 𝟏 
𝑹𝒍 = 𝑹𝒍B																	𝒇𝒐𝒓	𝒍 = 𝟏 (3) 

For the 	𝑙th layer prediction, the hierarchical 
representation 𝑅/  is passed into a softmax 
regression layer. The output of the softmax 
regression layer is denoted by  

𝒚O𝒍𝒊 =
𝒆𝑾𝒔𝒍𝒊𝑹𝒍

∑ 𝒆𝑾𝒔𝒍𝒌𝑹𝒍|𝒍|
𝒌V𝟏

 (4) 

where 𝑊W/  are the parameters of the	𝑙@A  softmax 
regression layer. 	𝑦Y/Z  denotes the prediction 
probability of the 𝑖@A class in the 𝑙@A  hierarchy 
layer. |𝑙| denotes the number of classes in the 𝑙@A 
hierarchy layer. 

2.3 Hierarchical Loss Network 

According to hierarchical layer representations and 
document true classes, HLN will compute the 
hierarchical loss to estimate the neural network 
parameters. We propose two types of losses, i.e., 
the layer loss and the dependency loss. Concretely, 
the 𝑙@A layer loss function 𝑙𝑙𝑜𝑠𝑠/ is defined as  

𝒍𝒍𝒐𝒔𝒔𝒍 = −_𝒚𝒍𝒋𝐥𝐨𝐠	(𝒚O𝒍𝒋)
|𝒍|

𝒋V𝟎

 (5) 

𝑦/d is the expected output of the 𝑗@Aclass in the 𝑙@A 
hierarchy layer. To measure the prediction errors 
between layers, we propose a dependence loss. If 
the predicted classes of two successive layers are 
not parent-child relation, a dependence loss 
appears to punish the learning model for it does not 
predict the classes according to the hierarchy 

                                                             
1 https://www.cs.toronto.edu/~kriz/cifar.html 

structure. The 𝑙@A layer dependence loss 𝑑𝑙𝑜𝑠𝑠/  is 
defined as  

𝒅𝒍𝒐𝒔𝒔𝒍 = −h𝒑𝒍𝒐𝒔𝒔(𝒍&𝟏)j
𝔻𝒍𝕀𝒍m𝟏(𝒑𝒍𝒐𝒔𝒔𝒍)𝔻𝒍𝕀𝒍 (6) 

where 𝔻/  and 𝕀/  denote that whether the model 
predictions conflict category structure, especially 

𝔻𝒍 = n𝟏				𝒊𝒇	𝒚o𝒍 ⇏ 𝒚o𝒍&𝟏
𝟎																	𝒆𝒍𝒔𝒆

 

𝕀𝒍 = n𝟏				𝒊𝒇	𝒚o𝒍 ≠ 𝒚𝒍
𝟎													𝒆𝒍𝒔𝒆

 
(7) 

Here 𝑦q/ = max
Z
𝑦Y/Z  denotes the predicted class, 

and 𝑦/  is the true label of the query. 𝔻/  denotes 
whether the predicted label in the 𝑙@A layer is a child 
class of the predicted class in the 𝑙 − 1@Alayer. 𝕀/ 
denotes whether the 𝑙@A layer prediction is correct. 
𝑝𝑙𝑜𝑠𝑠/  is a dependence punishment to force the 
neural network to learn structure information from 
the category structure. 𝑝𝑙𝑜𝑠𝑠/  can be set as a 
constant or related to the prediction error. 

Finally, the total loss is defined as the weighted 
summation of the layer losses and the dependence 
losses, i.e.,  

𝑱(𝜽) =_𝜶𝒊𝒍𝒍𝒐𝒔𝒔𝒊

𝑳

𝒊V𝟏

+_𝜷𝒊𝒅𝒍𝒐𝒔𝒔𝒊

𝑳

𝒊V𝟐

 (8) 

where 𝛼	and	𝛽	(0 ≤ 𝛼, 𝛽 ≤ 1)  are the loss 
weights of different layers. 

In the inference phase, there are mainly three 
methods to determine the category of one text, the 
heuristic method, the greedy method and the beam 
search method (Wu et al., 2016). We adopt the 
greedy method in our experiments for fair 
comparison. 

Datasets Sample 1st&2nd layer 
Query-Category 1.3millions 39/742 
Title-Category 30.7millions 39/742 

Cifar1001 60thousands 20/100 
Table 1. Information of experiment datasets 

3 Experiments 

3.1 Datasets 

As DHC is a general hierarchical classification 
framework, we experiment on text classification 
and image classification with both industry and 
public datasets, respectively. For text classification, 
we collect two datasets, i.e., <Query-Category> 
(user query and the category of one user-clicked 
product) and <Title-Category> (product title and 
its category). For image classification, we 
experiment on the cifar100 dataset, in which the 
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fine and coarse labels are organized by a three-
layer hierarchical tree. The information of these 
three datasets (e.g., sample numbers and class 
numbers) are shown in Table 1. 

For text classification, query-category and title-
category corpus are randomly divided into ten 
equal parts. Nine parts are used in the training 
phase and the other one is used in the test phase. 
For image classification, we use the official 
training/testing parts. Accuracy is selected to 
evaluate the performances (Kiritchenko and Stan, 
2005; Kiritchenko and Stan, 2006). 
Accuracy Query-Category Title-Category 

1st layer 2nd layer 1st layer 2nd layer 
SVM 88.1% 67.99% 85.34% 60.13% 
HSVM 89.98% 68.59% 88.14% 63.59% 
FastText 90.10% 67.64% 88.06% 61.62% 
TextCNN 90.11% 68.29% 89.10% 64.31% 
HiNet 91.54% 72.98% 90.69% 65.10% 
DHC 92.10% 73.37% 91.21% 69.02% 
Table 2. Accuracy evaluation of SVM, HSVM, 
FastText, TextCNN, HiNet and DHC approaches for 
text classification 

Accuracy Cifar100 
1st layer 2nd layer 

KerasCNN 89.23% 67.89% 
HiNet 90.11% 72.23% 
DHC 92.21% 75.91% 

Table 3. Accuracy evaluation of baseline, HiNet and 
DHC approaches for image classification 

3.2 Evaluation of baseline and existing 
approaches 

In this set of experiments, we compare our 
approach with the existing approaches. 

For text classification, SVM (Chang and Lin, 
2009), FastText (Joulin et al., 2016), and TextCNN 
(Yoon Kim, 2014) are selected as the flat baselines 
and we train two classifiers for the two layers, 
respectively. HSVM (Tsochantaridis et al., 2005) 
and HiNet (Wu and Saito, 2017) are selected as 
hierarchical baselines. For fair competition, HiNet 
and DHC are adopted the same network 
architecture with TextCNN as the base model. The 
purpose is to verify the effectiveness of our DHC 
framework, but not the based model. 

With the limited space, the standard neural 
network (KerasCNN)2 and HiNET are adopted as 
the flat and hierarchical baselines in image 
classification, respectively. HiNET and DHC keep 
the same network architecture and hyper-
parameters with KerasCNN. We also focus on the 

                                                             
2 https://keras.io/examples/cifar10_cnn/ 

comparison of the DHC framework, rather than the 
base model. 

The accuracies of these four approaches are 
shown in Table 2 and Table 3, which shows that 
DHC outperforms all the other approaches. The 
layer representation sharing and hierarchical loss 
computation help the improvement in 
performance. Meanwhile, we find that the 
accuracy increase of the leaf layer is greater than 
that of the layer_1. This is because the 
classification for the layer_1 is much easier than 
that for the leaf layer. The classifiers can learn 
comparable models for the layer_1, but DHC 
shows its powerful ability in the leaf layer 
classification. 

3.3 Evaluation of HEN and HLN 

This set of experiments is to reveal the influence of 
HEN and HLN. HiNet is adopted as the baseline 
approach and the experiments are conducted on 
title-category dataset for simplicity. 

 
Figure 3. Accuracy evaluation of HiNet, DHC_HEN 
( 𝛽 = 0  in Equation 8), DHC_HLN ( 𝑅/ = 𝑅/B  in 
Equation 3) and DHC approaches 

Figure 3 illustrates the accuracy changes of the 
leaf layer prediction in the training iteration. 
Compared to HiNet, it indicates that both HEN and 
HLN have the positive influence for hierarchical 
classification. HEN contributes more than HLN. 
We find that the definition of the hierarchical loss 
function affects the robustness and accuracy of the 
classification a lot. A proper hierarchical loss 
function definition is still an open question.  

4 Conclusions 

In sum, we extensively address the two challenges 
(i.e., hierarchical representation and hierarchical 
inconsistency) in hierarchical classification and 
propose the DHC approach to solve these two 
problems. Experiments both on text and image 
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classification demonstrate the effectiveness of our 
proposed DHC approach.  

References  
Cevahir Ali and Murakami Koji. 2016. Large-scale 

Multi-class and Hierarchical Product 
Categorization for an E-commerce Giant. In 
Proceedings of the 26th International Conference 
on Computational Linguistics: Technical Papers 
22(1): 525-535. 

Silla Jr. Carlos and Alex A Freitas. 2009. A Global-
Model Naive Bayes Approach to the Hierarchical 
Prediction of Protein Functions. In Proceedings of 
the 2009 Ninth IEEE International Conference on 
Data Mining. 

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: 
A Library for Support Vector Machines. ACM 
Transactions on Intelligent Systems and 
Technology. 2(3):1-27 

Armand Joulin, Edouard Grave, Piotr Bojanowski, 
Matthijs Douze, Herve Jegou and Tomas Mikolov. 
2016. FastText.zip: Compressing Text 
Classification Models. arXiv preprint 
arXiv:1612.03651 

Svetlana Kiritchenko and Matwin Stan. 2005. 
Functional Annotation of Genes using Hierarchical 
Text Categorization. In Proceedings of the ACL 
workshop on linking biological literature, 
ontologies and databases: Mining Biological 
Semantics. 

Svetlana Kiritchenko and Matwin Stan. 2006. 
Learning and Evaluation in the Presence of Class 
Hierarchies: Application to Text Categorization. In 
Proceedings of the 19th Canadian conference on 
Artificial Intelligence, lecture Notes in Artificial 
Intelligence. 4013:542-545 

Leah S. Larkey and Bruce W. Croft. 1996. Combining 
Classifiers in Text Categorization. In Proceedings of 
the 19th annual international ACM SIGIR 
Conference. 

Babbar Rohit, Partalas Ioannis, Gaussier Eric and 
Amini Massih-Reza. 2013. On Flat Versus 
Hierarchical Classification in Large-scale 
Taxonomies. In Advances in Neural Information 
Processing Systems:1824-1832.  

Jurgen Schmidhuber. 2015. Deep Learning in Neural 
Networks. Journal Neural Networks. 61(C):85-117 

Carlos N. Silla and Alex A. Freitas. 2011. A Survey of 
Hierarchical Classification Across Different 
Application Domains. Data Mining and Knowledge 
Discovery 22(1): 31-72. 

Ioannis Tsochantaridis, Thorsten Joachinms, Thomas 
Hofmann, Yasemin Altun. 2005. Large Margin 

Methods for Structured and Interdependent Output 
Variables. Journal of Machine Learning Research. 
6(2005):1453-1484 

LeCun Yann, Bottou Leon, YoshuaB engio and Haffner 
Patrick. 1998. Gradient-based Learning Applied to 
Document Recognition. In Proceedings of the 
IEEE. 86(11):2278-2324 

Yonghui Wu, Schuster Mike, Zhifeng Chen, Quoc V. 
Le and Mohammad Norouzi. 2016. Google’s Neural 
Machine Translation System: Bridging the Gap 
between Human and Machine Translation. arXiv 
preprint arXiv:1609.08144. 

Yoon Kim. 2014. Convolutional Neurual Networks for 
Sentence Classification. In Proceedings of the 2014 
Conference on Empirical Methods on Natural 
Language Processing. 

Zhenzhou Wu and Sean Saito. 2017. HiNet: 
Hierarchical Classification with Neural Network. In 
the workshop of the International Conference on 
Learning Representations. 

 

 


