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1Applica.ai
2Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznan

3Faculty of Mathematics and Computer Science, Jagiellonian University
4Institute of Computing Science, Poznan University of Technology

tomasz.dwojak@applica.ai

Abstract

This paper investigates various Transformer
architectures on the WikiReading Informa-
tion Extraction and Machine Reading Com-
prehension dataset. The proposed dual-source
model outperforms the current state-of-the-
art by a large margin. Next, we intro-
duce WikiReading Recycled—a newly devel-
oped public dataset, and the task of multiple-
property extraction. It uses the same data as
WikiReading but does not inherit its predeces-
sor’s identified disadvantages. In addition, we
provide a human-annotated test set with diag-
nostic subsets for a detailed analysis of model
performance.

1 Introduction

The emergence of attention-based models has rev-
olutionized Natural Language Processing (Young
et al., 2018). Pretraining these models on large cor-
pora like BookCorpus (Zhu et al., 2015) has been
shown to yield a reliable and robust base for down-
stream tasks. These include Natural Language In-
ference (Bowman et al., 2015), Question Answer-
ing (Rajpurkar et al., 2016), Named Entity Recogni-
tion (Yadav and Bethard, 2018; Goyal et al., 2018;
Li et al., 2020), and Property Extraction (Hewlett
et al., 2016).

The creation of large supervised datasets often
comes with trade-offs, such as one between the
quality and quantity of data. For instance, the
WikiReading dataset (Hewlett et al., 2016) has been
created in such a way that WikiData annotations
were treated as the expected answers for related
Wikipedia articles. However, the above datasets
were created separately, and the information con-
tent of both sources overlaps only partially. Hence,
the resulting dataset may contain noise.

The best models can achieve results better than
the human baseline across many NLP datasets
such as MSCQAs (Wang et al., 2018), STS-B,

QNLI (Raffel et al., 2020), CoLA or MRPC (Wang
et al., 2020). However, as a consequence of differ-
ent kinds of noise in the data, they rarely maximize
the score metric (Stanislawek et al., 2019). While
current work in NLP is focused on preparing new
datasets, we regard recycling the current ones as
equally important as creating a new one. Thus,
after outperforming previous state-of-the-art on
WikiReading, we investigated the dataset’s weak-
nesses and created an entirely new, more challeng-
ing Multi-Property Extraction task with improved
data splits and a reliable, human-annotated test set.

Contribution. The specific contributions of this
work are the following. We analyzed the WikiRead-
ing dataset and pointed out its weaknesses. We
introduced a Multi-Property Extraction task by cre-
ating a new dataset: WikiReading Recycled. Our
dataset contains a human-annotated test set, with
multiple subsets aimed to benchmark qualities such
as generalization on unseen properties. We in-
troduced a Mean-Multi-Property-F1 score suited
for the new Multi-Property Extraction task. We
evaluated previously used architectures on both
datasets. Furthermore, we showed that pretrained
transformer models (Dual-Source RoBERTa and
T5) beat all other baselines. The new dataset and
all the models mentioned in the present paper were
made publicly available on GitHub.1

2 Related Work

Early work in relation extraction revolves around
problems crafted using distant supervision meth-
ods, which are semi-supervised methods that au-
tomatically label pools of unlabeled data (Craven
and Kumlien, 1999). In contrast, many QA datasets
were created through crowd-sourcing, where an-
notators were asked to formulate questions with

1https://github.com/applicaai/multi-p
roperty-extraction

https://github.com/applicaai/multi-property-extraction
https://github.com/applicaai/multi-property-extraction


642

Dataset Task Input Output

SNLI Natural Language Inference two sentences relation between the sentences
SQUAD Question Answering article, question answer to the question
WiNER Named Entity Recognition article annotated named entities
WR Property Extraction article, property value of the property
WRR (ours) Multi-Property Extraction article, properties values of the properties

Table 1: Comparison of NLP tasks on text comprehension and information extraction. More differences between
WR and WRR were outlined in Table 3.

answers that require knowledge retrieval and in-
formation synthesis. One of the most popular
QA datasets is Wikipedia-based SQUAD, where
an instance consists of a human-formulated ques-
tion, and an encyclopedic reading passage used
to base the answer on (Rajpurkar et al., 2018).
Another crowd-sourced dataset that profoundly
influenced Natural Language Inference research
is SNLI (Bowman et al., 2015)—a three-way
semantics-based classification of a relation between
two different sentences.

Both SQUAD and SNLI are large-scale Machine
Reading Comprehension (MRC) tasks, but they
cannot be treated as Property Extraction as defined
in Section 3; hence they are not considered in this
paper. Similarly, some MRC problems framed in
TREC tracks, such as Conversational Assistance or
Question Answering, are beyond the scope of this
paper (Dalton et al., 2020; Dang et al., 2007).

Hewlett et al. (2016) proposed the WikiRead-
ing dataset that consists of a Wikipedia article and
related WikiData statement. No additional annota-
tion work was performed, yet the resulting dataset
was of presumably high reliability. Nevertheless,
we consider an additional human annotation to be
desired (Section 4.3). Alongside the dataset, a prop-
erty extraction task was introduced. The idea be-
hind it is to read an article given a property name
and to infer the associated value from the article.
The property extraction paradigm is described in
detail in Section 3, whereas a brief comparison to
related datasets is presented in Table 1.

Initially, the best-performing model used place-
holders to allow rewriting out-of-vocabulary words
to the output. Next, Choi et al. (2017) presented
a reinforcement learning approach that improved
results on a challenging subset of the 10% longest
articles. This framework was extended by Wang
and Jin (2019) with a self-correcting action that
removes the inaccurate answer from the answer
generation module and continues to read.

Data split Size In train %

Validation set 1,452,591 1,374,820 94.65
Test set 821,409 780,639 95.04

Table 2: The size of WikiReading splits (Size) and num-
ber of articles leaked from the train set as an absolute
value or percentage.

Hewlett et al. (2017) hold the state-of-the-art
on WikiReading with their proposition of SWEAR
that attends over a sliding window’s representa-
tions to reduce documents to one vector from
which another GRU network generates the an-
swer (Chung et al., 2014). Additionally, they eval-
uated a strong semi-supervised solution on a ran-
domly sampled 1% subset of WikiReading.

To the best of our knowledge, no authors vali-
dated Transformer-based models on WikiReading
and pretrained encoders.

3 Property Extraction

Let a property denote any query for which a sys-
tem is expected to return an answer from given
text. Examples include country of citizenship for
a biography provided as an input text, or architect
name for an article regarding the opening of a new
building. Contrary to QA problems, a query is
not formulated as a question in natural language
but rather as a phrase or keyword. We use the
term value when referring to a valid answer for
the stated query. Some properties have multiple
valid answers; thus, multiple values are expected.
Examine the case of Johann Sebastian Bach’s bi-
ography for which property sister has eight values.
We will refer to any task consisting of a tuple (prop-
erties, text) for which values are to be provided as
a property extraction task.

The biggest publicly available dataset for prop-
erty extraction is WikiReading (Hewlett et al.,
2016). The dataset combines articles from
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Wikipedia with Wikidata information. The dataset
is of great value; however, several flaws can be
identified. First, more than 95% of articles in the
test set appeared in the train set (Table 2). Sec-
ond, the unjustifiably large size of the test set is
a substantial obstacle for running experiments. For
instance, it takes 50 hours to process the test set
using a Transformer model such as T5SMALL on
a single NVidia V100 GPU. Finally, WikiReading
assumes that every value in the test set can be de-
termined on the basis of a given article. As shown
later, this is not the case for 28% of values.

3.1 Towards Multi-Property Extraction

In the Multi-Property Extraction (MPE) scenario
we propose, the system is expected to return values
for multiple properties at once. Hence, can be
considered a generalization of a single-property
extraction task as it can be easily formulated as
such. Thus, MPE is reverse-compatible with the
single-property extraction, and it is still possible
to evaluate models trained in the single-property
setting.

Many arguments can be considered in favor of
framing the problem as MPE. In a typical business
scenario, multiple properties are expected to be ex-
tracted from a given document. The bulk inference
requires a lower computational budget by a fac-
tor proportional to the mean number of properties
per article, which makes MPE preferable. More-
over, one can expect that systems trained in such
a way will manifest emergent properties resulting
from the interaction between properties themselves.
Consider the set of property-value pairs:

date of birth: 1915-01-12, date of death: 1979-05-
02, place of birth: Saint Petersburg

already predicted by an autoregressive model. It is
in principle possible to answer:

country of citizenship: Russian Empire, country
of citizenship: Soviet Union

using the earlier predicted pairs only. This phe-
nomenon emerges if the model (or person) learned
the relationships between years, administrative
boundaries of the city, and the transformation of
the Russian Empire into a communist state that
occurred in the meantime. Although no such rea-
soning is required and the problem can be solved
by memorizing related co-occurrence patterns, we
intend to achieve the mentioned emergent proper-
ties.

Feature WR WRR

Base unit property article
Examples 18.6M 4.1M
Properties/example 1 4.5

Metric M-F1 MMP-F1

Human-annotated test − +

Dataset split random controlled
Unseen in evaluation − +
Article appears in few splits one split

Table 3: Selected differences between WR and WRR.
Both metrics are described in Section 6.

4 WikiReading Recycled: Novel Dataset
for Multi-Property Extraction

The comparison to existing datasets and shared
tasks is briefly presented in Table 1, whereas Ta-
ble 3 focuses on selected differences between
WikiReading Recycled and WikiReading.

4.1 Desiderata

Our set of desiderata is based on the following in-
tentions. We wished to introduce the problem of
Multi-Property Extraction to evaluate systems that
extract any number of given properties at once from
the same source text. Our second objective was to
ensure that an article may appear in precisely one
data split. The third core intention was to intro-
duce an article-centered data objective instead of
a property-centric one. Note that an instance of
data should be an article with multiple properties.
The fourth objective was to ensure that all prop-
erties in the test set can be extracted or inferred.
The fifth was to keep the validation and test sets
within a reasonable size. Moreover, we aim to pro-
vide a test set of the highest quality, lacking noise
that could arise from automatic processing. Finally,
we intended to benchmark the model generaliza-
tion abilities – the test set contains properties not
seen during training, posing a challenge for current
state-of-the-art systems.

4.2 Data Collection and Split

The WikiReading Recycled and WikiReading are
based on the same data, yet differ in how they are
arranged. Instances from the original WikiReading
dataset were merged to produce over 4M samples
in the MPE paradigm. Instead of performing a ran-
dom split, we carefully divide the data assuming
that 20% of properties should appear solely in the
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Subset Dev Test-A Test-B

rare 4.40 5.12 3.16
unseen 5.53 5.34 2.05
categorical 46.63 44.49 66.51
relational 53.36 55.50 33.49
exact match 20.20 20.16 33.67
long articles 50.39 56.15 30.45

Table 4: An average per-article size of the correspond-
ing subsets as a percent of a total number of properties.

test set (more precisely, not seen before in train and
validation sets). Around one thousand articles con-
taining properties not seen in the remaining subsets
were drafted to achieve the mentioned objective.
Similarly, properties unique for the validation set
were introduced to enable approximation of the test
set performance without disclosing particular la-
bels. Additionally, test and validation sets share
10% of the properties that do not appear in the train
set, increasing the size of these subsets by 2,000
articles each. Another 2,000 articles containing the
same properties as the train set were added to each
of the validation and test sets. All the remaining
articles were used to produce the training set.

To sum up, we achieved a design where as much
as 50% of the properties cannot be seen in the train-
ing split, while the remaining 50% of the properties
can appear in any split. We chose these properties
carefully so that the size of the test and validation
sets does not exceed 5,000 articles.

4.3 Human Annotation

The quality of test sets plays a pivotal role in rea-
soning about a system’s performance. Therefore,
a group of annotators went through the instances
of the test set and assessed whether the value either
appeared in the article or can be inferred from it.
To make further analysis possible, we provide both
datasets, before (test-A) and after (test-B) annota-
tion.

The annotation process was non-trivial due to
vagueness of the inferability definition, and the
scientific character of the considered text. It was
required to understand advanced encyclopedic arti-
cles e.g., about chemistry, biology, or astronomy, to
answer domain-specific properties (scientific clas-
sifications or biological taxonomy), which are only
possible with deep knowledge about the world and
with the ability to learn during the process. More-
over, linguistic skills were required to transliterate

and transcribe first and last names. Note that we
consider the value which appears in a different writ-
ing script as inferable. Due to the stated issues, we
decided to rely on highly trained linguists as anno-
tators.

The process was supported by several heuristics.
In particular, the approximate string matching was
used to highlight fragments of presumably high
importance. Nevertheless, it took seven linguists
more than 100 hours in total to complete. On aver-
age, two minutes and thirty second were required
to verify data assigned to one Wikipedia article.

The relevance of annotation mentioned above
can be demonstrated by the fact that 28% of the
property-value pairs were marked as unanswerable
and removed. As it will be shown later, the Mean-
Multi-Property-F1 on a pre-verified test-A was ap-
proximately 20 points lower, and 8% of articles
were removed entirely from the test-B during the
annotation process.

4.4 Diagnostic Subsets

We determined auxiliary validation subsets with
specific qualities, not only to help improve data
analysis but also to provide additional information
at different stages of development of a system. The
qualities we measure and the definition is provided
below.

Rare, unseen. Rare and unseen properties were
distinguished depending on their frequency. The
number of occurrences in the train set was below
a threshold of 4000 for each in rare and was pre-
cisely 0 for the unseen category.

Categorical, relational. We denote a property
as categorical if its value set contains a limited
number of values; otherwise, it is relational. We
apply normalized entropy with a threshold of 0.7
to obtain properties that belong to the categorical
subset. For instance, the continent property occurs
20060 times, but with 13 possible values, its nor-
malized entropy equals 0.43; hence it is marked as
categorical. This splitting method is not ideal, but
we wanted to use the same method as in (Hewlett
et al., 2016). For example, if the distribution of
continents was uniform, the property would have
been classified as relational. However, in practice,
it almost never happens.

Exact match. The exact match category applies
to cases where expected value is mentioned directly
in the source text.
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Long articles. Instances with articles longer than
695 words (threshold qualifying to the top 15%
longest articles in the train set) constitute the long
articles diagnostic set.

Characteristics of different systems can be com-
pared qualitatively by evaluating on these subsets.
For instance, the long articles subset is challenging
for systems that consume truncated inputs. Unseen
is precisely constructed to assess systems’ ability
to extract previously not seen properties. On the
other hand, rare can be viewed as an approximation
of the system’s performance on a lower-resource
downstream extraction task. The categorical subset
is useful in assessing approaches featuring a classi-
fier, whereas it is suboptimal to use such systems
for relational due to richer output space. Similarly,
the exact match can be approached with sequence
tagging solutions. The share of each diagnostic
subset is presented in Table 4.

5 Model Architectures

We evaluate different model architectures on
the WikiReading Recycled dataset. We re-
implemented the previously best performing
WikiReading model, finetuned pretrained Trans-
former models, and applied a dual-source model.
Their competitiveness can be demonstrated by the
fact that we were able to outperform the previous
state-of-the-art on the WikiReading by a far mar-
gin.

Basic seq2seq. A straightforward approach to
single-property extraction is to use an LSTM
sequence-to-sequence model where the input con-
sists of a property name concatenated with the
considered input text. To compare with the pre-
vious results, we reproduced the basic sequence-to-
sequence model proposed by Hewlett et al. (2016).

Vanilla Transformer. A more up-to-date solu-
tion is to use the Transformer architecture (Vaswani
et al., 2017) instead of an RNN, and a subword to-
kenization method, such as unigram LM tokeniza-
tion (Kudo, 2018). We use the term vanilla to
denote a model trained from scratch.

Vanilla Dual-Source Transformer. The Trans-
former architecture was extended to support two
inputs and successfully applied in Automatic Post-
Editing (Junczys-Dowmunt and Grundkiewicz,
2018). We propose to reuse this Dual-Source Trans-
former architecture in the property extraction tasks.
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Figure 1: The architecture of Dual-Source Transformer
as proposed by Junczys-Dowmunt and Grundkiewicz
(2018) for Automatic Post-Editing. In the case of
WikiReading Recycled and WikiReading, the encoder
transforms an article and the corresponding properties
separately.

The architecture consists of two encoders that share
parameters and a single decoder. Moreover, the
encoders and decoder share embeddings and vo-
cabulary. In our approach, the first encoder is fed
with the text of an article, and the second one takes
the names of properties (Figure 1). The model is
trained to generate a sequence of pairs: (property,
value) separated with a special symbol.

Dual-Source RoBERTa. Recent research shows
that pretrained language models can improve per-
formance on downstream tasks (Radford et al.,
2018). Therefore, we experimented with the pre-
trained RoBERTa language model as an encoder.
RoBERTa models were developed as a hyper-
optimized version of BERT with a byte-level BPE
and a considerably larger dictionary (Liu et al.,
2019; Devlin et al., 2019). All the model parame-
ters, including the RoBERTa weights, were further
optimized on the WikiReading Recycled task.

T5. Recently proposed T5 model (Raffel et al.,
2020) is a Transformer model pretrained on
a cleaned version of CommonCrawl. T5 is famous
for achieving excellent performance on the Super-
GLUE benchmark (Wang et al., 2019).

To create a model input, we concatenate a prop-
erty name and an article. In the case of MPE, we
reduce the dataset to the single property setting, as
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Basic seq2seq
Vanilla

Transformer
Vanilla

Dual-Source
Dual-Source

RoBERTa
T5

Numer of inputs 1 1 2 2 1
Pretrained encoder − − − + +
Pretrained decoder − − − − +
Number of parameters 32M 46M 25M 234M 60M

Table 5: Comparison of evaluated models. The T5 model can be considered as a pretrained equivalent of Vanilla
Transformer, and our RoBERTa-based model can be viewed as a partially-pretrained Vanilla Dual-Source Trans-
former. Basic seq2seq is an RNN counterpart of both T5 and Vanilla Transformer.

used by the T5 model’s authors.

6 Evaluation

In this section, we describe the evaluation of previ-
ously proposed architectures on both WikiReading
and WikiReading Recycled datasets. We would
like to highlight that the results are not compara-
ble between the two datasets, as they are based on
different train/validation/test splits.

6.1 Metrics

The performance of systems is evaluated using the
F1 metric, adapted for the WikiReading Recycled
format. For WikiReading, Mean-F1 follows the
originally proposed micro-averaged metric and as-
sesses F1 scores for each property instance, aver-
aged over the whole test set.

Let E denote a set of expected property-value
pairs and O model-generated property-value pairs.
Assuming |·| stands for set cardinality, precision
and recall can be formulated as follows:

P (E,O) =
|E ∩O|
|O|

, R(E,O) =
|E ∩O|
|E|

Then F1 is computed as a harmonic mean:

F1(E,O) = 2 · P (E,O) ·R(E,O)

P (E,O) +R(E,O)

Given a sequence E = {E1, E2, .., En} of ex-
pected answers for n test instances, and associated
sequence of predictions O = {O1, O2, .., On}, we
calculate Mean-F1 as:

Mean-F1(E ,O) =
1

n
·
∑

i∈[1,n]

F1(Ei, Oi)

In WikiReading Recycled, we adjust the metric to
handle many properties in a single test instance.
To do that, the Ei and Oi sets contain values from

many properties at once and n is equal to the num-
ber of articles. Note that in the case of the M-F1

properties are considered as instances. We call our
article-centric metric Mean-Multi-Property-F1 or
in short MMP-F1.

6.2 Training Details
Since the basic seq2seq model description missed
some essential details, they had to be assumed be-
fore model training. For example, we supposed that
the model consisted of unidirectional LSTMs and
truecasing was applied to the output. The rest of
the parameters followed the description provided
by the authors.

An extensive hyperparameter search was con-
ducted for both Dual-Source Transformers on the
WikiReading Recycled task. In the case of the
Dual-Source Transformer evaluated on WikiRead-
ing we restricted ourselves to hyperparameters fol-
lowing the default values specified in the Marian
NMT Toolkit (Junczys-Dowmunt et al., 2018). The
only difference was the reduction of encoder and
decoder depths to 4.

For the Vanilla Dual-Source Transformer evalu-
ation, both WikiReading and WikiReading Recy-
cled datasets were processed with a SentencePiece
model (Kudo, 2018) trained on a concatenated cor-
pus of inputs and outputs with a vocabulary size
of 32,000. Dual-Source RoBERTa model is initial-
ized with RoBERTaBASE (consisting of 12 encoder
layers and a dictionary of 50,000 subword units).

In the case of the T5 model, we keep hyperpa-
rameters as close as possible to those used during
pretraining. The training continues with restored
AdaFactor parameters. We finetuned the small ver-
sion of the model in a supervised-only manner.

We truncate the input to the first 512 tokens for
all our models.

Hyperparameter Optimization. Hyperparame-
ters for WikiReading Recycled were optimized
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Model Mean-F1

Basic s2s (Hewlett et al., 2016) 70.8
Placeholder s2s (Choi et al., 2017) 75.6
SWEAR (Hewlett et al., 2017) 76.8

Basic s2s (our run) 74.8
Vanilla Transformer 79.3
Vanilla Dual-Source Transformer 82.4

Table 6: Results on WikiReading (test set). Basic s2s
denotes the re-implemented model described in Sec-
tion 6.2.

using the Tree-structured Parzen Estimator algo-
rithm (Bergstra et al., 2011) with additional heuris-
tics and Gaussian priors resulting from the default
settings proposed for this sampler in the Optuna
framework (Akiba et al., 2019). An evaluation was
performed every 8,000 steps, and the validation-
based early stopping was applied when no progress
was achieved in 3 consecutive validations. The total
number of 250 trials was performed for each archi-
tecture. Intermediate results of each trial were mon-
itored and used to ensure only the top 10% trials
were allowed to continue. Details of the hyperpa-
rameter optimization are presented in Appendix A.

6.3 Results on WikiReading

Although the main focus of our evaluation is
the WikiReading Recycled dataset; we addition-
ally evaluate whether the Vanilla Dual-Source
Transformer can improve the state-of-the-art on
WikiReading.

We reproduced the Basic seq2seq model. It
achieved a Mean-F1score of 74.8, which is 4 points
higher than reported by Hewlett et al. (2016). The
difference may be caused by poor optimization
in the original work. Our dual-source solution
achieves 82.4 and outperforms the previous state-
of-the-art model by 5.6 Mean-F1 points. To mea-
sure the impact of using two encoders instead of
one, we evaluated the Vanilla Single-source Trans-
former, which takes a concatenated pair of article
and property as its input. Our dual-source model
outperformed its single-source counterpart by 3.1
points. Table 6 presents the final results.

6.4 Results on WikiReading Recycled

The results on WikiReading show that the Dual-
Source Transformer is beneficial to the Property
Extraction task. On WikiReading Recycled, we
supplement the evaluation with pretrained models:

Dual-Source RoBERTa and T5.
Table 7 presents Mean-Multi-Property-F1 scores

on the annotated test set (test-B). All the
transformer-based models outperform the Basic
seq2seq. The Dual-Source Transformer achieved
77.5 Mean-Multi-Property-F1. Its pretrained ver-
sion, Dual-Source RoBERTa, improves the result
by 1.4 points. As the T5 model beats the Vanilla
Dual-Source Transformer, we may conclude that
even though the WikiReading Recycled dataset is
very large, the pretraining is crucial for this MPE
task. It is worth remembering that the results on
WikiReading and WikiReading Recycled are not
comparable due to the dissimilarities in metrics and
datasets. We will elaborate on that in section 7.

7 Discussion and Analysis

The final scores of transformer-based models differ
slightly on WikiReading Recycled. In order to get
more insight, we analyze the models on diagnostic
sets described in Section 4.4.

Impact of Property Frequency. We provide
two diagnostic sets related to property frequency:
unseen and rare. Both dual-source models failed
on the unseen subset. These models ignored the un-
seen properties from the input and did not generate
any answer. The best result was achieved by the
T5 model (10.9 points), albeit it still does not meet
expectations.

The results on the rare subset show that the pre-
training makes a difference if properties are infre-
quent in the train set (Figure 2).

102 104 106

Property frequency in the train set

0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

Basic
RoBERTa
T5
Vanilla

Figure 2: The relation of property frequency and Mean-
Multi-Property-F1. Both RoBERTa and Vanilla refer to
Dual-Source Transformers.
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Model unseen rare categorical relational exact match long test-B

Basic seq2seq 2.0 30.2 84.9 50.2 71.1 56.4 75.2
Vanilla Dual-Source 0.0 40.7 83.9 70.8 80.5 63.1 77.5
Dual-Source RoBERTa 0.0 50.7 86.0 76.8 84.3 68.2 80.9
Finetuned T5 10.9 53.8 86.3 73.4 83.4 65.9 80.3

Table 7: Results on WikiReading Recycled human-annotated test set supplemented with scores on diagnostics
subsets. All scores are Mean-Multi-Property-F1.

Impact of Property Type. The extraction of
some properties may be treated as a classification
task since the set of their valid values is limited. In
this case, all models perform similarly and achieve
approximately 85 Mean-Multi-Property-F1. The
difficulty of the task increases proportionally to
the normalized entropy value, which may lead to
the divergence of model performances. This phe-
nomenon is visible in the case of our Basic seq2seq,
where the weakness is evident above the 0.5 thresh-
old. The details are presented in Figure 3.

0.2 0.4 0.6 0.8
Normalized entropy

0.2

0.4
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0.8

1.0

F1
 sc

or
e

Basic
RoBERTa
T5
Vanilla

Figure 3: The relation of property normalized entropy
and Mean-Multi-Property-F1. Both RoBERTa and
Vanilla refer to Dual-Source Transformers.

Exact Match and Long Articles. The results
from the exact match and long articles subsets are
correlated with the scores attained on the test-B
set; however, the absolute values achieved differ
substantially. This is because the long article sub-
set is more challenging, as the chance of an an-
swer appearing in the constant-length prefix de-
creases with the length of the article. The use of
recently introduced models like LongFormer (Belt-
agy et al., 2020) and BigBird (Zaheer et al., 2020)
might decrease the gap in scores between long and
average-length articles. On the other hand, system
performance should increase when the answer is
provided directly in the text, as can be found in the

exact match subset.

Difficulty of Test Sets. To compare the difficulty
of the WikiReading and WikiReading Recycled
test sets, we converted the outputs from the non-
annotated WikiReading Recycled test set (test-A)
to WikiReading format, and calculated the Mean-
F1. With the Vanilla Dual-Source Transformer, we
obtained 54.0 Mean-F1, 28.4 points less than on
WikiReading. This considerable decrease in score
shows that the WikiReading Recycled test-A set
is more difficult than WikiReading. The reason
behind this is that we removed leakage of articles
between splits, and we also added more infrequent
properties that are harder to answer.

Impact of Human Annotation. The Vanilla
Dual-Source Transformer was evaluated on both
WikiReading Recycled test sets. It obtained Mean-
Multi-Property-F1 of 62.6 on the non annotated
test-A set, while achieving 77.5 on the annotated
test-B. This discrepancy suggests that the linguists
indeed succeeded to remove non-inferable proper-
ties. We anticipate that cleaning the train set in
a similar fashion could improve the stability of the
training and the overall results.

8 Summary

We introduced WikiReading Recycled—the first
Multi-Property Extraction dataset with a human-
annotated test set. We provided strong base-
lines that improved the current state-of-the-art
on WikiReading by a large margin. The best-
performing architecture was successfully adapted
from Automatic Post-Editing systems. We show
that using pretrained language models increases the
performance on the WikiReading Recycled dataset
significantly, despite its large size.

Additionally, we created diagnostic subsets to
qualitatively assess model performance. The re-
sults on a challenging subset of unseen properties
reveal that despite high overall scores, the evaluated
systems fail to provide satisfactory performance.
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Low scores indicate an opportunity to improve, as
these properties were verified by annotators and
are expected to be answerable. We look forward
to seeing models closing this gap and leading to
remarkable progress in Machine Reading Compre-
hension.

The dataset and models, as well as their detailed
configurations required for reproducibility, are pub-
licly available.
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Parameter Search space Vanilla Dual-source RoBERTa

batch size 2{6,7,8,9} 29 29

learning rate 1e-5, 5e-5,.., 1e-2 5e-4 5e-5
lr scheduler inverse sqrt, linear decay linear linear

hidden dropout
 0, 0.1

0 0.1
attention dropout 0 0.1
activation dropout 0 0
weight decay 0 0.1

encoder layers
1, .., 6

2 –
decoder layers 2 6

embedding dim∗ 2{5,6,..,9} 29 –
ffn embedding dim∗ 2{6,7,..,11} 27 –
attention heads∗ 2{2,3,4,5} 23 –
activation function∗ ReLU, GELU ReLU GELU
learned positional emb∗ true, false false –
share all emb true, false false –

Table 8: Search space considered and hyperparameters determined as optimal when the validation set of WRR is
considered. The ∗ symbol denotes tied hyperparameters set to the same values for both encoder and decoder where
applicable. The use of pretrained RoBERTa model resulted in the necessity to stick with several architectural
choices signalized by – character.

A Hyperparameter Search

Table 8 summarizes search space considered and
hyperparameters determined as optimal when the
validation set of WRR is considered.

Hyperparameters for WRR were optimized us-
ing the Tree-structured Parzen Estimator with ad-
ditional heuristics and Gaussian priors resulting
from the default settings proposed for this sampler
in the Optuna framework. An evaluation was per-
formed every 8,000 steps, and the validation-based
early stopping was applied when no progress was
achieved in three consecutive validations. Interme-
diate results of each trial (results from every valida-
tion) were monitored and used to stop unpromising
training earlier.

The trial was pruned in the case its best inter-
mediate value was in the bottom 90 percentiles
among trials at the same step (only the top 10% of
trials were allowed to continue the training). This
process was disabled until five trials finished.

The total number of 250 trials was performed for
each architecture.

B Basic seq2seq Replication Details

Since the basic seq2seq model description missed
some essential details, they had to be assumed be-
fore model training. For example, we supposed

that the model consisted of unidirectional LSTMs.
It was trained with mean (per word) cross-entropy
loss until no progress was observed for 10 consec-
utive validations occurring every 10,000 updates.
Input and output sequences were tokenized and
lowercased. Besides, and truecasing was applied to
the output. We use syntok2 tokenizer and a simple
RNN-based truecaser proposed by Susanto et al.
(2016). During inference, we used a beam size of 8.
The rest of the parameters followed the description
provided by the authors.

2https://github.com/fnl/syntok

https://github.com/fnl/syntok

