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Abstract

To communicate with new partners in new con-
texts, humans rapidly form new linguistic con-
ventions. Recent neural language models are
able to comprehend and produce the existing
conventions present in their training data, but
are not able to flexibly and interactively adapt
those conventions on the fly as humans do.
We introduce an interactive repeated reference
task as a benchmark for models of adaptation
in communication and propose a regularized
continual learning framework that allows an
artificial agent initialized with a generic lan-
guage model to more accurately and efficiently
communicate with a partner over time. We
evaluate this framework through simulations
on COCO and in real-time reference game ex-
periments with human partners.

1 Introduction

Communication depends on shared conventions
about the meanings of words (Lewis, 1969), but
the real-world demands of language use often re-
quire agents to go beyond fixed conventional mean-
ings (Grice, 1975; Davidson, 1986). Recent work
on pragmatic and context-aware models has ap-
proached this problem by equipping speaker and
listener agents with the ability to explicitly rea-
son about one another. Pragmatic reasoning al-
lows listeners to infer richer intended meanings
by considering counterfactual alternatives, and al-
lows speakers to be appropriately informative, not
merely truthful (Goodman and Frank, 2016; An-
dreas and Klein, 2016; Fried et al., 2018; Monroe
et al., 2017; Vedantam et al., 2017).

These models have largely focused on one-shot
settings, where the context is the immediate visual
environment. In common interactive settings, how-
ever, the relevant context for pragmatic competence
also includes the history of previous interactions
with the same communication partner. Human in-

a cat lying in the 
sunlight on a bed

two cats are 
playing on a log

trial 1 trial 2

...

initialization

...

Figure 1: We introduce a regularized continual learn-
ing approach allowing agents initialized with a pre-
trained language model Θ to iteratively infer the lan-
guage model θi used by a partner, over repeated inter-
actions {t1, t2 . . . } in an online reference game.

terlocutors are able to establish ad hoc conventions
based on this history (Clark and Wilkes-Gibbs,
1986; Clark, 1996), allowing for increasingly accu-
rate and efficient communication. Speakers can re-
main understandable while expending significantly
fewer words (Krauss and Weinheimer, 1964; Orita
et al., 2015; Staliūnaitė et al., 2018; Hawkins et al.,
2020a; Stewart et al., 2020).

For example, consider a nurse visiting a bed-
ridden patient at their home. The first time the
patient asks the nurse to retrieve a particular medi-
cation, they must painstakingly identify a specific
bottle, e.g. “the medicine for my back pain in a
small blue medicine bottle labeled Flexeril in my
bathroom.” But after a week of care, they may
just ask for the “back meds” and expect the nurse
to know which bottle they mean. Such flexibility
poses a challenge for current pragmatic models.
For an artificial agent to establish new conventions,
as humans do, it must go beyond pragmatic reason-
ing at the single-utterance timescale to learn about



409

its partners over longer timescales.
Here, we propose that the problem of ad hoc con-

vention formation can be usefully re-formulated as
an inference problem amenable to online domain
adaptation. Our approach is motivated by a grow-
ing body of evidence in cognitive science that hu-
mans quickly re-calibrate their expectations about
how language is used by different partners (Grod-
ner and Sedivy, 2011; Yildirim et al., 2016). This
empirical work highlights three key challenges fac-
ing a scalable adaptation approach. First, because
the target data comes from intentional agents, prag-
matic reasoning must be deployed throughout adap-
tation to strengthen inferences (Frank et al., 2009).
Second, because the data is sparse, strong adapta-
tion risks catastrophic forgetting; yet, human speak-
ers are able to revert to their background expecta-
tions for the next interlocutor (Wilkes-Gibbs and
Clark, 1992; Metzing and Brennan, 2003). Third,
the ability to ground the meanings of later, shorter
utterances (e.g. “back meds”) in the use of earlier,
longer utterances requires a compositional repre-
sentation; otherwise the connection between the
utterances is not clear (Hawkins et al., 2020a).

Our primary contribution is an online contin-
ual learning framework for transforming pragmatic
agents into adaptive agents that can be deployed
in real-time interactions. This framework is shown
schematically in Fig. 1: after each trial, we take a
small number of gradient steps to update beliefs
about the language model used by the current part-
ner. To evaluate our framework, we first introduce
a benchmark interactive repeated reference task
(Fig. 2) using contexts of natural images. In Sec. 3,
we introduce the three core components of our algo-
rithm: (i) a contrastive loss objective incorporating
explicit pragmatic reasoning, (ii) a KL regulariza-
tion objective to prevent overfitting or catastrophic
forgetting, and (iii) a data augmentation step for
compositionally assigning credit to sub-utterances.
In Sec. 4, we report experiments demonstrating
that this algorithm enables more effective commu-
nication with naive human partners over repeated
interactions. Finally, in Sec. 5 we report a series
of ablation studies showing that each component
plays a necessary role, and close with a discussion
of important areas for future research in Sec. 6

2 Related work

Personalizing language models. Adapting or
personalizing language models is a classic prob-

lem of practical interest for NLP, where shifts in
the data distribution are often found across test con-
texts (Kneser and Steinbiss, 1993; Riccardi and
Gorin, 2000; Bellegarda, 2004; Ben-David et al.,
2010). Our approach draws upon the idea of dy-
namically fine-tuning RNNs (Mikolov et al., 2010;
Krause et al., 2017), which has successfully ex-
plained key patterns of human behavior in self-
paced reading tasks (Van Schijndel and Linzen,
2018). We also draw on the regularization objec-
tives proposed in this literatures (Li and Bilmes,
2007; Liu et al., 2016). However, the interactive
communicative setting we consider poses several
distinct challenges from traditional speech recogni-
tion (Miao and Metze, 2015) or text classification
settings (Blitzer et al., 2007; Glorot et al., 2011) for
which adaptation is typically considered. Partner-
specific observations of language use are sparser,
must be incorporated online, and are generated by
intentional agents.

Incorporating discourse history. Previous
work has incorporated discourse history in refer-
ence games using explicit co-reference detection
(Roy et al., 2019) or contribution tracking (DeVault
and Stone, 2009) techniques. An alternative
approach is to include embeddings of the history
as conditional input to the model at test time
(Haber et al., 2019). Similar approaches have been
proposed for sequential visual question answering
(Ohsugi et al., 2019; Choi et al., 2018). Rather than
pre-training a fixed, monolithic language model
and incorporating shared history on top of this
model at test time, we suggest that the underlying
language model itself ought to be continually
adapted over the course of an interaction.

Bayesian models of adaptation. Models of
adaptation in cognitive science are typically for-
mulated in terms of (hierarchical) Bayesian belief-
updating based on evidence of language use (Klein-
schmidt and Jaeger, 2015; Roettger and Franke,
2019; Delaney-Busch et al., 2019; Hawkins et al.,
2017; Schuster and Degen, 2020). In these mod-
els, each new observation is taken as statistical
evidence about the partner’s language model, al-
lowing pairs to coordinate on shared expectations
and ground new conventions in their partner’s pre-
vious behavior (see Sec. 3.2). While these models
capture key theoretical properties of human adap-
tation, they do not scale well to natural-language
applications, where neural networks are dominant.
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Figure 2: In a repeated reference game, a speaker agent
must repeatedly communicate the identity of the same
objects in context to a listener agent.

3 Approach

We begin by recasting convention formation as an
online domain adaptation problem. As in previ-
ous computational approaches to pragmatics (e.g.
Goodman and Frank, 2016; Andreas and Klein,
2016), we formulate this problem as an inference
about another agent. The key theoretical idea is to
expand the scope of pragmatic inference from the
single-utterance timescale to evidence accumulated
over longer timescales of an interaction. In addition
to inferring a partner’s intended meaning (or inter-
pretation) for each individual utterance, an adaptive
agent pools across previous utterances to infer the
distinct but stable way their partner uses language.
Under this inference framework, an agent must
both (1) begin with background expectations about
language shared across many partners, and (2) have
a mechanism to rapidly learn the specific language
model used by the current partner. Our work as-
sumes a conventional neural language model as the
starting point and focuses on the partner-specific
inference problem. In this section, we describe
our repeated reference game benchmark task (3.1),
review the underlying problem as it has been pre-
viously formulated in a Bayesian framework (3.2),
and finally describe our algorithm for adapting neu-
ral language models (3.3).

3.1 Repeated reference game task

As a benchmark for studying domain adaptation
in communication, we use the repeated reference
game task (Fig. 2), which has been widely used in
cognitive science to study partner-specific adapta-
tion in communication (Krauss and Weinheimer,
1964; Clark and Wilkes-Gibbs, 1986; Wilkes-Gibbs
and Clark, 1992). In this task, a speaker agent and
a listener agent are shown a context of images, C
(e.g. four images of cats). On each trial, one of

these images is privately designated as the target
object, o∗, for the speaker (e.g. the image with
the thick border shown on the left). The speaker
agent thus takes the pair (o∗, C) as input and re-
turns an utterance u (e.g. “black cat with a fluffy
cat”) that will allow the listener to select the target
from C. The listener agent takes (u, C) as input
and returns a softmax probability for each image,
which it uses to make a selection. Both agents then
receive feedback about the listener’s selection and
the identity of the target. Critically, the sequence
of trials is constructed so that each image appears
as the target several times. For example, our evalu-
ations loop through each target six times, allowing
us to observe how communication about each im-
age changes as a function of dialogue history (see
Fig. S1 in Supplementary Materials for examples).

3.2 The inference problem
We begin by assuming that agents represent the
semantics of their language as a function relating
natural language utterances u to actual states of the
world o (here, images). We further assume that
this function belongs to a family parameterized
by θ, and denote the parameter used by a partic-
ular agent i with θi (see Fig. 1). If an artificial
agent knows the true value of θi – their current
partner’s semantics1 – they are in a better position
to understand them, and to be understood in turn.
However, because θi is not directly observable and
θ varies across partners and contexts, it must be
inferred (Bergen et al., 2016). Furthermore, it is in
the agent’s best interest to use its updated beliefs
about its partner’s θ to guide its own production
and interpretation. An important consequence of
this formulation is that conventionalization, the
process by which parties converge on an efficient
way to refer to something, emerges naturally as a
consequence of mutual adaptation, the process by
which each party independently tries to infer their
interlocutor’s language model (Smith et al., 2013;
Hawkins et al., 2020b).

This is the central computational problem of
adaptation, which we formalize as follows. Fol-
lowing Bayes Rule, the adaptive agent’s beliefs
about θi, conditioning on observations Di from the
shared history of interactions in that context, are:

P (θi|Di,Θ) ∝ P (Di|θi)P (θi|Θ) (1)
1Traditionally, this semantic function is truth-conditional,

mapping utterance-state pairs to Boolean values, but recent
approaches have shifted to more graded, real-valued functions
such as those implemented by neural networks.
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This formulation decomposes the inference into
two terms, a prior term P (θi|Θ) and a likelihood
term P (Di|θi).2 The prior captures the idea that
different partners share some general features of the
semantics, represented by Θ, since they speak the
same language; in the absence of partner-specific
information, the agent ought to be regularized to-
ward this background knowledge.

The likelihood term, on the other hand, accounts
for direct evidence of language use. It represents
an explicit forward model of an agent: different
latent values of θ generate different observable ac-
tions. In other words, the standard single-utterance
pragmatic inference problem is nested within the
longer-timescale inference about θ. While explicit
reasoning about the other agent is typically consid-
ered at the time of action selection (i.e. when the
speaker is choosing an utterance, or when the lis-
tener is choosing a referent; Goodman and Frank,
2016; Andreas and Klein, 2016), this likelihood
term importantly incorporates such reasoning at
the time of adaptation (i.e. when updating beliefs
about θ based on previous actions; Frank et al.,
2009; Smith et al., 2013).

3.3 Continual adaptation for neural models

If we let θ be the weights of an image-captioning
network, then the background knowledge shared
across partners, Θ, corresponds to a pre-trained
initialization, and conditioning on partner-specific
data under a Bayesian prior corresponds to reg-
ularized gradient descent on θ. We exploit this
connection to derive an online continual learning
scheme that addresses the challenges of adapting
to a human partner in a repeated reference game
task.

Architecture and algorithm overview. Con-
cretely, we consider an architecture that combines a
convolutional visual encoder (ResNet-152) with an
LSTM decoder (Vinyals et al., 2015). The LSTM
takes a 300-dimensional embedding as input for
each word in an utterance and its output is linearly
projected back to a softmax distribution over the
vocabulary size. To pass the visual feature vector
computed by the encoder into the decoder, the final
layer of ResNet was replaced by a fully-connected
adapter layer. This layer was jointly pre-trained
with the decoder on the COCO training corpus (Lin
et al., 2014) and frozen. The COCO corpus con-

2For the rest of this paper, we only consider the case of
adapting to one partner, so we will drop the partner index i.

Algorithm 1 Update step for adaptive model

1: Input: θt: weights at time t
2: Output: θt+1: updated weights
3: Data: (ut, ot): observed utterance and object
4: for step do
5: sample augmented batch u ∼ P(ut)
6: let fθt = logPθt(u|ot) + logPθt(ot|u) −

reg(o1:t−1, u1:t−1)
7: update θt ← θt + β∇fθt
8: end for

tains images of common objects, each annotated
with multiple human captions. The CNN-LSTM
architecture allows an agent to select utterances,
by using beam search over captions given a target
image as input, and also to select objects from the
context, by evaluating the likelihood of the caption
for each image in context and taking the most likely
one.

Critically, we assume the agent will select ac-
tions on each trial using the value of θ it believes
its partner to be using, so updating its own model is
equivalent to updating expectations about its part-
ner’s model. Using the pre-trained model as our
initialization, we can fine-tune the decoder weights
(i.e. word embeddings, LSTM, and linear output
layer) within a particular communicative interac-
tion. Our algorithm is specified in Algorithm 1.
Upon observing the utterance-object pair produced
on each trial of the repeated reference game (Line
3), we take a small number of gradient steps updat-
ing the model weights to reflect the usage observed
so far (Lines 4-7). Our adaptation objective func-
tion (Line 6) is built from combining a standard
cross-entropy term with a KL-based regularization
term to prevent catastrophic forgetting and a con-
trastive term to incorporate pragmatic reasoning
about the visual context. In the following sections,
we explain these terms and also introduce a final
component of our approach: compositional data
augmentation.
Utterance likelihood. For our benchmark re-
peated reference game, the data obtained on trial
t is a paired observation of an utterance u and an
intended object of reference o. The simplest learn-
ing objective for θ is the standard cross-entropy
loss: the likelihood of this utterance being pro-
duced to convey the intended target in isolation:
Pθ(u|o). This likelihood can be computed directly
from the neural captioning model, where the prob-
ability of each word in u = {w0, . . . , w`} is given
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by the softmax decoder output conditioned on the
sentence so far, Pθt(wi|o, w−i), so:

Pθt(u|o) ∝
∏
i<`

Pθt(wi|o, w−i) (2)

Contrastive likelihood. The same object-
utterance pairs can be viewed as being generated
by a listener agent selecting o relative to the other
distractors in the immediate context C of other
objects. This reasoning requires inverting the cap-
tioning model to evaluate how well the utterance u
describes each object in C, and then normalizing:

Pθt(o|u, C, θt) ∝ Pθt(u|o)P (o) (3)

This inversion is based on models of one-shot prag-
matic inference in reference games (Goodman and
Frank, 2016; Andreas and Klein, 2016; Vedantam
et al., 2017; Cohn-Gordon et al., 2018). While op-
timizing the utterance likelihood serves to make
the observed utterance more likely for the target
in isolation, optimizing the contrastive likelihood
allows the agent to make a stronger inference that
it does not apply to the distractors.
KL Regularization. Fine-tuning repeatedly on a
small number of data points presents a clear risk
of catastrophic forgetting (Robins, 1995), losing
our ability to produce or understand utterances for
other images. While limiting the number of gradi-
ent steps keeps the adapted model somewhat close
to the prior, we will show that this is not sufficient
(see Sec. 5.1). Because small differences in weights
can lead to large differences in behavior for neu-
ral models, we also consider a regularization that
tethers the behavior of the adapted model close
to the behavior at initialization. Specifically, we
consider a KL regularization term that explicitly
minimizes the divergence between the captioning
model’s output probabilities before and after fine-
tuning for unseen images (Yu et al., 2013; Galashov
et al., 2018). It is not tractable to take the KL diver-
gence over the (nearly infinite) space of all possible
natural-language utterances. Hence, we approxi-
mate the divergence incrementally by expanding
from the maximum a posteriori (MAP) word de-
noted w∗ at each step according to the initial model
PΘ (see Appendix A):∑
i<`

DKL

[
PΘ(wi|o, w∗

−i) ‖ Pθt(wi|o, w∗
−i)
]

(4)

where ` is the length of the MAP caption. This loss
is then averaged across random images sampled
from the full domain O, not just those in context.

Compositional data augmentation. Agents
should be able to infer previous successes on a
longer utterance (e.g. “two men are sitting on a
bench”), that the component parts of this utterance
(e.g. “two men”, “a bench”) are also likely to con-
vey the intended meaning. In the absence of a
(weakly) compositional representation, a speaker
has no way of doing credit assignment: observ-
ing that a listener successfully chose the target
upon hearing a long utterance only provides fur-
ther evidence for the full utterance. Fine-tuning an
LSTM architecture will increase the likelihood of
sub-strings to some extent after a successful selec-
tion, but this is insufficient for two reasons. First,
not all sub-strings are syntactically well-formed
referring expressions (e.g. “two men are”), and the
LSTM lacks a syntactic representation to represent
such coherence. Second, the likelihood of the full
utterance will always be increased by more than
any sub-utterance.

To address these problems, we explored a
data augmentation step that introduces a stronger
compositionality bias via referential entailments
(Young et al., 2014). After each trial, we aug-
mented the speaker’s utterance u with a small de-
notation graph D(u) containing the set of all noun
phrases found in the syntactic dependency parse of
u, and optimize our objective function on batches
of these entailments. By independently updating
expectations about well-formed entailments along-
side the longer utterances that were actually pro-
duced, we hypothesized that our model could more
naturally ground shorter, conventionalized labels
in the shared history of successful understanding.
Local rehearsal. A second form of augmenta-
tion we explore is local rehearsal: at each step
we include data from the history of interaction
D = {(u, o)}1:t up to the current time t, to pre-
vent overfitting to the most recent observation. In
practice we subsample batches from the interaction
history in a separate loss term with its own weight-
ing coefficient, ensuring the new data point and
a batch of its subphrase augmentations are used
in every gradient step. We initialize D with the
utterance the model generates for each object.

4 Interactive human evaluations

In this section, we evaluate our model’s perfor-
mance in real-time interactions with human speak-
ers. Our artificial agent was paired with human
partners to play a repeated reference game using
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Figure 3: Communication becomes more efficient and accurate as our model adapts to a human speaker. Example
contexts and utterances are shown. Error bars are bootstrapped 95% CIs.

images from the validation set of the COCO cor-
pus (Lin et al., 2014; Chen et al., 2015) as the
targets of reference. Critically, we constructed con-
texts to create a diagnostic mismatch between the
COCO pre-training regime and the referential test
regime. Specifically, we chose contexts such that
the model’s accuracy — the probability of identi-
fying the target — would be poor at the outset.

To obtain appropriately challenging contexts, we
used our pre-trained model’s own visual encoder
to find sets of highly similar images within the
same category. We first extracted 256-dimensional
feature vectors for each image from the final, fully-
connected layer of the encoder. We then used these
features to partition the images into 100 groups
using a k-means algorithm, sampled one image
from each cluster, and took its 3 nearest neighbors
in feature space, yielding 100 unique contexts of
4 images each. This adversarial process explicitly
identified contexts that our pre-trained captioning
model would be poorly equipped to distinguish.

Human baselines. We first investigated the base-
line performance of human speakers and listen-
ers. We recruited 108 participants (54 pairs) from
Amazon Mechanical Turk and automatically paired
them into an interactive environment with a chat-
box. For each pair, we sampled a context and con-
structed a sequence of 24 trials structured into 6 rep-
etition blocks, where each of the 4 images appeared
as the target once per block. We prevented the same
target appearing twice in a row and scrambled the
order of the images on each player’s screen on each
trial. We found that pairs of humans were highly
accurate, with performance consistently near ceil-

ing (Fig. 3, black lines). At the same time, their
utterances grew increasingly efficient: their utter-
ances reduced in length across repeated interaction
(t = 25.8, p < 0.001).3

4.1 Model performance

Next, we evaluated the performance of our adaptive
model in the listener role (for a similar analysis of
our model in the speaker role, see Appendix D).
We recruited 57 additional participants from Ama-
zon Mechanical Turk who were told they would
be paired with an artificial agent learning how they
talk. This task was identical to the one performed
by pairs of humans, except we allowed only a sin-
gle message to be sent through the chatbox on each
trial. This message was sent to a server where the
model weights from the previous trial were loaded
to the GPU, used to generate a response, and up-
dated for the next round. The approximate latency
for the model to respond was 5-10s depending on
how many games were running simultaneously.

For our adaptation objective function, we used a
linear combination of the utterance and contrastive
losses and the KL-regularization (see Appendix
B for hyper-parameter settings). We also used
local rehearsal and compositional data augmenta-
tion. While the pre-trained model initially performs
much less accurately than humans, as expected,
our adaptive listener shows rapid improvement in
accuracy over the course of interaction (Fig. 3).

3Note that our contexts were selected to be challenging un-
der the impoverished language prior of our pre-trained listener
model, but were not expected to require any adaptation for
human listeners to achieve high accuracy; see Hawkins et al.
(2020a) for a more challenging stimulus domain used to elicit
strong human adaptation.
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Figure 4: Ablation studies of the listener model. (A-B) KL regularization prevents catastrophic forgetting over the
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In a mixed-effects logistic regression predicting
trial-level accuracy, including pair- and image-level
random effects, we found a significant increase in
the probability of a correct response with succes-
sive repetitions, z = 12.6, p < 0.001, from 37%
correct (slightly above chance levels of 25%) to
93% at the end. To test whether this success can
be attributed to the initial quality of the listener
model, or to humans adapting to a relatively un-
changing model, we examined the performance
of a non-adapting baseline (i.e. a model using
the pre-trained model weights on every trial). We
evaluated this baseline offline, using the utterances
we recorded from the online games. This base-
line showed no improvement, staying only slightly
above chance accuracy over the course of the task.

5 Analysis

We now proceed to a series of ablation analyses
that analyze the role played by each component
of our approach. These analyses involve offline
simulations conducted on the data we collected in
the previous section.

5.1 KL regularization prevents catastrophic
forgetting

We begin by testing the effectiveness of our KL reg-
ularization term (Eq. 4) for preventing catastrophic
forgetting. We reasoned that changing expectations
in the adaptation context should not interfere with
expectations in other, unseen contexts. To directly
analyze such interference, we adapted an ablated
variant of our listener model over the course of a
game with one context of images, and then mea-
sured its average accuracy identifying the target
given the initial utterances produced by different
speakers on different (unseen) contexts. We then

compared this test accuracy with the baseline accu-
racy achieved by an unadapted listener model.

We cross-validated these estimates over many
adaptation contexts. Specifically, because the base-
line was already close to chance on ‘challenging’
contexts (Fig. 3), we used an additional set of
52 human-human interactions we collected in eas-
ier contexts (where images belonged to different
COCO categories) to better expose degradations
in performance. While accuracy significantly in-
creased compared to baseline in the adapting con-
text for both variants, we found a 10% drop in accu-
racy on unseen contexts for the ablated variant with
no KL term, compared to only a 2% drop in the
model using the full loss (t(51) = 12.2, p < 0.001
in a paired t test; see Fig. 4A).

Next, to more thoroughly probe the progression
of interference, we conducted a second analysis
examining the likelihood assigned to different cap-
tions by the listener model over the course of adap-
tation. We tracked both the initial captions pro-
duced by the pre-trained initialization in the adapt-
ing context and in unseen contexts. To obtain un-
seen contexts, we sampled a set of images from
COCO that were not used in our experiment, and
generated a caption for each. We also generated
initial captions for the target objects in the adapting
context. We recorded the likelihood of all of these
sampled captions under the model at the beginning
and at each step of adaptation until the final round.
Finally, we greedily generated an utterance for each
target at the end and retrospectively evaluated its
likelihood at earlier points during adaptation.

These three likelihood curves are compared for
ablated models in Fig. 4B. By definition, the fi-
nal caption in the adapting context becomes more
likely in all cases (brown line). Without the lo-



415

cal rehearsal mechanism, the initial caption the
model expected in the adapting context becomes
less likely as it is replaced by the human partner’s
preferred caption (red line). Only when the KL
term is removed, however, do we find interference
with the model’s expectations for unseen contexts
(yellow line). Thus, we find that KL regulariza-
tion plays a critical role in preventing catastrophic
forgetting.

5.2 Pragmatics and local rehearsal improve
listener performance

Next, we consider the contributions of other key
components for success. Specifically, we con-
structed ablated variants of our model with no
pragmatics (i.e. no contrastive loss term during
adaption), and with no local rehearsal (i.e. no abil-
ity to keep training on batches from the history
of the interaction). We simulated adaptation for
these ablated variants on the 57 games where hu-
man speakers produced utterances for our listener
model, and examined the probability assigned to
the target after hearing each utterance (Fig. 4C).
We found in a mixed-effects regression that each of
these components independently contributes to suc-
cess, as the ablated variants perform significantly
worse than the full model (z = 2.1, p = 0.03 and
z = 3.6, p < 0.001 for variants with no local re-
hearsal and no pragmatics, respectively; see Ap-
pendix C for regression details). Compared to an
entirely non-adapting baseline, however, even these
ablated variants improved over time.

6 Discussion

Relationship to human adaptation The theoret-
ical ties between our approach and proposed cog-
nitive models of human adaptation raises several
questions. First, it is possible that improved perfor-
mance could be driven by human speakers adapting
in response to our listener agent’s successes and
errors rather than the other way around. While
some degree of human adaptation is inevitable –
for example, humans only seemed to shorten their
utterances once our models’ accuracy began to rise
– human adaptation alone is insufficient to explain
gains in accuracy. If these gains were due to hu-
man speakers gradually discovering utterances that
a pre-trained (non-adapting) model could under-
stand, we would expect some gains in the accu-
racy of our baseline non-adapting model over time.
Furthermore, we found that the handful of human

speakers that dramatically changed their descrip-
tions across rounds actually performed worse than
those who adhered to consistent descriptions.

With this said, the extent of adaptation in human-
computer dialogue is known to be affected by hu-
man participants’ expectations about the artificial
agent (Branigan et al., 2011; Koulouri et al., 2016),
potentially including expectations about whether it
will be adaptive or not. Bi-directional adaptation
effects may be more pronounced in other dialogue
settings where the human and model both speak,
giving the human an opportunity to re-use utter-
ances produced by the model. It will be important
for future work to evaluate non-adaptive baselines
online rather than offline, as we did, in order to
observe exactly how humans respond to, or com-
pensate for, non-adaptive agents.

Second, it is natural to ask how our model would
perform in the speaker role with a human listener,
using their (sparse) response success as feedback
rather than their utterances. In ongoing work, we
have found that the same approach allows a (prag-
matic) model to converge to more efficient conven-
tions in the speaker role (see Appendix D in sup-
plemental), such that the same language model can
flexibly switch between speaker and listener roles
with the same human partner. Still, it is unlikely
that this speaker model reduces in the same way
as human speakers do (see Supplemental Fig. S1
for examples). Differences may reflect additional
accessibility, grammaticality, or compositionality
biases in humans; direct comparisons remain an
open question for cognitive science.

Third, scaling the principles of computational-
level Bayesian cognitive models to neural networks
capable of adapting to natural language in prac-
tice required several algorithmic-level innovations
which are not yet plausible proposals for human
cognition (Marr, 2010). While our local rehearsal
mechanism may be consistent with replay mech-
anisms in human memory, our KL regularization
mechanism implausibly requires earlier parameter
values of the model to be held in memory. Our data
augmentation mechanism was introduced specifi-
cally to compensate for the inability of the LSTM
architecture to propagate the use of a referring ex-
pression to its entailments, but we expect that hu-
man language processing mechanisms achieve this
effect by different means. We expect further work
to refine these algorithmic components as neural
language models continue to advance.
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Relationship to language learning Our work is
also related to broader efforts to ground language
learning and emergent communication in usage,
where artificial agents are trained to use language
from scratch by playing interactive reference games
(Wang et al., 2016; Lazaridou et al., 2016; Wang
et al., 2017; Chevalier-Boisvert et al., 2019). Rather
than starting our agents from scratch, we have em-
phasized the need for continual, partner-specific
learning even among mature language users with
existing priors. This raises another question: how
are these different timescales of learning related
to one another? One possibility is that the need to
quickly adapt one’s language to new partners and
contexts over short timescales may serve as a func-
tional pressure shaping languages more broadly.

Recent theories in cognitive science have for-
malized this hypothesis in a hierarchical Bayesian
model (Hawkins et al., 2020b). In this model, the
prior Θ that an agent brings into subsequent interac-
tions is updated to reflect the overall distribution of
partner-specific models θi, thus balancing general
and idiosyncratic language knowledge in a princi-
pled way. For neural language models, however,
there is an apparent tension between the strong
KL regularization required to prevent unwanted
interference with background knowledge during
partner-specific adaptation, leading to catastrophic
forgetting, and the flexibility to generalize or trans-
fer conventions to new communicative settings as
required for language learning. We do not want to
regularize so strongly that agents memorize con-
ventions only applying to a single image that is
completely reset after each interaction; instead, we
wish to obtain a gradient of generalization across
both referents and partners as a function of similar-
ity (Markman and Makin, 1998).

One promising solution to this problem, moti-
vated by connections between hierarchical Bayes
and algorithms like MAML (Finn et al., 2017;
Grant et al., 2018; Nagabandi et al., 2019), is to
perform a meta-learning ‘outer loop’ updating the
initialization Θ, taking into account the regularized,
partner-specific ‘inner loop’ of adaptation for each
θi. In principle, a meta-learning approach for neu-
ral language learning would distill abstract, shared
aspects of language into a unified Θ, while still al-
lowing for rapid ad hoc conventionalization. Still,
cognitively plausible and scalable meta-learning
algorithms remain an open area of research.

Limitations and future work While our evalua-
tions were limited to a canonical CNN-RNN image
captioning architecture, a key open question for fu-
ture work is how our continual adaptation approach
ought to be implemented for more complex, state-
of-the-art architectures. One possibility, following
the approach recently proposed by Jaech and Os-
tendorf (2018a), is to allow context (e.g. partner
identity) to control a low-rank transformation of
the weight matrix such that online fine-tuning can
take place in a more compact context embedding
space (Jaech and Ostendorf, 2018b).

Furthermore, while we adapted the entire pa-
rameterized RNN module end-to-end, future work
should explore the effect of limiting adaption to
subcomponents (e.g. only word embeddings) or
expanding adaptation to additional model compo-
nents such as attention weights or high-level visual
representations. Beyond possible consequences for
engineering better adaptive models, each of these
variants corresponds to a distinct cognitive hypoth-
esis about exactly which representations are being
adapted on the fly in human communication.

A final area for future work is generalizing the
forms of social feedback that can be used as data
Di for updating representations beyond the sparse
choices in a reference game. In particular, forms
of repair through question-asking or other non-
referential dialogue acts may license stronger in-
ferences about a partner’s language model and al-
low misunderstandings to be resolved more quickly
in challenging contexts (Drew, 1997; Dingemanse
et al., 2015; Li et al., 2016). These forms of feed-
back may be particularly important for extending
our approach beyond the benchmark task of re-
peated reference games to the more complex do-
mains of real-world conversational tasks.

Conclusion Human language use is remarkably
flexible, continuously adapting to the needs of the
current situation. In this paper, we introduced a
challenging repeated reference game benchmark
for artificial agents, which requires such adaptabil-
ity to succeed. We proposed a continual learning
approach allowing agents to form context-specific
conventions by fine-tuning general-purpose repre-
sentations. Even when pre-trained models initially
perform inaccurately or inefficiently, our approach
allows such models to quickly adapt to their part-
ner’s language in the given context and thus be-
come more accurate and more efficient using com-
mon ground.
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