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Abstract 
This paper describes RACAI’s automatic term extraction system, which participated in the TermEval 2020 shared task on English 
monolingual term extraction. We discuss the system architecture, some of the challenges that we faced as well as present our results in 
the English competition. 
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1. Introduction 

Automatic term extraction, also known as ATE, is a well-
known task within the domain of natural language 
processing. Given a text (this can be either a fragment or 
an entire corpus), an automatic term extractor system will 
produce a list of terms (single or multiword expressions) 
characteristic for the domain of text.  

Felber, in the “Terminology Manual” (Felber, 1984), 
defines a term as “any conventional symbol representing a 
concept defined in a subject field”. Nevertheless, 
considering current practice in natural language 
processing tasks, it is not always possible to give a general 
definition applicable for the workings of a term extractor. 
One question is whether or not to include named entities 
as part of the identified terms. This problem is also raised 
by the organizers of the TermEval 2020 shared task, each 
system being evaluated twice, once including and once 
excluding named entities1. Furthermore, since named 
entity recognizers can be trained on many classes (such as 
diseases or chemicals for example), another potential 
question is what kinds of entities (if any) can be included 
as part of the identified terms. However, an agreement 
must be made that all identified terms must be specific to 
the domain of the analyzed text, regardless of inclusion or 
not of named entities. For example, in the shared task’s 
provided training dataset, the named entity “United States 
Dressage Federation” is included as a term in the 
“equestrian” section.  

The present paper presents our attempt at constructing an 
automatic term extraction system in the context of the 
TermEval 2020 shared task on monolingual term 
extraction (Rigouts Terryn et al., 2020). We start by 
presenting related research, then continue with the 
description of our system and finally present concluding 
remarks. 

2. Related work 

The usefulness of the term identification process is both in 
its own use, such as creation of document indices, and as a 
pre-processing step in other more advanced processes, 
such as machine translation. Furthermore, the output 
produced by an automatic system can be manually 
validated by a human user in order to remove irrelevant 
terms. 

 
1 https://termeval.ugent.be/task-evaluation/ 

Traditional approaches for ATE (Kageura, 1998) make 
use of statistical features such as word frequency or 
“termhood” (degree of relatedness of a proposed term to 
the domain) metrics. Additionally, information such as 
part of speech can be used to further filter candidate 
terms. Term formalization attempts can be identified in 
the literature as early as e.g. 1996, when Frantzi and 
Ananiadou (1996) defined C-value as a basic measure of 
termhood, a principle we have also used in one of our 
algorithms. In this section, we will briefly mention the 
inner workings of some existing term extraction 
algorithms that we used in our term extraction system. For 
a detailed coverage of this rather vast sub-domain of NLP, 
the reader is referred to e.g. Pazienza et al. (2005) or the 
more recent Firoozeh et al. (2019). 

TextRank (Mihalcea and Tarau, 2004) is a term extraction 
algorithm using a graph representation of the text in which 
each word is a node and an edge is created between words 
collocated within a certain window of words. Based on 
the number of links to each node a score is computed 
similar to the PageRank algorithm (Brin and Page, 1998). 
Further filtering is performed based on the part of speech 
of the words. The graph is created based on single words. 
However, as the last step of the algorithm a reconstruction 
of multi-word terms is performed if multiple single word 
terms are collocated in the sentence. 

RAKE, an acronym for Rapid Automatic Keyword 
Extraction (Rose et al., 2010), combines graph measures 
such as the degree (number of connected edges) with 
statistical measures such as word frequency. Furthermore, 
RAKE uses a strategy similar to TextRank for combining 
single words that occur together at least twice into a 
multi-word term. An interesting idea deriving from the 
RAKE paper is the importance of the stop words list used. 
In this context, it is mentioned that FOX (Fox, 1989) stop 
list produces an increase in the F1 score for the RAKE 
algorithm. An improvement over the initial RAKE 
algorithm is described in Gupta et al. (2016). 

Campos et al. (2020) present YAKE, which makes use of 
statistical features. According to their analysis2 it is 
comparable or even better in some cases to previous state-
of-the-art methods. In the HAMLET system (Rigouts 
Terryn et al., 2019) a number of 152 features are 
computed on each candidate term and a binary decision 
tree classifier is trained. Candidates are determined based 
on their part of speech, but the patterns of occurrence are 
determined automatically based on training data. 

 
2 https://github.com/LIAAD/yake 
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3. Dataset and basic processing 

The dataset proposed for the TermEval task is described 
in detail in the task paper (Rigouts Terryn et al., 2020). 
However, several aspects must be mentioned. It is 
comprised of 4 domains: wind energy (‘wind’), corruption 
(‘corp’), horse dressage (‘equi’) and heart failure (‘hf’). 
The first 3 domains were provided with annotations for 
training purposes, while the heart failure domain was used 
for testing. All the domains were made available in 
English, French and Dutch.  

For the purposes of our experiments, we focused on the 
English version of the corpus. However, we tried to keep 
our algorithms independent of the actual language being 
used. Towards this end, we used only resources normally 
available for many languages, such as annotations and 
stop words, and did not create any rules or patterns 
specific to the English language. 

One of the primary processing operations was to annotate 
the corpus with part-of-speech and lemma information. 
For this purpose, we used Stanford CoreNLP (Manning et 
al., 2014). Furthermore, we precomputed statistical 
indicators based on the corpus, such as n-gram frequency, 
document frequency and letters used (in some cases terms 
contained non-English letters). Statistics were computed 
for both the corpus and the provided training annotations. 

Unfortunately, the corpus is not balanced with respect to 
the different domains. Therefore, some statistical 
indicators may be less meaningful. For example, the 
corruption part of the corpus contains 12 annotated texts 
with an additional 12 texts provided without annotations. 
However, the equestrianism part contains 34 annotated 
text files and 55 unannotated documents. Furthermore, the 
evaluation section on heart failure contains 190 files. This 
seems to suggest that indicators like document frequency 
(the number of documents containing a certain 
word/expression) may be more meaningful for certain 
sections and less meaningful for others. 

More statistics regarding the English domains of the 
corpus are presented in Table 1. 

 equi corp wind hf 

Annotated files 34 12 5 190 

Unannotated files 55 12 33 - 

Unique lowercase 

tokens 

6854 7958 21591 6092 

Terms (without NE) 1155 927 1091 2361 

Terms (with NE) 1575 1174 1534 2585 

Table 1: Statistics regarding the English sections of the 
corpus 

One of the characteristics specific only to the wind energy 
section of the corpus is the presence of mathematical 
formulas in some of the files. We could not identify an 
easy way to automatically remove them and did not want 
to manually perform this action. For example, “CP” is 
considered a term and it also appears in some formulas. 
Furthermore, there are lines of text presumably between 
formulas which look similar to a formula, like “CP ,max 
CT CTr” or full lines of text containing embedded 
formulas. Even more, the term “PCO2”, indicated in the 
gold annotations, seems to only appear inside a formula 
(“PCO2 = TCO2 – HCO2 PCO2”). Therefore, in order to 

avoid removal of potentially useful portions of text, the 
files were used as they were provided. 

Given these discrepancies between the different domain 
sub-corpora, it was our assumption, from the beginning, 
that different algorithms will obtain different results on 
each of the domains. Therefore, we started first by 
analyzing the results provided by known algorithms on 
the training parts of the corpus. These results are 
presented in Tables 2, 3, 4 and are compared against the 
provided annotations with named entities included. In 
these tables, the algorithm with the best F1 score in each 
section is marked in bold. The “1W” specification besides 
an algorithm denotes the score for single word terms. 

In accordance with our previous observation, because of 
the imbalances between the different sections of the 
corpus, from Table 2 it can easily be seen that most of the 
algorithms perform better on the “equi” section and worse 
on the other sections. In some cases, there are even 
extreme differences. For example, the YAKE 
implementation gives on multi-word expressions an F1 
score of 22.3 on the “equi” section and only 5.94 on the 
“wind” section. This is improved for single word 
expressions with 12% on the “equi” section and less then 
3% for the other sections. 

 P% R% F1% 

TFIDF 1W 27.80 26.70 27.24 

TFIDF  10.63 19.30 13.71 

RAKE 1W 20.43 69.23 31.55 

RAKE  15.39 65.97 24.95 

YAKE 1W 39.31 31.00 34.66 

YAKE  18.39 28.32 22.30 

TRANK 1W 29.21 42.76 34.71 

TRANK 26.86 25.27 26.04 

Table 2: Precision, Recall, F1 measures for tested 
algorithms on the “equi” section 

 P% R% F1% 

TFIDF 1W 16.02 27.29 20.19 

TFIDF  7.81 18.65 11.01 

RAKE 1W 16.80 75.30 27.47 

RAKE  12.95 65.08 21.60 

YAKE 1W 30.94 8.57 13.42 

YAKE  11.81 9.88 10.76 

TRANK 1W 17.67 39.24 24.37 

TRANK 17.05 18.40 17.70 

Table 3: Precision, Recall, F1 measures for tested 
algorithms on the “corp” section 

 P% R% F1% 

TFIDF 1W 17.30 19.96 18.54 

TFIDF  13.18 11.60 12.34 

RAKE 1W 13.62 58.13 22.07 

RAKE  13.90 63.17 22.79 

YAKE 1W 64.29 3.18 6.06 

YAKE  12.37 3.91 5.94 

TRANK 1W 14.57 34.81 20.54 

TRANK 14.11 13.62 13.86 

Table 4: Precision, Recall, F1 measures for tested 
algorithms on the “wind” section 
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4. System Architecture 

Looking at the above tables, two observations can be 
made: a) no single system performs best on all three 
sections; b) systems tend to balance precision and recall, 
but in extreme cases they prefer either precision (for 
example the YAKE method in “corp” and “wind” 
sections) or recall (for example the RAKE method).  

A first idea that we explored was to implement a voting 
mechanism between the systems. However, the results 
presented only slight improvements. Without a complete 
and in-depth analysis, we concluded that each system was 
good at identifying certain terms (based on their pattern of 
occurrence) but performing badly for other terms. 
Therefore, we decided to extend the basic system and 
implement additional algorithms that would try to 
complement and extend the previous ones, by using new 
methods and finally use the same voting mechanism.  

The first algorithm, PLEARN (from “pattern learn”) is 
trying to identify patterns based on statistics computed on 
the train set annotations and their appearance in context. 
We used the following features: letters accepted in 
annotations (for example there is no term using “,”), stop 
words accepted at start or end of a term (for example there 
is no term starting or ending with “and”), stop words 
accepted inside multi word terms, stop words accepted 
before or after a term (for example “and” usually is not 
contained within a term but rather it separates two distinct 
terms, thus appearing before or after a term), suffixes of 
words other than stop words present in terms (usually we 
tend to find nouns as terms, but we tried not to impose this 
condition, thus we only checked the suffixes of words). 

For the purpose of the algorithm, all information was 
extracted automatically from the training set and no 
manual conditions or word lists were created. One 
immediate problem with the algorithm is that the training 
set did not provide the actual position of the term. 
Therefore, if the same word or multi-word expression was 
used both as term and as a non-term then the feature 
extraction part was not able to identify this case. 
Nevertheless, the algorithm was able to produce the good 
recall that we were expecting, presented in Table 5. 

 P% R% F1% 

Equi 1W 21.28 87.56 34.24 

Equi 7.96 86.22 14.57 

Corp 1W 15.61 91.43 26.66 

Corp 4.85 89.86 9.19 

Wind 1W 13.37 89.93 23.28 

Wind 5.53 88.33 10.41 

Table 5: Precision, Recall, F1 measures for the PLEARN 
algorithm on the training parts of the corpus 

A second algorithm used a clustering approach, thus we’ll 
refer to it as “CLUS” for the purposes of this paper. In this 
case we worked under the assumption that terms 
belonging to a particular domain will tend to cluster 
together because they will be related in meaning. In order 
to model this relation, we represented the words using 
word embeddings and used the cosine distance. For the 
clustering algorithm, we implemented a DBSCAN 
algorithm (Ester et al., 1996).  

The input for the clustering algorithm was composed of 
the terms identified by the PLEARN algorithm. From 
these terms we kept only the single word terms. 
Furthermore, we decided to use an approach similar to the 
one used in TextRank to compose at the end multi-word 
terms based on the colocation of single word terms. This 
last operation was done in a post-processing step. 

For the word embedding representation we considered 
necessary to use a model trained on a large enough corpus 
to allow for words to be used in different domains, 
including those of interest for this work. Therefore, we 
decided to use a word embeddings model trained on the 
Open American National Corpus (Ide, 2008). 
Furthermore, due to the relatively short time available for 
the task participation, we decided to use a pre-trained 
model3. Results are given in Table 6. 

This algorithm already has a much better F1 score for 
single word terms then all the other algorithms tested. In 
the case of the “wind” section the F1 score is almost 
double (45.02%) then the best previous result (22.79%). 

 P% R% F1% 

Equi 1W 42.37 48.98 45.44 

Equi 32.58 33.97 33.26 

Corp 1W 44.14 28.49 34.62 

Corp 36.46 12.27 18.36 

Wind 1W 40.71 50.35 45.02 

Wind 36.45 21.58 27.11 

Table 6: Precision, Recall, F1 measures for the CLUS 
algorithm on the training parts of the corpus 

Since the CLUS algorithm works on single word terms 
and only in the post-processing step combines them to 
create multi-word terms, we decided to work on a third 
algorithm that would work directly with multi-word 
expression candidates.  

The third (and last) algorithm that we developed is called 
WEMBF (word embeddings filtered) and, as its name 
implies, uses the word embeddings vector representation 
of words to measure the termhood of each word. The 
algorithm executes the following steps: 

1) Tokenizes and POS tags all text files of the specified 
domain of the corpus, using the NLTK Python library 
(Bird et al., 2009); 

2) Extracts all NPs from the domain sub-corpus, using 
simple prenominal-nominal patterns, including all 
prepositional phrases headed by the preposition ‘of’, 
which are almost always attached to the previous NP. 
Furthermore, it deletes any determiners that start NPs and 
removes URLs, emails, numbers and other entities 
considered to be irrelevant for the term extraction task; 

3) For each content word (i.e. nouns, adjectives, adverbs 
and verbs) of each NP, computes a cosine distance 
between two word embeddings vectors. The first vector is 
obtained from training on a “general”-domain corpus 
containing news, literature, sports, etc., being careful not 
to include texts from the domain of interest. The second 
vector is obtained from training only on the domain of 
interest (e.g. ‘wind’); 

 
3 https://data.world/jaredfern/oanc-word-embeddings 
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4) Score each NP by averaging the previously computed 
cosine distance of its member content words. 

Step 4 of the WEMBF algorithm gives us a preliminary 
term list on the assumption that the larger the cosine 
distance of the general and domain word embeddings 
vectors is, the more likely is that the word is a term in the 
domain of interest. However, the obtained list contains too 
many NPs which makes it perform poorly in terms of 
precision. Thus, we decided to remove some term NPs 
from this initial list, using the following filters: 

a) Only keep NPs which appear (are embedded) in other 
NPs from the preliminary term list (Frantzi and 
Ananiadou, 1996). The number of occurrences (in other 
NPs) is kept for each surviving NP to be rescored later; 

b) Remove all single-word terms that appear as head 
nouns in other NPs on the assumption that if they can be 
modified, they are too general to be kept as terms. 

The termhood score of each NP in the final list is 
modified by multiplying the following indicators: the 
original score of the NP, the number of words in the NP, 
the number of NPs in which this NP appeared. 

Thus, if an NP has more words, it appeared in many other 
NPs and its average cosine distance (between the general 
domain and the domain of interest) of its member content 
words is higher, the NP is more likely to be a term.  

Results of the WEMBF term extraction algorithm are 
given in Table 8. 

 P% R% F1% 

Equi 1W 30.48 41.06 34.99 

Equi 32.83 31.49 32.15 

Corp 1W 15.42 52.79 23.86 

Corp 16.50 36.80 22.78 

Wind 1W 7.72 52.65 13.47 

Wind 8.97 38.72 14.56 

Table 8. Precision, Recall, F1 measures for the WEMBF 
algorithm on the training parts of the corpus 

The WEMBF algorithm has a performance similar to the 
PLEARN algorithm for single words, even though with a 
more balanced precision and recall, but better 
performance for multi-word terms. 

The final step in our approach was to construct an 
ensemble module that takes the annotations from different 
algorithms and combines them together via a voting 
scheme. This is presented schematically in Figure 1. 

Figure 1. RACAI’s term extraction system architecture 
that participated in TermEval 2020 

Each algorithm is fed into the voting module, having one 
vote for the final result. An exception is in the case of 
PLEARN and CLUS algorithms which are linked together 
and thus constitute a single vote. 

5. System evaluation 

Once the test set annotations were released, we were able 
to evaluate our system, including all the other algorithms 
on the final data. When comparing this information with 
results based on the different training sections, we must 
keep in mind the peculiarities of each section of the 
corpus, as presented in Table 1 above. Evaluation results 
on the “heart failure” section are presented in Table 9. 

Our CLUS algorithm performed best on the single word 
terms giving an F1 score of 53.48 with balanced precision 
and recall. Furthermore, the PLEARN algorithm produced 
the best recall, which was to be expected since it was 
designed especially for this purpose. However, the final 
algorithm with the combination of all of them did perform 
better on the multi-word terms, this being reflected in the 
final F1 score. 

 P% R% F1% 

TFIDF 1W 23.22 24.27 23.74 

TFIDF 12.57 15.67 13.95 

RAKE 1W 29.79 58.29 39.43 

RAKE 19.48 58.88 29.27 

YAKE 1W 28.93 62.22 39.50 

YAKE 11.11 54.89 18.47 

TRANK 1W 32.72 42.39 36.93 

TRANK 28.93 22.28 25.17 

PLEARN 1W 24.53 90.94 38.64 

PLEARN 6.45 87.12 12.02 

CLUS 1W 49.11 58.72 53.48 

CLUS 41.17 35.82 38.31 

WEMBF 1W 38.32 32.82 35.36 

WEMBF 38.98 20.74 27.07 

FINAL 1W 42.20 67.95 52.06 

FINAL 42.40 40.27 41.31 

Table 9. Precision, Recall, F1 measures of different 
algorithms on the evaluation set (“heart failure”). 

6. Conclusions and future work 

This paper presented our system proposal4 for the 
TermEval 2020 shared task. We started by investigating 
the performance of existing algorithms. Then went on and 
created three new algorithms: PLEARN, CLUS and 
WEMBF as described in section 4. Finally, we 
constructed an ensemble module, based on voting, which 
combined the results of all the algorithms in order to 
produce the final results. Evaluation on the “heart failure” 
dataset is presented in Table 9 above.  

The approach behind the ACTER dataset, of building a 
term annotated corpus in multiple languages is very 
interesting and it was extremely helpful for building our 
automatic term extractor system. It is our hope that this or 

 
4 https://github.com/racai-ai/TermEval2020 
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a similar approach could be used for Romanian language 
as well. In this context, we envisage extending our term 
extractor to support Romanian language and further 
include it in the RELATE platform (Păiș et al., 2019) 
dedicated to processing Romanian language. 

We managed to successfully use pre-trained word 
embeddings on a large corpus for our CLUS algorithm. 
This proves that transfer learning is a possibility that 
should be explored also in the field of term extraction. 
Therefore, amongst our future work we’ll try to use the 
same approach for the Romanian language, by using pre-
trained word embeddings (Păiș and Tufiș, 2018) on the 
Reference Corpus of Contemporary Romanian Language 
(CoRoLa) (Mititelu et al., 2018). 
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