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Abstract

Mining commonsense knowledge from corpora suffers from reporting bias, over-representing
the rare at the expense of the trivial (Gordon and Van Durme, 2013). We study to what extent
pre-trained language models overcome this issue. We find that while their generalization capacity
allows them to better estimate the plausibility of frequent but unspoken of actions, outcomes, and
properties, they also tend to overestimate that of the very rare, amplifying the bias that already
exists in their training corpus.

1 Introduction

Apart from several notable efforts to collect commonsense knowledge from experts (Lenat, 1995) or
through crowdsourcing (Speer and Havasi, 2012; Sap et al., 2019), most work has been on extracting
such knowledge from large text corpora (Mitchell et al., 2018). While the latter approach is scalable
and low cost, it also suffers from reporting bias: due to Grice’s conversational maxim of quantity (Grice
et al., 1975), people rarely state the obvious, thus many trivial facts (“people breathe”) are rarely men-
tioned in text, while uncommon events (“people murder”) are reported disproportionately (Gordon and
Van Durme, 2013; Sorower et al., 2011).

Traditionally, knowledge acquisition from text was extractive. In recent years, the generalization
capacity of neural language models (LMs) and their ability to aggregate knowledge across contexts
have facilitated estimating the plausibility of facts, even when they don’t appear in the corpus explicitly.
Recent pre-trained LMs such as GPT-2 (Radford et al., 2019) and BERT (Devlin et al., 2019), trained on
massive texts, dominate the NLP leaderboards, and are considered a source of commonsense knowledge
(Petroni et al., 2019). Does this mean that pre-trained LMs overcome reporting bias?

In this paper we revisit the experiments conducted by Gordon and Van Durme (2013) (henceforth
G&V), applying them to various pre-trained LMs (based on the nature of the experiment, we test either
masked LMs or standard left-to-right LMs). We find that LMs, compared to extractive methods:1

1. Provide a worse estimate of action frequency, mostly due to overestimating very rare actions.
2. Predict both expected outcomes as well as sensational and unlikely outcomes.
3. Are capable of learning associations between concepts and their properties indirectly, but tend to

over-generalization, which leads to confusing semantically-similar but mutually exclusive values.

2 Actions and Events

G&V demonstrate the discrepancy between corpus occurrences and actual action frequency by showing
that if you believe the corpus, people murder more than they breathe. Breathing is an activity we take
for granted and thus rarely talk about (Grice et al., 1975). That murder is frequent in the corpus is a
reflection of the same issue: we talk more about uncommon or newsworthy events (van Dalen, 2012).

We follow G&V’s qualitative analysis of actions and events performed by or which happen to people
by comparing real-world frequency to corpus-based and LM-based frequency. We estimate real-world

1Our data and code are publicly available at https://github.com/vered1986/reporting_bias_lms.
This work is licensed under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/.

https://github.com/vered1986/reporting_bias_lms
http://creativecommons.org/licenses/by/4.0/
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Figure 1: Frequency of actions performed or occurring to people during their lifetime from very frequent
(daily), through once in a lifetime events, to very rare (don’t happen to most people). Note that actual
frequencies of rare events are too small to show. See Appendix A for the exact frequencies.

BERT RoBERTa GPT-2 BERT RoBERTa GPT-2

The person .

wins (11.4) said (5.8) let (4.3)

The person is .

killed (7.5) gone (6.3) let (4.3)
died (11.4) responds (4.0) see (3.9) married (6.6) deceased (3.8) see (3.9)
dies (10.6) replied (3.4) make (2.4) dying (4.2) arrested (2.9) make (2.4)
won (7.8) dies (3.3) get (2.1) deceased (3.8) missing (2.5) get (2.1)
lost (3.5) died (2.9) look (2.1) eliminated (2.6) responding (1.9) look (2.1)
said (2.4) responded (2.5) take (1.2) retired (2.2) involved (1.9) take (1.2)
speaks (1.9) says (2.4) set (1.2) lost (2.0) reading (1.9) set (1.2)
answered (1.6) replies (2.2) give (1.1) arrested (2.0) dying (1.9) give (1.1)
replied (1.3) asked (2.1) using (1.1) elected (1.5) confused (1.5) using (1.1)
loses (1.3) commented (2.1) go (1.1) disabled (1.5) reporting (1.5) go (1.1)

Table 1: Top LM predictions for actions performed by people along with their scores (percents).

frequency (e.g. how many times does a person breathe in their lifetime?) from published statistics based
on US data, as detailed in Appendix A. Corpus frequency is computed using the Google N-gram corpus
(Brants and Franz, 2006). Specifically, we compute the normalized frequency of the verbs appearing in
the 3-gram “person is <verb>”, falling back to the bigram “person <verb>” if no results are found. We
use SpaCy to determine parts of speech, keeping non auxiliary verbs (Honnibal and Montani, 2017).

While LM scores don’t represent frequency or probability, they are often used in practice as a proxy
for plausibility. Thus, we would expect LM scores to correlate with real-world frequency. We query
masked LMs for substitutes of the mask in several templates describing actions,2 and left-to-right LMs
by greedily decoding the next token (e.g. for “The person is”), taking the maximum score for each word
across templates. Specifically, we use BERT large uncased (Devlin et al., 2019), RoBERTa large (Liu et
al., 2019), and GPT-2 XL (Radford et al., 2019) from the Transformers package (Wolf et al., 2019). We
keep the non auxiliary verbs among the top 5000 predictions.3

Figure 1 visualizes the relative frequency of each action as estimated by the various sources, where the
scores for all actions are normalized for each source. Actions are sorted by their real-world frequency
from very frequent to very rare. First, we observe that LMs assign non-zero scores for all actions,
as opposed to the non-smoothed corpus frequencies from Google Ngrams. However, the scores they
produce diverge further from the actual distribution, measuring with KL-divergence: Google Ngrams -
2.94, BERT and GPT-2 - 3.77, and RoBERTa - 3.08. LMs produce a more accurate estimate for some
frequent actions (blinking, eating) but worse for others (thinking, breathing). At the same time, LMs
also exaggerate the frequencies of rare events (e.g. dying), producing estimates not only higher than the
actual frequency but even higher than the corpus frequency.

The same patterns emerge for both LMs, but some exceptions stand out. For example, BERT over-
estimates the frequency of dying, which may be due to being trained on Wikipedia, which consists of
many entries describing historically important—and dead—people. RoBERTa, on the other hand, which

2“The person is [MASK].”, “The person [MASK].”, “People are [MASK].”, “All people [MASK].”
3We consider some synonyms and subactions, e.g. including “exhale” and “inhale” in “breathe”, as detailed in Appendix A.
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LM

The girl found a bug in her cereal.Context Question Effect

As a result, she lost her appetite.
…

So she lost her appetite.

As a result, she poured milk in the bowl.
…

So she poured milk in the bowl.

Yet, somehow she did not lose her appetite.

…
But surprisingly she did not lose her appetite.

Yet, somehow she did not pour milk in the bowl.

…
But surprisingly she did not pour milk in the bowl.

She lost her appetite. She poured milk in the bowl.Option #1 Option #2

Causal Discourse Markers

Disconfirmed Expectations As a result, she lost her appetite.
Most plausible statement

Prediction: Option #1

[cause]. (So|As a result,|As one would expect,) [effect].

[cause] (yet|but|however), (surprisingly|for some reason|somehow)? [negated effect].

Figure 2: Illustration of the Zero-shot+DE model prediction of an instance from COPA. Each answer
choice has a set of support statements including causal discourse markers (both models) and disconfirmed
expectations (only in Zero-shot+DE). The LM is used to score the statements for plausibility, and the
model predicts the answer choice associated with the most plausible statement.

was trained on the web, overestimates the frequency of newsworthy events such as being murdered or
arrested. Table 1 further exemplifies the top LM predictions for actions performed by people, using ad-
ditional templates. While most predictions, especially by GPT-2, are common or mundane verbs (said),
some describe rarer events (killed).

3 Event Outcomes

G&V argue that an event outcome is more likely to be mentioned in text if it’s not certain. For instance,
“The man turned on the faucet. The water started running in a steady stream.” makes an awfully boring
story, while “Water gushed out of the sink” builds up to a turn in events. Do LMs learn the proportional
outcome distribution in the corpus, or can they overcome it by implicitly learned commonsense?

A good testbed for event outcomes is the COPA dataset (Choice of Plausible Alternatives) (Gordon
et al., 2012). Given an event (context), the goal is to predict its cause or effect among two candidate
answers. We focus on LMs typically used for generation: GPT (Radford et al., 2018), GPT-2 (Radford
et al., 2019), and XLNet (Yang et al., 2019). Table 2 exemplifies outcomes predicted for several COPA
events with various LMs and decoding strategies: top k = 10 (Fan et al., 2018), top p = 0.9 (Holtzman
et al., 2020), and beam search with beam size of 5. We observe a combination of mundane, correct
outcomes (water running in a steady stream) and sensational and unlikely events (“the fire broke out”).

Event LM Decoding Outcome

The man turned
on the faucet.

GPT
Top-k 10 the water started running in a steady stream
Top-p 0.9 water began to flow out of the faucet and onto
Beam 5 the water began to boil

GPT-2 S
Top-k 10 his face became pale
Top-p 0.9 the fire broke out
Beam 5 he was able to get out of the car and

GPT-2 XL
Top-k 10 the man’s blood was sprayed everywhere, and his
Top-p 0.9 the water in the bathtub began to flow
Beam 5 water gushed out of the sink

The man received
a parking ticket.

GPT
Top-k 10 the next day they were forced to drive around town
Top-p 0.9 he was a bit confused about the situation, but
Beam 5 he had to pay for the ticket

GPT-2 S
Top-k 10 he has to pay the fare on the spot
Top-p 0.9 he left his job
Beam 5 he was arrested

GPT-2 XL
Top-k 10 the ticket was sent to the city’s Department of
Top-p 0.9 he went to his car and pulled out a
Beam 5 he was arrested and charged with violating the city’s

Table 2: Example outcomes generated for COPA events (condi-
tioned on “[context]. As a result,”).

In order to quantify the ability
of LMs to predict outcomes, we
target the multiple choice COPA
task with a zero-shot LM-based
model (Zero-shot in Table 3).
For a given context and for each
candidate answer, we create a set
of supporting statements: [cause]
[causal discourse marker]

[effect], as exemplified in Fig-
ure 2. For questions asking about
the cause of an event, we set the
cause to the context and the effect
to the candidate answer, while for
questions asking about the effect,
we reverse the direction.

Following Shwartz et al. (2020b), we compute the cross entropy loss of each statement, and predict the
candidate answer associated with the statement with the lowest loss (most plausible statement). Figure 2
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(a) Accuracy score and the average rank
of gold color.

LM Pre-trained Fine-tuned
Acc. Rank Acc. Rank

Majority 35.8
BERT 51.9 40.6 69.2 1.7
BERT-L 56.4 40.14 70.1 1.68
RoBERTa 49.0 63.4 67.8 1.74
RoBERTa-L 55.4 49.7 68.7 1.71

(b) Example sentences along with top 3 color predictions for each of the pre-trained
models and the fine-tuned models (+FT). We note that the predictions are sensitive to
phrasing.

Sentence Majority BERT-L RoBERTa-L BERT-L+FT RoBERTa-L+FT

The banana is tasty. g o y b r w b r be g b r g y r

The apple is sweet. g r o b w g r b be g r b g r y

The cat is cute. b w be be b w b gy r p w b b w o

The dove is beautiful. w bn r b be w r w b w be bn w b be

The cow eats grass. r w b bn b be r b be b r b bn r b

The dog runs in the park. b w y b bn w w b be b be y b y w

Table 4: Performance and example predictions for the color prediction experiment. For each of BERT
and RoBERTa, we report the performance of the pre-trained only model and the model fine-tuned on
the color train set. The majority baseline predicts the most common color associated with the following
noun in the train set, e.g. majority(banana) = green.

illustrates the model’s prediction for a given COPA instance.
Table 3 shows the accuracy on the development set across different LMs. The GPT models slightly

improve upon the majority baseline.

3.1 Disconfirmed Expectations

Table 3: Accuracy on the COPA
development set.

LM Zero-shot Zero-shot+DE

Majority 0.55 0.55
GPT 0.59 0.56
GPT2-S 0.58 0.59
GPT2-XL 0.61 0.60
XLNet-S 0.55 0.49
XLNet-L 0.43 0.42

G&V suggest that a better source for typical outcomes is textual
constructions that indicate a speaker’s expectation about the world
was not met. For example, “Sally crashed her car into a tree but
wasn’t hurt” indicates that if a person crashed their car, they are
likely to be hurt. An initial exploration of this approach was done
by Gordon and Schubert (2011), but they concluded that extracting
this type of rules from corpora is limited due to the sparseness of the
clauses and the discourse patterns.

We conjecture that neural LMs may overcome the sparseness is-
sue and be used for both scoring and generating typical outcomes.
We therefore extend the zero-shot model by adding disconfirmed expectations (Zero-shot+DE) to the sup-
porting statements: [cause] [negative discourse marker] ([surprise expression]) [negated

effect]. We recognize the main verb of the effect using SpaCy and negate it to create the negated effect
statement.

The results in Table 3 show that adding disconfirmed expectations usually degrades the performance.
We observed that this often happens when a statement of the form “[context] [negative discourse

marker] [negated wrong answer]” is incorrectly ranked as plausible, as in “He ran out of onions. Yet,
for some reason the cook’s eyes did not water”. While the LM recognizes the lexical relatedness between
onions and watering eyes, it is not sensitive to negation, as was recently shown for several other language
models (Ettinger, 2020; Kassner and Schütze, 2020).

4 Properties

According to G&V, people are more likely to state unusual properties of a concept (blue pencil) than
usual ones (yellow pencil). Recently, Weir et al. (2020) studied LMs’ ability to associate concepts with
their properties, by providing the LM the concept and predicting the properties and vice versa. Overall,
LMs performed reasonably well, with RoBERTa outperforming BERT. Both performed better on ency-
clopedic and functional properties (“A bear is an animal”) than on perceptual properties, which are less
often mentioned in text (Collell Talleda and Moens, 2016; Forbes et al., 2019).

We hypothesize that while LMs are to some extent capable of learning association between con-
cepts and their properties indirectly by aggregating across contexts, during this process, they often over-
generalize, predicting semantically-similar but mutually exclusive values. We verify that by evaluating
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BERT and RoBERTa’s ability to predict colors. We constructed a list of 11 common colors and extracted
all sentences in Wikipedia in which a color modifies a noun, masking the color tokens (e.g. “A bear is
[MASK]”). We then split the data into train (1,169,590 sentences) and test (10,000 sentences).

Table 4a presents the results of pre-trained-only LMs vs. LMs fine-tuned on the train set, with a
masked LM objective, to predict the color. First, we note that the pre-trained BERT models outperform
the RoBERTa model, which is expected given that BERT was already exposed to the sentences in the
dataset during pre-training on Wikipedia. Despite that, the fine-tuned models still exhibit a dramatic
boost in performance, both in terms of accuracy and average rank of the correct color. This is an encour-
aging result: it’s possible to correct the over-generalization by further exposing the LM to the “truth”.
With that said, this corpus-based “truth” is not a ground truth, and given that the sentences were not
manually verified, it is still biased towards the unusual, containing strange concepts like “blue cat”.

5 Related Work

Commonsense in pre-trained LMs. There is ongoing research on extracting commonsense knowl-
edge from pre-trained LMs, providing mixed results. On the one hand, Petroni et al. (2019) and Davison
et al. (2019) somewhat successfully used pre-trained LMs to complete commonsense KBs. On the other
hand, Logan et al. (2019) have shown that LMs are limited in their ability to generate accurate factual
knowledge, and Kassner and Schütze (2020) and Ettinger (2020) pointed out that LMs are not sensitive
to negation, resulting in generating incorrect facts (“birds can’t fly”). Finally, Shwartz et al. (2020b)
showed that despite being noisy, knowledge generated by LMs can be used to improve performance on
commonsense tasks.

Similarly to our color experiment, Bouraoui et al. (2020) developed a LM-based relation classification
model that included a color relationship. The model starts with a seed of known word pairs for a given
relationship, uses it to find template sentences indicative of the relationship, and fine-tunes BERT on
these retrieved sentences. Their experiment had a different purpose from ours, in which we probed the
LMs for knowledge already captured by their pre-training phase.

Learning from other modalities. Much of our world knowledge is innate or acquired through modal-
ities such as vision, including physical commonsense (“physical objects can’t be in different places at
the same time”) and social commonsense (“people do and say things for reasons”). There has been little
work on learning meaning from other modalities (Kiela and Clark, 2015; Zellers et al., 2019), but there
is a shared understanding in the community that this is the imperative next step (Bisk et al., 2020; Bender
and Koller, 2020).

6 Conclusion

We show that pre-trained LMs to some extent overcome reporting bias in the sense that they possess
knowledge that wasn’t explicitly stated, including trivial facts. Unfortunately, they also over-represent
rare and newsworthy events, amplifying the bias that already exists in their training corpus.

The results in this paper are in line with prior work that showed that LMs amplify social bias (May
et al., 2019; Sheng et al., 2019) and knowledge about named entities that are prominent in the corpus
(Shwartz et al., 2020a). Going forward, it is important to study how the choice of training corpus, model
size, and other factors affect the type and extent of biases the LM would have.

Acknowledgements

This research was supported in part by NSF (IIS-1524371, IIS-1714566), DARPA under the CwC pro-
gram through the ARO (W911NF-15-1-0543), and DARPA under the MCS program through NIWC
Pacific (N66001-19-2-4031).



6868

References
Emily M. Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning, form, and understanding in

the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 5185–5198, Online, July. Association for Computational Linguistics.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, An-
geliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph Turian. 2020. Experience
grounds language. In EMNLP.

Zied Bouraoui, Jose Camacho-Collados, and Steven Schockaert. 2020. Inducing relational knowledge from
BERT. In AAAI.

Thorsten Brants and Alex Franz. 2006. Web 1t 5-gram version 1.

Guillem Collell Talleda and Marie-Francine Moens. 2016. Is an image worth more than a thousand words? on
the fine-grain semantic differences between visual and linguistic representations. In Proceedings of the 26th
International Conference on Computational Linguistics, pages 2807–2817. ACL.

Joe Davison, Joshua Feldman, and Alexander Rush. 2019. Commonsense knowledge mining from pretrained
models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1173–1178,
Hong Kong, China, November. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Min-
nesota, June. Association for Computational Linguistics.

Allyson Ettinger. 2020. What bert is not: Lessons from a new suite of psycholinguistic diagnostics for language
models. Transactions of the Association for Computational Linguistics, 8(0):34–48.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story generation. In Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
889–898.

Maxwell Forbes, Ari Holtzman, and Yejin Choi. 2019. Do neural language representations learn physical com-
monsense? In CogSci.

Jonathan Gordon and Lenhart K Schubert. 2011. Discovering commonsense entailment rules implicit in sentences.
EMNLP 2011, page 59.

Jonathan Gordon and Benjamin Van Durme. 2013. Reporting bias and knowledge acquisition. In Proceedings of
the 2013 workshop on Automated knowledge base construction, pages 25–30. ACM.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. 2012. SemEval-2012 task 7: Choice of plausible
alternatives: An evaluation of commonsense causal reasoning. In *SEM 2012: The First Joint Conference on
Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pages
394–398, Montréal, Canada, 7-8 June. Association for Computational Linguistics.

H Paul Grice, Peter Cole, Jerry Morgan, et al. 1975. Logic and conversation. 1975, pages 41–58.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The curious case of neural text degener-
ation. In International Conference on Learning Representations.

Matthew Honnibal and Ines Montani. 2017. spacy 2: Natural language understanding with bloom embeddings,
convolutional neural networks and incremental parsing. To appear, 7(1).

Nora Kassner and Hinrich Schütze. 2020. Negated and misprimed probes for pretrained language models: Birds
can talk, but cannot fly. Association for Computational Linguistics.

Douwe Kiela and Stephen Clark. 2015. Multi- and cross-modal semantics beyond vision: Grounding in auditory
perception. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 2461–2470, Lisbon, Portugal, September. Association for Computational Linguistics.

Douglas B Lenat. 1995. Cyc: A large-scale investment in knowledge infrastructure. Communications of the ACM,
38(11):33–38.



6869

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh. 2019. Barack’s Wife Hillary:
Using Knowledge Graphs for Fact-Aware Language Modeling. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R. Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 622–628, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bishan Yang, Justin Betteridge, Andrew Carl-
son, Bhavana Dalvi, Matt Gardner, Bryan Kisiel, et al. 2018. Never-ending learning. Communications of the
ACM, 61(5):103–115.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander
Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China, November. Association for Computational
Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding
by generative pre-training. -.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners. -.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan
Roof, Noah A Smith, and Yejin Choi. 2019. Atomic: An atlas of machine commonsense for if-then reasoning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3027–3035.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The woman worked as a babysit-
ter: On biases in language generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3398–3403, Hong Kong, China, November. Association for Computational Linguistics.

Vered Shwartz, Rachel Rudinger, and Oyvind Tafjord. 2020a. "you are grounded!": Latent name artifacts in
pre-trained language models. In EMNLP.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020b. Unsupervised com-
monsense question answering with self-talk. In EMNLP.

Mohammad S Sorower, Janardhan R Doppa, Walker Orr, Prasad Tadepalli, Thomas G Dietterich, and Xiaoli Z
Fern. 2011. Inverting grice’s maxims to learn rules from natural language extractions. In Advances in neural
information processing systems, pages 1053–1061.

Robyn Speer and Catherine Havasi. 2012. Representing general relational knowledge in conceptnet 5. In LREC,
pages 3679–3686.

Arjen van Dalen. 2012. Structural bias in cross-national perspective: How political systems and journalism
cultures influence government dominance in the news. The International Journal of Press/Politics, 17(1):32–
55.

Nathaniel Weir, Adam Poliak, and Benjamin Van Durme. 2020. Probing neural language models for human tacit
assumptions.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019. Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, pages arXiv–1910.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. Xlnet:
Generalized autoregressive pretraining for language understanding. CoRR, abs/1906.08237.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. From recognition to cognition: Visual common-
sense reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6720–6731.



6870

A Action and Events

Normalized Frequency
Action Actual Frequency for Lifetime (Source) Actual Corpus BERT RoBERTa GPT-2

thinking 1,433,355,000 (50,000 per day) 5.26e-01 9.21e-02 1.74e-01 8.66e-03 5.74e-03
breathing 660,489,984 (23,040 per day) 2.42e-01 3.51e-03 2.04e-02 8.11e-03 2.89e-04
blinking 344,005,200 (12,000 per day) 1.26e-01 6.84e-04 1.63e-03 0 0
eating 86001.3: 3 times per day 3.16e-05 1.23e-02 2.64e-02 1.09e-02 1.45e-03
sleeping 28667.1: 1 time per day 1.05e-05 1.03e-02 1.19e-02 2.65e-02 6.33e-04
working 20420.4: 5 times a week 7.49e-06 5.66e-02 5.81e-02 7.59e-02 4.22e-03
exercising 8168.16: 2-3 times a week 3.00e-06 2.44e-02 0.00e+00 1.17e-03 2.14e-04
getting married 1.66: 0-3 times per life 6.09e-10 4.76e-03 5.37e-02 2.26e-01 6.40e-04
getting divorced 1: 0-2 times per life 4.04e-10 8.95e-04 6.91e-03 1.49e-02 3.72e-05
being born 1 4.04e-10 7.35e-02 7.76e-02 1.75e-02 4.55e-03
being named 1 4.04e-10 2.49e-01 1.07e-01 1.02e-02 3.44e-03
dying 1 4.04e-10 1.55e-01 3.72e-02 1.66e-01 1.39e-02
being abused 0.5 (source) 1.84e-10 7.43e-03 3.28e-02 2.83e-02 4.30e-04
being injured 0.1263 (Episodes per 1,000 population: 126.3) 4.64e-11 6.74e-02 6.94e-03 1.01e-01 6.45e-04
being raped 0.01 (18.3% of women (50.8% of population) and 1.4% of men (49.2% of population)) 3.66e-11 3.51e-04 1.03e-02 3.59e-02 1.06e-04
being killed 4.01 × 10−2 (murder + 1 out 28 in accident) 1.47e-11 2.59e-02 4.57e-02 3.32e-02 1.19e-03
being arrested 0.031526 (3,152.6 arrests per 100,000) 1.16e-11 5.06e-02 5.23e-03 9.85e-02 2.52e-03
being adopted 0.021 (7 million out of 328.2) 7.83e-12 4.93e-03 4.54e-03 8.53e-03 3.24e-05
being murdered 4.37 × 10−3 (1 in 229 deaths) 1.60e-12 2.99e-02 5.15e-02 7.88e-02 1.34e-03
being abandoned 0.000175 (7000 each year, out of 4M births) 6.42e-14 6.45e-04 4.17e-03 1.15e-02 3.46e-05

Table 5: Frequency of actions performed or occurring to a person during their lifetime, along with the
sources used for actual frequency calculation, and the normalized scores for actual frequency, corpus
(Google Ngrams), and LM scores. Daily statistics were multiplied by 365 × 78.54 (average life ex-
pectancy in the US: https://www.cdc.gov/nchs/fastats/life-expectancy.htm).

Action Action Terms

thinking thinking, thinks, think, thought
breathing breathing, breathe, exhale, inhale
blinking blinking, blink, blinks, blinked
talking talking, talk, talked, say, said, saying, converse, conversed, conversing
eating eat, eating, ate, dine, dining, dined
sleeping sleeping, sleep, sleeps, slept
working working, work, worked, employed
exercising exercising, exercise, exercised
getting married married
getting divorced divorced
being born born
being named named, called
dying died, die, dies, dying
being injured injured
being arrested arrested
being murdered murdered, killed
being killed killed
being raped raped
being abused abused, molested, assaulted, beat, bullied, oppressed, tortured
being shot shot
being adopted adopted
being abandoned abandoned

Table 6: Synonyms and subactions used for each action in Section 2.

https://subliminalpro.com/thoughts/
https://blog.epa.gov/2014/04/28/how-many-breaths-do-you-take-each-day/
https://www.lens.me/blog/blink
https://ncadv.org/statistics
https://www.cdc.gov/nchs/fastats/injury.htm
https://www.nsvrc.org/statistics
https://www.businessinsider.com/us-gun-death-murder-risk-statistics-2018-3
https://ucr.fbi.gov/crime-in-the-u.s/2018/crime-in-the-u.s.-2018/topic-pages/persons-arrested
https://adoptionnetwork.com/adoption-statistics
https://www.businessinsider.com/us-gun-death-murder-risk-statistics-2018-3
https://www.encyclopedia.com/social-sciences-and-law/law/law/abandonment
https://www.cdc.gov/nchs/fastats/life-expectancy.htm
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