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Abstract

Deep inside-outside recursive autoencoder (DIORA) is a neural-based model designed for unsu-
pervised constituency parsing. During its forward computation, it provides phrase and contextual
representations for all spans in the input sentence. By utilizing the contextual representation of
each leaf-level span, the span of length 1, to reconstruct the word inside the span, the model
is trained without labeled data. In this work, we extend the training objective of DIORA by
making use of all spans instead of only leaf-level spans. We test our new training objective on
datasets of two languages: English and Japanese, and empirically show that our method achieves
improvement in parsing accuracy over the original DIORA.

1 Introduction

Constituency parsing produces constituent parse trees that can be useful for downstream tasks, such as
text classification (Tai et al., 2015), machine translation (Eriguchi et al., 2017; Wang et al., 2018) and
semantic role labelling (Gildea and Palmer, 2002; He et al., 2017). Although supervised neural methods
have very high accuracy, they require annotated data which can be very limited for low-resource languages
and domains. Unsupervised constituency parsing is a task aiming to learn a constituency parser from
text without annotated parse trees. There is a recent trend of solving this task with neural approaches
(Shen et al., 2018; Kim et al., 2019a; Shen et al., 2019; Kim et al., 2019b; Drozdov et al., 2019). DIORA
(Drozdov et al., 2019) is one of these models. It mimics the inside-outside algorithm (Baker, 1979) to
build an inside chart and an outside chart for each input sentence. Each cell in these charts represents a
representation of the inside text or the outside context of a span of the sentence. DIORA is trained by
using the contextual representation of every single word to predict the word itself, which can be seen as a
reconstruction procedure of the input sentence.

The original training objective of DIORA only takes the n leaf-level spans into account for an n-word
sentence. Since such a sentence has (n2 + n)/2 spans in total, we suppose that utilizing the rest of
the spans during training can help the model learn better. Thus we propose a new training objective
for DIORA that takes into account the reconstruction of all spans. We design weighting strategies to
balance the influence from spans and sentences of different lengths in the new objective function. In the
experiments, we train and test DIORA with our new objective function on datasets of two languages,
English and Japanese. For both languages, we show empirically that the new training objective improves
the performance of unsupervised constituency parsing.

2 Approach

2.1 DIORA
DIORA, the deep inside-outside recursive autoencoder, incorporates the inside-outside algorithm into a
latent tree chart parser. During the bottom-up inside pass, it computes the inside vector of each span in
the input sentence, which captures the phrase information of the inner content in the span. During the
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top-down outside pass, the model computes the outside vector of each span, which models the contextual
information of the span. It also computes an inside score and an outside score for each span, which
intuitively evaluate the constituency of the span based on its content and context. For all the model details
of DIORA, we refer the reader to (Drozdov et al., 2019). For a span i, denote the inside score by ē(i),
inside vector by ā(i), outside score by f̄(i) and outside vector by b̄(i).

2.2 Original Objective Function
DIORA is trained by reconstructing the word in each leaf-level span with its outside contextual vector.
Drozdov et al.(2019) proposed two objective functions, the max-margin loss and the cross-entropy loss.
For sentence x, the max-margin loss is:

Lx =
∑
i∈Φ(x)

∑
i∗∈N (i)

max(0, 1− b̄(i) · ā(i) + b̄(i) · ā(i∗))

and the cross-entropy loss is:

Lx = −
l∑

i∈Φ(x)

log (
exp(b̄(i) · ā(i))

Z∗(i) + exp(b̄(i) · ā(i))
)

Z∗(i) =
∑

i∗∈N (i)

exp(b̄(i) · ā(i∗))

where Φ(x) denotes the set of leaf-spans in the sentence x, N (i) denotes the set of negative samples for
span i. In our experiments, we use the cross-entropy loss by default.

2.3 All-span Objective Function
The original objective function of DIORA is constrained to utilize leaf-level information only. However,
higher-level spans also embody meaningful information which could be utilized. Our goal is thus to
integrate all-level spans into the objective function.

Instead of treating all spans evenly, we prefer the spans that are more likely to be constituents within
the ground-truth parse tree, because it makes more sense to predict a constituent from its context in
comparison with a distituent. The inside and outside scores in DIORA can be interpreted as a measure of
constituency of spans. In particular, Drozdov et al. (2019) use the inside scores as input to a CYK parser
to produce the final parse tree. Therefore, we assign weights to spans in our objective function based on
their inside and outside scores.

Lx =
∑
i∈Π(x)

wi · Li

where Π(x) denotes the set of all spans in the sentence x. We consider two types of weight computation,
wαi and wβi , based on inside and outside scores respectively. We notice that in the model trained with
the original objective, the inside and outside scores are influenced by span lengths and sentence lengths
(visually depicted in Fig. 1). In brief, inside scores are positively correlated with span length while outside
scores are negatively correlated with span length but positively correlated with sentence length. In order
for our objective function to balance the weights of spans with different span lengths and sentence lengths,
we define the two types of weights of span i as follows.

wαi = exp(
ē(i)

mi
) wβi = exp(

f̄(i)

(n−mi + 1) · n
)

where mi is the length of span i, while n is the length of the sentence. We apply exponentiation because
inside and outside scores may be negative.

To balance the influence of different sentences, we also assign a weight to each sentence in the objective
function over the full training corpus, such that the influence of a sentence is proportional to its length:
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Lx = n ·
∑
i∈Π(x)

wi∑
j∈Π(x) wj

· Li

For leaf-level spans, the negative examples are still sampled according to word frequency as in (Drozdov
et al., 2019). For higher-level spans, if we randomly sample spans from the training corpus as negative
examples, then during training we have to either cache the inside vectors of all the spans from all the
sentences or recompute the inside vectors of the sampled spans at each gradient descent step, both of
which are computationally very expensive. Therefore, we choose to sample negative examples from all
the spans within the training batch that each training sentence belongs to.

Figure 1: Left: Score distribution of spans of length 5 in sentences of different lengths. Right: Score
distribution of spans of different lengths in sentences of length 10.

3 Experiments

3.1 Datasets and Setting

We test our new objective with datasets of two languages: English and Japanese. For English, we use the
PTB corpus (Marcus et al., 1993). For Japanese, we use the KTB corpus (Butler et al., 2012). For PTB,
we follow the standard split and use section 0-21 for training, 22 for validation, and 23 for testing. For
KTB, we shuffle the corpus and take 80% for training, 10% for validation, and 10% for testing.

Following the settings of (Li et al., 2020), we preprocessed the corpora. For punctuation marks, for
each language we run two experiments, one with punctuation and one without. For both languages, we
use the sentences of length ≤ 40 for training and do not apply any length limit for the test data. Since
DIORA needs external word embeddings, we use ELMO (Peters et al., 2018) for English and fasttext
(Grave et al., 2018) for Japanese.

3.2 Hyper-parameter

We follow previous work and tune the hyper-parameters such as the learning rate, number of negative
samples, hidden size, and the choice of span weight computation on the validation set of each dataset.
The hyper-parameters used in our experiments are listed in Table 1.

3.3 Experimental Result

We run each experiment 5 times with different random seeds and report the mean, standard deviation and
maximum of the parsing accuracies. The constituency parsing accuracy is evaluated with the unlabelled
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PTB KTB
w. punc no punc w. punc no punc

Hidden Size 200 200 400 400
Learning Rate 2e-3 2e-3 2e-3 2e-3

# Negative Samples 100 100 100 50
Batch Size 64 64 8 8

Span Weight Type Inside Inside Outside Outside

Table 1: Hyper-parameters for our experiments.

With Punctuation No Punctuation
F1-10µ F1-10max F1-allµ F1-allmax F1-10µ F1-10max F1-allµ F1-allmax

DIORA 55.15 ± 0.86 56.61 44.63 ± 0.46 45.02 60.01 ± 0.40 60.64 49.31 ± 0.45 49.73
DIROA-all 59.18 ± 4.17 63.64 47.03 ± 4.20 50.63 61.23 ± 2.31 63.33 47.95 ± 1.25 49.47

Upper Bound 75.15 - 78.96 - 86.64 - 85.34 -

Table 2: Experimental results on English PTB.

With Punctuation No Punctuation
F1-10µ F1-10max F1-allµ F1-allmax F1-10µ F1-10max F1-allµ F1-allmax

DIORA 39.33 ± 2.92 42.83 28.93 ± 4.29 32.33 44.02 ± 5.02 49.18 35.26 ± 3.10 38.02
DIROA-all 43.30 ± 5.18 47.73 33.00 ± 3.71 36.93 47.09 ± 1.79 49.17 36.37 ± 3.58 41.56

Upper Bound 61.41 - 62.53 - 67.25 - 67.32 -

Table 3: Experimental results on Japanese KTB.

F1 score computed by Evalb1. We report F1 scores on test sentences of length≤ 10 and of all lengths. For
the performance of the original DIORA, we rerun the experiments with the hyper-parameters provided by
(Li et al., 2020). Since the predicted parse tree is binary, we also provide the upper bound of F1 scores
without tree binarization for each dataset.

English
We list the experimental results of English in Table 2. For the setting with punctuation, DIORA with the
all-span objective function outperforms the original DIORA on both sentences of length ≤ 10 and all
sentences. For the setting without punctuation, our method performs better than the origin DIORA on
sentences of length ≤ 10 but worse on all sentences.

Japanese
We list the experimental results of Japanese in Table 3. For settings both with and without punctuation,
DIORA with the all-span objective function performs better on all sentences and sentences of length ≤ 10
than the original DIORA.

3.4 Analysis
To validate that the new objective helps DIORA learn better representation with higher-level spans, we
evaluate the F1 scores of spans on different length groups(we consider 5 consecutive lengths as a group).
We use the models trained in previous experiments of PTB with the best F1-all scores for both DIORA
and DIORA-all. The results are shown in Figure 2.

It can be seen that when there is punctuation, DIORA-all consistently outperforms DIORA and its
advantage is particularly large on long spans. Without punctuation, the two methods have similar
accuracies except for an outlier at length range [31-35], How punctuation influences learning with the
original objective and our new objective is an interesting topic for future research.

4 Conclusion

Deep inside-outside recursive autoencoder (DIORA) is a neural-based model for unsupervised constituency
parsing. In this paper, we propose a new training objective function for DIORA that considers all-level
spans instead of leaf-spans only. With the new objective, we show that the model can achieve better
overall performance for sentences on English and Japanese.

1https://nlp.cs.nyu.edu/evalb/
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Figure 2: F1 scores on spans of different lengths.
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recurrent neural network grammars. In NAACL-HLT (1).

Jun Li, Yifan Cao, Jiong Cai, Yong Jiang, and Kewei Tu. 2020. An empirical comparison of unsupervised
constituency parsing methods. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 3278–3283, Online, July. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettle-
moyer. 2018. Deep contextualized word representations. In Proceedings of NAACL-HLT, pages 2227–2237.



3615

Yikang Shen, Zhouhan Lin, Chin wei Huang, and Aaron Courville. 2018. Neural language modeling by jointly
learning syntax and lexicon. In International Conference on Learning Representations.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron Courville. 2019. Ordered neurons: Integrating tree
structures into recurrent neural networks. In International Conference on Learning Representations.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-
structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1556–1566, Beijing, China, July. Association for Computational Linguistics.

Xinyi Wang, Hieu Pham, Pengcheng Yin, and Graham Neubig. 2018. A tree-based decoder for neural machine
translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 4772–4777, Brussels, Belgium, October-November. Association for Computational Linguistics.


