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Abstract

Emotion lexicons have been shown effective for emotion classification (Baziotis et al., 2018).
Previous studies handle emotion lexicon construction and emotion classification separately. In
this paper, we propose an emotional network (EmNet) to jointly learn sentence emotions and con-
struct emotion lexicons which are dynamically adapted to a given context. The dynamic emotion
lexicons are useful for handling words with multiple emotions based on different context, which
can effectively improve the classification accuracy. We validate the approach on two represen-
tative architectures – LSTM and BERT, demonstrating its superiority on identifying emotions
in English tweets. Our model outperforms several approaches proposed in previous studies and
achieves new state-of-the-art on the benchmark Twitter dataset.

1 Introduction

Tweet Emotion
This is a joke really how long will
he keep diving and ducking.

disgust

That’s the joke. I know it’s incense. joy

Table 1: Example sentences and their emotions.

The last several years have seen a land rush in
research on identification of emotions in short
text such as Twitter or product reviews due to
its greatly commercial value. For example, the
emotions (e.g., anger or joy) expressed in prod-
uct reviews can be a major factor in deciding the
marketing strategy for a company (Meisheri and
Dey, 2018). The SOTA approaches to this task (Baziotis et al., 2018; Meisheri and Dey, 2018) generally
employ pre-defined emotion lexicons, which have two major limitations:

1. Most established emotion lexicons were created for a general domain, and suffer from limited cov-
erage and inaccuracies when applied to the highly informal short text.

2. The pre-defined lexicons suffer from the ambiguity problem: the emotion of a word is highly in-
fluenced by the context. Table 1 shows an example. The word “joke” carries different emotions
according to different context.

In this work, we tackle these challenges by jointly learning to construct the emotion lexicons and
classify the emotions of short texts. Specifically, we propose a novel emotional network (EmNet), which
consists of three main components:

1. Sentence encoder encodes the input sentence into semantic hidden states, which can be implemented
as either LSTM or BERT.

∗ Work done while the author was an intern at Tencent.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://creativecommons.
org/licenses/by/4.0/.
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2. Emotion generator leverages both the semantic hidden states and word embeddings to construct
word emotions, which dynamically adapt to the sentence context.

3. Emotion classifier classifies the sentence emotions based on both the encoded sentence representa-
tions and generated word emotions.

With the newly introduced emotion generator, our EmNet can alleviate the domain mismatch and emotion
ambiguity problems of using external lexicons. For example, the contextual words “how long”, “keeps
diving and ducking” can help disambiguate the emotion of the word “joke”, thus improve the accuracy
of emotion classification.

We validate the proposed approach on the Twitter dataset of SemEval-2018 task (Mohammad et al.,
2018) on top of both the LSTM (Hochreiter and Schmidhuber, 1997) and BERT (Devlin et al., 2019)
architectures. Our approach consistently outperforms the baseline models across model architectures,
demonstrating the effectiveness and universality of the proposed approach. In addition, our model also
outperforms the SOTA method of leveraging external emotion lexicon. Further analyses reveal that the
proposed EmNet can learn reasonable emotion lexicons as expected, which avoids the mismatch problem
of using external resource.

Contributions. The main contributions of this paper are listed as follows:

• We propose a novel emotional network for multi-label emotion classification which jointly learns
emotion lexicons and conducts classification. We apply EmNet to both LSTM and BERT architec-
tures to verify its effectiveness.

• The proposed model can generate context-aware word emotions, which are effective to improve the
classification accuracy. We also give a qualitative analysis to help to understand how EmNet works.

• Experimental results show that our method outperforms the baselines on the public benchmark. Fur-
ther analysis demonstrates the effectiveness of the proposed methods on correlation representation.

2 Emotional Network

2.1 Framework
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Figure 1: Overview of the Emotion Network.

Problem Formalization Given an input sen-
tence, the goal of emotion analysis is to iden-
tify single or multiple emotions expressed by it.
Formally, we define S = w1, w2, ..., wi, ..., wn
as the input sentence with n words. wi is the i-
th word and the corresponding word embedding
Ewi is retrieved from a lookup table E ∈ Rd×|V |.
Moreover, let Φ be a set of pre-defined emo-
tion labels with |Φ| = K . Thus, for each S,
the task is to predict whether it contains one or
more emotion labels in Φ. We denote the output
as l ∈ {0, 1}K , a vector with maximum dimen-
sion K, where the element lk ∈ {0, 1} refers to
whether or not S contains the k-th emotion. The
training data D contains a set of sentences to-
gether with their label vectors D = {S(i), l(i)}.

Model Description Figure 1 illustrates the ar-
chitecture of the proposed emotional network.
There are three parts in the EmNet: sentence en-
coder, emotion generator, and emotion classifier.
EmNet first encodes the input sentence S into
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semantic hidden states h1,h2, ...,hi, ...,hn via sentence encoder and generates sentence embedding hs.
Then the hidden states hi are used to generate context-aware emotion representations e1, e2, ..., ei, ..., en
for each word through emotion generator. ei is a vector with K dimension, K = |Φ|. Thus each element
eki in ei represents the degree that word wi expressed on the k-th emotion. Based on the word emotion
ei, the emotion generator calculates the sentence emotion ês = {ê1s, ..., êks , ..., êKs } 1 by an attention layer
between hs and each ei, where êks is a scalar represents the degree on the k-th emotion of the input sen-
tence. Finally, the classification layer takes hs and êi as input and outputs the classification results. We
will describe the components in detail in the following sections.

2.2 Sentence Encoder

We use two architectures as sentence encoder, one is the standard bi-directional Long Short Term Mem-
ory (Bi-LSTM) network (Hochreiter and Schmidhuber, 1997) and the other is the pretrained language
model BERT (Devlin et al., 2019). The two kinds of encoders have some differences and we will intro-
duce them respectively.

Bi-LSTM Encoder For input sentence S, a forward and a backward LSTMs are used to encode the
sentence. We denote ~hi as the i-th hidden states from the forward LSTM and ~hi as the state from the
backward LSTM. The final state is the concatenation of the two, hi = [~hi; ~hi]. To acquire the sentence
embedding, we average the hidden states hs = 1

n

∑n
i=0 hi.

BERT Encoder We also introduce a BERT (Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding) (Devlin et al., 2019) based encoder which is a powerful and effective pretrained
model. We let the BERT model take S as the first segment, the second segment is set to null. Thus the
input of BERT is defined as “[CLS] w1, ..., wi, ...wn [SEP ][SEP ]”. Position, segment, and token em-
beddings are added and fed into the self-attention layers. After encoding the segment, we use the contex-
tual representations hs = TCLS as the sentence embedding and collect the hidden states h1, ...,hi, ...,hn
for emotion generator.

2.3 Emotion Generator

The emotion generator is the same for Bi-LSTM and BERT. Its architecture is a Bi-LSTM network as
shown in Figure 1. The input of the emotion generator is the concatenation of word embedding and hid-
den states from the sentence encoder [hi; Ewi ]. Its output is the emotion representations e1, ..., ei, ..., en,
where ei is a K dimension vector and K is the number of emotions which varies among tasks. To
calculate ei, we first use a Bi-LSTM to encode [hi; Ewi ] as follows,

~ei = LSTM([hi; Ewi ],~ei−1, θf )

~ei = LSTM([hi; Ewi ], ~ei+1, θb)

where θf and θb denote all the parameters in the forward and backward LSTM, both the dimensions of
~ei and ~ei are K. Then we compute final e as Equation 2,

ei = LayerNorm(
1

2
(~ei + ~ei)) (1)

The “LayerNorm” is the layer normalization proposed by Ba et al. (2016). We constrain that the dimen-
sion of emotion representations equals to the number of emotion types |Φ|. The k-th element eki in ei
where 0 ≤ k < K corresponds to the j-th emotion in Φ. Thus ei is similar with the human annotated
emotion dictionaries where each dimension defines the emotion components in Φ. The difference is that
the emotion in ei is learned from the training corpus which avoids the mismatch problem. In addition, ei
of the word wi is dynamically generated according to a certain context. The biggest challenge is how to
align the K dimensions in ei with the k-th emotion type in Φ. This will be explained in Section 2.5.

1In the rest of this paper, we use bold characters to represent vector and normal characters to represent scalar.
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2.4 Emotion Classifier

For emotion classification, since emotion words are relatively more important for the model decision, we
adopt the widely used attention mechanism (Bahdanau et al., 2014) to select the key words. Specifically,
we use the sentence embedding hs to obtain the attention weight ai of ei as follows:

ai =
exp(ui)∑n
j=1 exp(uj)

(2)

ui = vT tanh(Whs + Uei) (3)

where W ∈ RK×∗, U ∈ RK×K and v ∈ RK are weight matrices, ∗ denotes the hidden size which is
decided by different encoders. The final sentence level emotion representation for S is calculated by

ês =
n∑
i=1

aiei (4)

ês = {ê1s, ..., êks , ..., êKs } is also a K dimension vector.
Then we apply a Multilayer Perceptron (MLP) with one hidden layer on the concatenation of hs and

ês for each emotion type lk in Φ as the following equation,

ok = Wk([hs; ês]) + bk (5)

where Wk and bk are weight matrix. ok = {o0k, o1k} is a two dimension vector which can be used by a
softmax function to predict the probability.

2.5 Joint Training and Inference

To guarantee the dimensions in ei learn reasonable emotions in |Φ|, we propose to align the emotion
representations with the K emotion types in |Φ|. One straightforward way is to add loss functions on
each dimensions of ei and use the emotion labels of the sentence to supervise its words. However,
our experiment shows that this way is too hard and would force all words to learn the same emotion
distribution which is unreasonable. In this section, we propose a soft strategy to jointly optimize the
classification and emotion lexicon. To align the dimensions in ês with K emotion types, we add the k-th
dimension êks to o1k from the k-th MLP layer and compute ôk as Equation 6,

ôk = {ô0k = o0k, ô
1
k = o1k + λêks} (6)

where λ is a pre-defined hyper-parameter. The reason we add êks to o1k is to measure how much contri-
bution êks makes to the final decision. In this way ei is connected with the emotion types in Φ. We apply
the softmax function on ôk for classification.

Formally, we train all the three components on a set of training examples {[Sk, lk]}Kk=1. The training
objective is:

J(θ) = arg max
θ

K∑
k=1

logP (lk|Sk, λês; θ) (7)

The objective consists of two parts: classification measures the accuracy of the ultimate classification
task, and lexicon measures the accuracy of dynamic annotation of the emotion lexicons in the input. We
use the Cross Entropy loss for classification. Once a model is trained, we select the emotion candidate
with the highest classification scores. For each emotion type, we set the positive threshold to 0.4 and
negative threshold to 0.6. Because we find that this setting performs slightly better than 0.5 and 0.5 on
the development set. In the rest of this paper, we use LSTM+EmNet to represent the Bi-LSTM-based
Emotion Network and BERT+EmNet for BERT-based Emotion Network.
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3 Experiments

3.1 Setup

Dataset We use the English subset of Twitter dataset provided by SemEval 2018 (Mohammad et al.,
2018). The dataset contains 11 emotions: anger, anticipation, disgust, fear, joy, love, optimism, pes-
simism, sadness, surprise and trust. The training data contains 6,838 tweets. The development and test
sets have 886 and 3,259 tweets respectively.

The data preprossing in the LSTM and BERT models are different. For LSTM models we preprocess
the corpus following (Baziotis et al., 2018) where the ekphrasis2 (Baziotis et al., 2017) tool is used.
The preprocessing steps included in ekphrasis are: Twitter-specific tokenization, spell correction, word
normalization, word segmentation (for splitting hashtags) and word annotation.The BPE (Sennrich et al.,
2015) is not applied and 800K unique words are collected. For BERT models, we just use the default
preprocessing procedures in BERT including tokenization and BPE to preprocess the corpus.

Evaluation Metrics We use the official competition metric provided by SemEval 2018 for comparison
that is the multi-label accuracy (or Jaccard index) (Mohammad et al., 2018). Multi-label accuracy is
defined as the size of the intersection of the predicted and gold label sets divided by the size of their
union. This measure is calculated for each tweet t, and then is averaged over all tweets T in the dataset:

Accuracy(Jaccard) =
1

|T |
∑
t∈T

Gt ∩ Pt
Gt ∪ Pt

(8)

where Gt is the set of the gold labels for tweet t, Pt is the set of the predicted labels for tweet t, and T is
the set of tweets. Apart from Jaccard, following Mohammad et al. (2018), we also calculated F1-micro
and F1-macro as secondary evaluations metrics, whose definitions are provided on the task webpage. 2

Baselines We compare our proposed methods with the following baselines:

• LSTM baseline A baseline model based on the LSTM network. We remove the emotion generator
of our Emotion Network in Figure 1 and directly use hs for classification.

• BERT baseline A baseline model based on BERT. Similar to the LSTM baseline, we remove the
emotion generator in Figure 1 and use the [CLS] embedding for classification.

• NTUA-SLP The Rank 1 method of SemEval-2018 Task 1 proposed by Baziotis et al. (2018). The
model is a two-layer LSTM network where external emotion lexicons are used to provide word level
affective knowledge.

• TCS Research The Rank 2 method of SemEval-2018 Task 1 proposed by Meisheri and Dey (2018).
The model uses two BiLSTM networks to encode tweets from different aspects. Then they concate-
nated the hidden states for the final classifications.

• DATN-2 A transfer learning method proposed by Yu et al. (2018) for emotion classification in
tweets. They used a shared-private architecture with the dual attention mechanism to encode tweets
into features.

• BERTbase+DK and BERTlarge+DK Ying et al. (2019) proposed to integrate domain knowledge
into BERT for emotion classification. We compare with both their BERTbase and BERTlarge mod-
els.

2https://competitions.codalab.org/competitions/17751
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ID Method Accuracy F1-micro F1-macro Average
1 NTUA-SLP (Baziotis et al., 2018) 58.8 70.1 52.8 60.6
2 TCS Research (Meisheri and Dey, 2018) 58.2 69.3 53.0 60.2
3 DATN-2 (Yu et al., 2018) 58.3 - 54.4 -
4 BERTbase+DK (Ying et al., 2019) 59.1 71.3 54.9 61.8
5 BERTlarge+DK (Ying et al., 2019) 59.5 71.6 56.3 62.5
6 Bi-LSTM Baseline 56.6 68.3 49.2 58.0
7 6 + EmNet 59.0† 70.1† 55.5† 61.5
8 BERTbase Baseline 58.0 70.1 53.0 60.3
9 8 + EmNet 59.6† 71.6† 56.5† 62.6

Table 2: Results of multi-label emotion classification on SemEval-2018. The results of “DATN-2” and
‘BERTbase+DK ” are taken from their papers. For “TCS Research” and “NTUA-SLP”, we cite the num-
ber from the official lead-board. † means the results is statistically significant with p < 0.01 compared
with the corresponding baseline (i.e. Bi-LSTM baseline or BERT baseline). The numbers in bold refers
to the highest score and “-” means the number is not applicable.

Implementation Details The basic settings of LSTM-based models follow Baziotis et al. (2018),
where the embedding size is set to 300 and the dimension of hidden states in sentence encoder is 618.
The word embeddings are taken from Baziotis et al. (2018) which is Twitter-specific word embeddings
pretrained on large-scale tweets by word2vec algorithm (Mikolov et al., 2013). The final vocabulary size
is 800K. The out-of-vocabulary words are simply replaced by a “UNK” symbol. We set the max length
to 128. The batch size is set to 128. For the emotion generator, the dimension of the hidden states is set
to 11 —— the number of the emotion types.

For BERT-based models, the model implementation is based on the PyTorch version 3. We use the
BERT-base architecture for all experiments where the hidden size is 768. All the texts are tokenized by
the BERT tokenizer. For word pieces of one word, we just treat them as individual word. The max length
is 512. The hidden dimension of the Bi-LSTM in emotion generator is set to 11 as well. The batch size
is set to 32.

All model parameters except the pretrained ones are initialized randomly with Gaussian distribution
(Glorot and Bengio, 2010). The stochastic gradient descent (SGD) algorithm is used to tune parameters.
In the update procedure, AdamW (Loshchilov and Hutter, 2017) algorithm is used with a learning rate
of 5e-5 for BERT based models and Adam (Kingma and Ba, 2014) algorithm is used with a learning rate
of 1e-3 for LSTM based models. The pretrained parameters are also updated during training. All of the
models are trained on 4 NVIDIA GTX-1080 GPUs.

3.2 Results

Table 2 shows the comparison between our methods and the baselines. The first blocks are the state-
of-the-art models on SemEval-2018 Task 1, where we directly cite the results from their paper or the
lead-board.

We first consider the LSTM-base models. As expected, our Bi-LSTM baseline of 6© has the worst
average performance compared with 1©- 3© as the three facilitate the LSTM model with either transfer
learning or external emotion lexicons. When we add our EmNet to 6©, the results of 7© achieves the best
performance among the LSTM models. Comparing 7© with 1© the top 1 model which leverages external
emotion lexicons, our model gains 0.2 more score on Accuracy and shows more consistent improvement
on F1-macro score (+2.7 points). In terms of average performance, 7© achieves 0.9 more scores. This is
mainly because our EmNet can jointly model the emotion lexicon and classification, where the emotion
lexicon is dynamically built. The results demonstrate that our context-aware emotion lexicons are more
effective and can avoid the mismatch problem suffered by external resource.

3https://github.com/huggingface/transformers
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Emotion LSTM +EmNet BERT +EmNet
anger 76.4 78.6 (+2.2) 78.9 79.4 (+0.5)
anticipation 9.9 27.4 (+17.5) 11.1 24.6 (+13.5)
disgust 73.6 74.3 (+0.7) 75.7 76.2 (+0.5)
fear 69.9 71.5 (+1.6) 74.9 77.0 (+2.1)
joy 83.3 83.9 (+0.6) 83.5 84.9 (+1.4)
love 50.3 63.2 (+12.9) 57.3 63.5 (+6.2)
optimism 72.6 72.6 (+0.0) 74.3 76.0 (+1.7)
pessimism 22.6 34.6 (+12.0) 35.0 45.5 (+10.5)
sadness 69.6 69.4 (-0.2) 69.6 70.1 (+0.5)
surprise 11.5 19.5 (+8.0) 17.7 19.8 (+2.1)
trust 0.01 15.7 (+15.7) 5.0 4.9 (-0.1)

Table 3: F1 on binary classification performance on 11 emotion types.

In terms of BERT models, the baseline 8© is strong due to the abundant pre-training data and the deep
structure. Based on BERT model 4© and 5© integrate domain knowledge into both BERT base and large
models which achieve consistent improvements. After adding our EmNet to BERT (we only consider
BERT base architecture), model 9© achieves the best performance on all the three metrics. Though we
implement EmNet on the base settings, we achieve better results than the BERT large model 5© which
shows the effectiveness of our EmNet.

3.3 Performance of Classification on Different Emotions

In this section, we test the performance on the emotion types separately in terms of testset. When
considering a certain type, we use the F1-score as metric which is the harmonic mean of precision and
recall. Table 3 shows the performance (F1-score) on 11 emotion types. Note that the score of “trust” is
very low due to the low percentage of occurrence in both training data and testset. For both the LSTM
and BERT model, EmNet achieves improvements in ten out of the eleven types. This is mainly due to the
capacity of EmNet that can assign words with context-aware emtions, thus emotion ambiguity problem
can be alleviated effectively.

3.4 Effect of λ

BERT baseline

LSTM baseline

Figure 2: Performance changes in terms of λ on de-
velopment set.

In this part, we discuss the effect of λ in Equa-
tion 7. Figure 2 shows the accuracy changes
in terms of different λ. The blue lines refer to
the BERT models and the red lines refer to the
LSTM models. The x-axis is λ and y-axis is ac-
curacy. We can see that the EmNet achieves the
highest accuracy when λ is set to 1. Thus in all
the experiments, we set λ = 1. It is interesting
to find that when λ = 0, our EmNet still outper-
form the baseline models. This could be caused
by that EmNet can learn emotion knowledge im-
plicitly without λêks in Equation 6, which still
helps the classification.

3.5 Analysis of Learned Emotion Lexicons

As aforementioned, one strong point of our ap-
proach over the external emotion lexicon meth-
ods is the possibility to dynamically adapt the
lexicon to different domains. To validate our claim, we compare our learned emotion lexicons with the
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external dictionaries used in Baziotis et al. (2018) on the SemEval-2018 task 1, which contains 11 distinct
emotion labels. Table 4 lists the results. As seen, the external lexicon dictionary only has 4 overlapped
emotion labels, which covers 15.3% emotion vocabulary. These results confirm our claim that the exter-
nal lexicon methods suffer from the domain mismatch problem. The proposed EmNet approach solves
this problem by dynamically learning emotions for each word in different context, which can cover all
the words and emotions in the given task.

Lexicons # Label Coverage Ratio
Label Word

External 4 36.4% 15.3%
Ours 11 100% 100%

Table 4: Statistic of the external lexicon
and our learned lexicon.

We give a human evaluation of the learned word level
emotions. 3 experienced annotators are invited. We select
100 tweets from the testset. For each sentence, our Em-
Net computes attention weights for its words and generate
emotion values for each word. We simply select 2 words
with the highest attention weights as the indicative words
in the classification, together with their 2 emotions with
the largest emotion values. Totally, we have 200 words to
annotate. The annotators are asked whether the words are
reasonably selected and whether their emotions are correctly predicted. The final accuracy is computed
as follows:

Accuracy =
1

200

100∑
i=1

1∑
j=0

δ
wj

i
(9)

where w is one of the 200 words, i is the word index and j is the index of the two emotions. δ
wj

i
= 1

only when the wi and its jth emotion are both annotated reasonable. The final accuracy is the average
result of the 3 annotators and we get 72.9%. This illustrates that our EmNet can select reasonable words
and predict high quality emotions.

3.6 Visualization of Word Emotion and Attention

In this section, we give a qualitative analysis to help to understand how EmNet works. When classifying
a given sentence, there exist differences in the contributions of different words. The EmNet model is able
to generate dynamic word emotions and select the most informative words using attention mechanism.
The visualization of the attention layer and learned emotion representations are shown in Figure 3. We
focus on the tweets T1 and T2 in Table 1. We take the results from the LSTM+EmNet as examples. Both
two cases are correctly predicted by our model.

For T1 in Figure 3 (a), it can be seen that the attention focuses on “joke” and “ducking”, this means
they are the most informative words in model decision. Then we select the two words and show their
emotions in below. The two words in this case are more likely to represent disgust emotion. For T2 in
Figure 3 (a), the attention is paid to word “joke”. When we show its emotion in this context, we find that
this time “joke” is more likely to represent joy. This illustrates that our model can effectively capture the
word level emotions based on certain context, which help to facilitate the classification accuracy.

4 Related Work

Emotion classification has been extensively studied due to its wide applications in recent years. Differ-
ent from sentiment classification which can be treated as either a single-label classification task (e.g.,
positive, negative), emotion classification or affect detection is a multi-label classification task which is
to detect a discrete set of emotions present in a given sentence such as anger, joy, sadness etc (Dalgleish
and Power, 2000; Plutchik, 2001).

Traditional methods such as lexicon, n-gram and graph models have been used. Xu et al. (2012) pro-
posed a coarse-to-fine strategy for multi-label emotion classification. They dealt with the data sparseness
problem by incorporating the transfer probabilities from the neighboring sentences to refine the emotion
categories. Li et al. (2015) recast multi-label emotion classification as a factor graph inferring problem in
which the label and context dependence are modeled as various factor functions. Yan and Turtle (2016)
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words anger anticipation disgust fear joy love optimism pessimism sadness surprise trust attention words
this -1.148 0.603 0.43 0.144 1.138 -1.916 1.261 0.414 0.638 -0.976 -1.365 0.017 this
is -1.143 0.555 0.801 0.113 1.209 -1.892 0.933 0.241 0.838 -1.068 -1.351 0.017 is
a -0.813 0.455 0.954 -0.045 1.28 -1.859 0.813 0.198 0.886 -1.117 -1.52 0.024 a
joke -0.079 -0.214 1.642 -0.262 1.085 -2.225 0.543 0.197 0.72 -0.907 -1.304 0.125 joke
really -0.55 0.22 1.243 -0.091 1.265 -2.053 0.967 0.091 0.583 -1.142 -1.327 0.027 really
how -0.721 0.447 1.166 0.056 1.148 -1.943 0.953 0.06 0.693 -1.287 -1.34 0.017 how
long -0.793 0.596 0.987 0.092 1.161 -1.899 0.951 0.015 0.787 -1.26 -1.395 0.014 long
will -0.853 0.72 1.025 0.191 1.051 -1.871 0.927 0.018 0.747 -1.324 -1.374 0.011 will
he -0.71 0.705 1.072 0.167 1.117 -1.855 0.809 0.034 0.727 -1.303 -1.503 0.013 he
keeps -0.715 0.675 1.106 0.119 1.032 -1.927 0.737 0.098 0.873 -1.307 -1.437 0.015 keeps
diving -0.58 0.546 1.32 -0.036 1.003 -1.898 0.564 0.128 0.967 -1.343 -1.421 0.022 diving
and -0.35 0.356 1.682 -0.226 0.827 -2.164 0.21 0.23 1.001 -1.192 -1.143 0.053 and
ducking 0.396 -0.345 1.99 -0.107 0.451 -2.49 -0.33 0.683 0.501 -0.821 -0.684 0.645 ducking

Attention
Word this is a joke really how long will he keeps diving and ducking

Emotion anger anticipation disgust fear joy love optimism pessimism sadness surprise trust
joke
ducking

(a)

words anger anticipation disgust fear joy love optimism pessimism sadness surprise trust attention words
<user> -1.6 0.348 -0.428 0.432 1.683 -0.851 1.677 0.004 -0.186 -0.853 -0.886 0.055 <user>
that -1.538 0.378 -0.253 0.505 1.646 -0.902 1.545 -0.036 0.149 -1.04 -1.116 0.052 that
' -1.544 0.375 -0.137 0.481 1.725 -0.856 1.487 -0.294 0.227 -1.056 -1.061 0.047 '
s -1.459 0.322 -0.113 0.38 1.767 -0.828 1.458 -0.378 0.397 -1.098 -1.108 0.054 s
the -1.307 0.175 -0.091 0.152 1.852 -0.805 1.514 -0.324 0.418 -1.107 -1.163 0.078 the
joke -0.835 -0.555 0.385 -0.108 2.025 -1.199 1.498 -0.137 0.195 -0.823 -1.208 0.328 joke
. -1.202 0.191 -0.051 0.294 1.645 -1.151 1.769 -0.295 0.198 -1.164 -0.948 0.061 .
i -1.356 0.508 -0.187 0.481 1.554 -1.02 1.674 -0.296 0.145 -1.233 -0.942 0.037 i
know -1.426 0.654 -0.121 0.516 1.458 -1.006 1.577 -0.308 0.285 -1.301 -0.987 0.031 know
it -1.464 0.711 -0.096 0.556 1.428 -0.941 1.512 -0.315 0.324 -1.349 -1.012 0.029 it
' -1.493 0.711 0.072 0.644 1.355 -1.028 1.432 -0.397 0.413 -1.43 -0.922 0.026 '
s -1.467 0.709 0.139 0.695 1.242 -1.106 1.307 -0.415 0.708 -1.455 -0.999 0.028 s
incense -1.314 0.63 0.337 0.721 0.891 -1.47 1.07 -0.148 1.192 -1.487 -1.095 0.05 incense
. -1.402 0.396 0.57 0.696 0.628 -1.971 0.82 -0.456 1.595 -1.038 -0.529 0.123 .

Attention
Word <user> that ' s the joke . i know it ' s incense

Emotion anger anticipation disgust fear joy love optimism pessimism sadness surprise trust
joke

(b)

Figure 3: Visualization of attention weights and word emotions for tweets in Table 1. (a) the case study
of T1 in Table 1. (b) the case study of T2 in Table 1. The color in deep means more weights. We highlight
the words with larger attention weights.

built a separate binary classifier for each emotion category to detect if an emotion category were present
or absent in a tweet with traditional unigram features.

The neural network models have also been used in emotion classification. For example, Zhou et
al. (2016) proposed an emotion distribution learning (EDL) method, which first used recursive auto-
encoders (RAEs) to extract features and then conducted multi-label emotion classification by incorpo-
rating the label relations into the cost function. He and Xia (2018) provided an end-to-end learning
framework by integrating representation learning and multi-label classification in one neural network.
Recently, external knowledge has been widely employed for this task. One representative research line is
the transfer learning. Yu et al. (2018) proposed a new transfer learning architecture to divide the sentence
representation into two different feature spaces, which are expected to respectively capture the general
sentiment words and the other important emotion-specific words via a dual attention mechanism. They
transferred the sentiment classification knowledge to emotion classification tasks. Baziotis et al. (2018)
proposed a Bi-LSTM architecture equipped with a multi-layer self attention mechanism. The attention
mechanism can identify salient words in tweets, as well as gain insight from the models and make them
easier to interpret. They leveraged a small scale annotated emotion dictionary and treated the annotated
as fixed word affective features. They achieved the highest accuracy in SemEval 2018 workshop. Though
the external dictionaries are effective, they are always task specific, different in granularity and limited in
scale. Different from these work, we propose an emotion network to jointly learn emotion lexicons and
classification. The learned emotion lexicons depend on a certain context, which are effective for emotion
disambiguation and avoid the domain mismatch problem.

5 Conclusion and Future Work

In this paper, we propose a novel emotion network. Our model can jointly learn word emotions and
conduct classification. We apply the emotion network to both LSTM and BERT models. Experimental
results on the public Twitter dataset show that our model can learn reasonable word emotions, which
can boost the classification and achieve significant improvements over several baseline models. Further
analyses demonstrate the effectiveness of the proposed methods and intuitively interpret how our model
works. In future work, along this research direction, we will try to apply our method to other tasks such
as aspect-level classification to verify the effectiveness.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization.



3244

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. 2017. Datastories at semeval-2017 task 4: Deep lstm
with attention for message-level and topic-based sentiment analysis. In Proceedings of the 11th international
workshop on semantic evaluation (SemEval-2017), pages 747–754.

Christos Baziotis, Nikos Athanasiou, Alexandra Chronopoulou, Athanasia Kolovou, Georgios Paraskevopou-
los, Nikolaos Ellinas, Shrikanth Narayanan, and Alexandros Potamianos. 2018. Ntua-slp at semeval-2018
task 1: Predicting affective content in tweets with deep attentive rnns and transfer learning. arXiv preprint
arXiv:1804.06658.

Tim Dalgleish and Mick Power. 2000. Handbook of cognition and emotion. John Wiley & Sons.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural net-
works. In Aistats, volume 9, pages 249–256.

Huihui He and Rui Xia. 2018. Joint binary neural network for multi-label learning with applications to emotion
classification. In CCF International Conference on Natural Language Processing and Chinese Computing,
pages 250–259. Springer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Shoushan Li, Lei Huang, Rong Wang, and Guodong Zhou. 2015. Sentence-level emotion classification with label
and context dependence. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1045–1053.

Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101.

Hardik Meisheri and Lipika Dey. 2018. TCS research at SemEval-2018 task 1: Learning robust representations
using multi-attention architecture. In Proceedings of The 12th International Workshop on Semantic Evaluation,
pages 291–299, New Orleans, Louisiana, June. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko. 2018. SemEval-2018
task 1: Affect in tweets. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages
1–17, New Orleans, Louisiana, June. Association for Computational Linguistics.

Robert Plutchik. 2001. The nature of emotions: Human emotions have deep evolutionary roots, a fact that may
explain their complexity and provide tools for clinical practice. American scientist, 89(4):344–350.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909.

Jun Xu, Ruifeng Xu, Qin Lu, and Xiaolong Wang. 2012. Coarse-to-fine sentence-level emotion classification
based on the intra-sentence features and sentential context. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pages 2455–2458. ACM.

Jasy Liew Suet Yan and Howard R Turtle. 2016. Exposing a set of fine-grained emotion categories from tweets.
In 25th International Joint Conference on Artificial Intelligence, page 8.

Wenhao Ying, Rong Xiang, and Qin Lu. 2019. Improving multi-label emotion classification by integrating both
general and domain knowledge. W-NUT 2019, page 316.



3245

Jianfei Yu, Luı́s Marujo, Jing Jiang, Pradeep Karuturi, and William Brendel. 2018. Improving multi-label emotion
classification via sentiment classification with dual attention transfer network. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 1097–1102, Brussels, Belgium, October-
November. Association for Computational Linguistics.

Deyu Zhou, Xuan Zhang, Yin Zhou, Quan Zhao, and Xin Geng. 2016. Emotion distribution learning from texts.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 638–647.


	Introduction
	Emotional Network
	Framework
	Sentence Encoder
	Emotion Generator
	Emotion Classifier
	Joint Training and Inference

	Experiments
	Setup
	Results
	Performance of Classification on Different Emotions
	Effect of 
	Analysis of Learned Emotion Lexicons
	Visualization of Word Emotion and Attention

	Related Work
	Conclusion and Future Work

