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Abstract

Recently, many KB-to-text generation tasks have been proposed to bridge the gap between
knowledge bases and natural language by directly converting a group of knowledge base triples
into human-readable sentences. However, most of the existing models suffer from the off-topic
problem, namely, the models are prone to generate some unrelated clauses that are somehow
involved with certain input terms regardless of the given input data. This problem seriously de-
grades the quality of the generation results. In this paper, we propose a novel dynamic topic
tracker for solving this problem. Different from existing models, our proposed model learns
a global hidden representation for topics and recognizes the corresponding topic during each
generation step. The recognized topic is used as additional information to guide the generation
process and thus alleviates the off-topic problem. The experimental results show that our pro-
posed model can enhance the performance of sentence generation and the off-topic problem is
significantly mitigated.

1 Introduction

In recent years, many knowledge bases (KBs) have been built to incorporate different kinds of human
knowledge into a structured triple representation such as Freebase (Bollacker et al., 2008), DBpedia
(Auer et al., 2007), YAGO (Suchanek et al., 2007) and Wikidata (Vrandečić and Krötzsch, 2014). Many
tasks including question answering and recommendation systems have benefited from KBs (Wang et al.,
2017) as external knowledge sources to improve the results. Though KBs have achieved great success in
supporting and improving various text mining tasks, they are still incomprehensible to humans due to the
over-rigid structured format. Reading a bunch of triples always annoys people since the form is not easily
understandable especially to people who have never heard about KBs. In order to address this problem,
recently some researchers have proposed the KB-to-text generation task (Lebret et al., 2016; Gardent et
al., 2017a; Gardent et al., 2017b) to bridge the gap between KBs and natural language. This KB-to-text
generation problem aims at directly converting a group of KBs triples into human-readable sentences.
For example, given a triple group ( 〈Bill Gates, BirthPlace, Seattle 〉, 〈Bill Gates, FounderOf, Microsoft
〉), the goal is to generate a comprehensible sentence such as “Bill Gates, the founder of Microsoft, was
born in Seattle.”

Some works employ the techniques in the text generation area (Gatt and Krahmer, 2018) to tackle the
KB-to-text problem. Though these models have achieved some success, there are still quite many limi-
tations. One major drawback of existing models is that most of them suffer from the off-topic problem.
Consider the example given in Figure 1, the topic of the target sentence is expected to change from “per-
son” to “company” in the generation process. However, a model is prone to generate unrelated off-topic
clauses like “Bill is a commonly used name in the USA.” which is not consistent with the given input
data and we recognize this phenomenon as the off-topic problem. This is because during the training
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Bill Gates,  was born in Seattle, 1955. He founded Microsoft in 1975

<Bill Gates, BirthPlace, Seattle>, <Bill Gates, BirthYear, 1955> 
<Bill Gates, FounderOf, Microsoft>, <Microsoft, StartYear, 1975>

person topic

off-topic

while Bill is a commonly used name in the USA.
company topic

Figure 1: The off-topic problem. During the generation process, the given data ranges from the topic of
person topic to the topic of company. However, the models are prone to generate off-topic sentences just
because the models associate this kind of information with the word “Bill”.

stage, the models associate this kind of information with some input words like “Bill”. In the testing or
operational stage, when these words occur in the given data, the models are prone to generate off-topic
sentences related to these words regardless of the given data.

To solve the off-topic problem, we propose to utilize the topic information as a piece of clue in the
sentence generation process. Unfortunately, the corresponding topic information is not available and
there is no existing dataset containing the topic annotations. Therefore, it is difficult to adopt supervised
learning approaches for detecting topics. Moreover, it is even more expensive to annotate the dynamic
change of topic information in one sentence, as exemplified by the topic changes from “person” to
“company” in Figure 1. Therefore, we investigate the task of automatically detecting the hidden topic
information and incorporating such information for the generation of sentences. Many works have been
proposed to utilize the static topic information to improve the generation performance. Chen et al. (2016)
and Ou et al. (2018) propose to represent the topic for each sentence as a learnable vector. The topic is
predicted by the input sentence and is used to enhance the generating phase. Xing et al. (2017) and Zhang
et al. (2016) detect the topic representation by applying a pre-trained LDA model on the input sequence.
Moreover, Choudhary et al. (2017) and Ou et al. (2018) predict the topic representation directly from the
input sequence using Recurrent Neural Networks (RNN). All the above methods make an assumption
that during generation the topic does not change so as to make the problem tractable, which scarifies the
advantage of modeling the dynamic nature of topic information.

We propose a novel Dynamic Topic Tracker (DTT) neural model to tackle the problem. Different from
existing models, our proposed DTT model learns how the target sentence topic dynamically evolves and
how to use the topic information to guide the generation process simultaneously. Specifically, our DTT
model is a neural model composed of four parts, namely, the state tracker, the topic attention, the global
topic bank, and the topic memory. The state tracker captures the decoder state for each generation step.
The topic attention uses the captured decoder state to focus on the input hidden representation to get a
local topic state. The topic bank learns a global hidden topic representation and it calculates the most
suitable local topic representation for each local topic state. The topic memory is used to memorize
the previous local topic representation and computes the dynamic topic state for each generation step to
guide the target sentence generation procedure.

2 Related Work

Recently, various data-to-text tasks have been proposed handling different kinds of data. Gardent et al.
(2017a; Gardent et al. (2017b) construct the WebNLG dataset which aims at generating text descriptions
based on DBpedia (Auer et al., 2007) triples. Lebret et al. (2016) and Chisholm et al. (2017) propose
to generate a person’s biography based on Wikipedia’s infobox. Fu et al. (2020a) build the WikiEvent
dataset aiming at generating text based on an event chain. Novikova et al. (2017) generate restaurant
reviews based on the information of restaurant attributes. Wiseman et al. (2017) generate basketball
match descriptions based on the game records. Moreover, Fu et al. (2020c) propose to directly train the
model on partially-aligned data called WITA while Fu et al. (2020b) propose to train a model based on
purely unaligned data unsupervised with a dual learning framework. All of the above problems aim at



2371

converting some formatted data into natural language texts facilitating more understandability.
Some models have proposed to solve the KB-to-text problem by utilizing various information of the

KBs. Chisholm et al. (2017) propose to directly rank the triples by relation frequency and flatten the
triples to pure text. The flattened text is used as the input for a sequence-to-sequence model to gener-
ate the output text. Vougiouklis et al. (2018) propose to use a triple encoder to encode each triple into
a hidden vector. The decoder input is constructed by simply concatenating all of the hidden vectors.
Trisedya et al. (2018) propose a GTR-LSTM model to encode not only the triple information, but also
the structure information of the entity graph into hidden semantic space. Jain et al. (2018) exploit a
mixed hierarchical attention based encoder-decoder model to leverage the structure and content infor-
mation. Shimorina and Gardent (2018) propose to use delexicalization and copy mechanism to enhance
the performance of the sequence-to-sequence framework. Konstas and Lapata (2013) and Wiseman et
al. (2018) propose to use template based methods to generate the text by using the extracted template
information in the training set. Cheng et al. (2020) propose to generate text description for entities by
utilizing the knowledge distilled from the existing knowledge base. However, none of the above works
consider the topic information in the KB-to-text generation process and thus not directly comparable to
our work proposed in this paper.

Some works in text generation (Gatt and Krahmer, 2018) have been proposed to incorporate the topic
information to help generate the text. These ideas can be adopted in KB-to-text generation. Tars and
Fishel (2018) and Johnson et al. (2017) add an extra topic tag into the source sentence for incorporating
the topic information into the model. The whole model is built based on the sequence-to-sequence
(Sutskever et al., 2014; Cho et al., 2014; Klein et al., 2017) framework with standard attention (Bahdanau
et al., 2014; Luong et al., 2015). Mikolov and Zweig (2012) as well as Liu et al. (2015) propose to use
the topic information as extra features to enhance the performance of the language model and word
embedding. Chen et al. (2016) and Ou et al. (2018) use the same idea to utilize the topic feature to
enhance the generation of the text. However, all these methods assume that the topic information is
known in advance.

Some methods investigate the problem setting that the topic information is not given and needs to be
detected. For example, the topic information can be detected from Latent Dirichlet Allocation (LDA).
Zhang et al. (2016; Dziri et al. (2018; Wang et al. (2019) detect the topic distribution of words via
topic model to enhance the translation procedure. Xing et al. (2017) propose a TA-Seq2Seq framework
which uses the word topic information from LDA to generate the responses in chatbot dialog systems.
Moreover, some researchers propose to directly detect the topic vector from the input sentences in the
sequence-to-sequence framework. For example, Choudhary et al. (2017) propose to train a classifier to
predict the topic of the source sentence and use it to help generate the dialog response. Ou et al. (2018)
also propose to predict the topic vector directly from the input sequence. Dathathri et al. (2020) propose
to use the topic information as a reward function. However, none of the existing works can capture the
dynamic topic information suitable for the KB-to-text generation problem.

3 Method

3.1 Our Framework

The KB-to-text generation task aims to generate one or more sentences based on a given set of triples.
For example, given a triple group {〈 Bill Gates, BirthPlace, Seattle〉, 〈Bill Gates, FounderOf, Microsoft
〉} as input, we aim at generating a sentence such as “Bill Gates, the founder of Microsoft, was born
in Seattle.”. Formally, the input is a set of triples which can be denoted as {〈h1, r1, t1〉, 〈h2, r2, t2〉,
· · · , 〈hñ, rñ, tñ〉}, in which hi, ri, ti stands for the ith head, relation and tail entity respectively. ñ is
the number of the triples. The goal is to maximize the conditional probability of the generated text
(s1, s2, · · · , sm) given such input in the training set. We denote ki = 〈hi, ri, ti〉, The problem can be
expressed as:

max
θ
pθ(s1, s2, · · · , sm|{k1, k2, · · · , kñ}),

in which θ denotes all the parameters in the model and m is the length of the generated text.
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Figure 2: Overview of our framework. Due to the limited space, we omit the traditional attention layer.
This figure shows the first time step of the decoding process.

Our proposed framework is shown in Figure 2. It is built on top of a sequence-to-sequence neu-
ral structure. The encoder is similar to the standard sequence-to-sequence model while the decoder is
equipped with the novel Dynamic Topic Tracker (DTT) model.

Following the idea of (Chisholm et al., 2017), we construct the input by listing all words in the triple
elements one after another (i.e. [h1, r1, t1, h2, r2, t2, · · · , hñ, rñ, tñ]) to construct a sequence which is
denoted as X = [x1,x2, · · · ,xn], X ∈ Rd×n in which d is the embedding size and n is the length of all
input words. xi is the embedding for each word. Afterwards, the sequence is encoded by an encoder (left
bottom part of Figure 2) into a hidden context vector hc. We use a stacked LSTM layer as the encoder:

H = LSTM(X),

where H = [h1,h2, · · · ,hn], H ∈ Rh×n is the output hidden matrix of the input sequence in which
each column is the hidden vector representation of an input word. h is the size of the output hidden
vectors. hc = hn ∈ Rh is the last element of H which can be regarded as a hidden representation of the
full input sequence.

We design a novel decoder (depicted on the right hand side of Figure 2) which exploits the dynamic
topic information for each generation step. This decoder generates the output sentence based on the
hidden context vector hc and the last time step’s output vector yt−1 ∈ Rd. Therefore, the input and the
output are similar to the standard decoder. However, different from traditional decoders, our proposed
new decoder contains the DTT model which is capable of detecting the dynamic topics and incorporating
these topic vectors into the generation process. More description for DTT will be presented in the next
sub-section. The new decoding procedure can be expressed as:

ut = DTT([hc;yt−1])

zt = LSTM([hc;yt−1;ut])

yt = Attn(zt,H),

in which [hc;yt−1] ∈ Rh+d is the concatenation of hc and yt−1. The DTT model detects the topic vector
ut for the current generation step based on this input. [hc;yt−1;ut] ∈ Rh+d+u is the concatenation of
the three vectors. It is used as the input vector for the following decoder layer. u is the size of the
dynamic topic state vector ut. Attn is a commonly used attention layer for the decoder which is similar
with (Luong et al., 2015).
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3.2 Dynamic Topic Tracker (DTT)

Our proposed DTT aims at capturing the dynamic topic information in each generation step. It represents
each topic by a vector which will be learned during training. When given a new set of triples, the
model will automatically find the most suitable topic vector for each generation step and use it to guide
the prediction of the output words. It contains four components namely the state tracker, the topic
attention component, the global topic bank, and the topic memory. The state tracker obtains a hidden
representation of the current decoder step’s state. The topic attention component utilizes this state to
get a local topic state vector. This vector is then fed into the global topic bank to get the local topic
representation of the current local topic state. Afterwards, the local topic representation is sent to the
topic memory which get a dynamic topic state based on the existing previous states. The details of each
component are described in the following sub-sections.

3.2.1 State Tracker
The state tracker is used to capture the status of the current generation step. It is composed of several
stacked LSTM layers and will output a state vector. The input sentence hidden vector hc and the output
of the last time step yt−1 are concatenated and fed to a stacked LSTM layer which can be expressed as:

qt = LSTM([hc;yt−1]),

in which qt ∈ Rh is the hidden representation of the current state and is used to calculate the topic
representation by the following topic attention component. The state tracker is similar to a decoder.
However, there is no dropout layer for the output and the state tracker is trained to capture the state of
the current generation step rather than directly predicting the output representation.

3.2.2 Topic Attention
The topic attention uses the current state qt of the state tracker to calculate the attention of each input
sequence’s hidden representation [h1,h2, · · · ,hn]. A relevance score is calculated as:

q̃t = Wqqt + bq

ct = HT q̃t,

in which q̃t ∈ Rh is the transformed state vector and Wq ∈ Rh×h,bq ∈ Rh is the transformation matrix
and the corresponding bias vector. ct ∈ Rn is calculated by a simple vector inner product between q̃t
and each hi. Each element in ct is the similarity score for each hi. Afterwards, the score vector ct is
sent to a softmax layer to calculate the normalized attention to each hi:

at[i] =
ect[i]∑n
j=1 e

ct[j]
,

in which at is the normalized attention and at[i] is the ith element of at. Finally, the topic state is
calculated by a weighted sum of each hi by the attention vector at:

rt = Hat.

rt is the local topic state vector indicating the topic state of the current decoder. The topic attention has
a similar structure with traditional attention. The difference is that the output rt will be used to find a new
topic vector in the topic bank to make the topic representation more general for each kind of sentence.

3.2.3 Global Topic Bank
The global topic bank acts as a database to store the trained hidden topic representation which is used by
all sentences. Note that different from the traditional topic representation which is a word distribution
(Blei et al., 2003), our topics are represented by dense vectors. It consists of two matrices of the same
size, namely P,Q ∈ Ru×l, in which u is the size of the topic vector and l is the number of the topic
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vectors. l is a hyperparameter that can be assigned by the user. When rt is calculated, it will be used to
calculate a similarity score for each topic by a simple vector inner product. The calculation is as follows:

w̃t = Prt,

in which w̃t ∈ Rl is a score vector indicating the similarity score of each topic to rt. It will also be
normalized with a softmax function to get the probability of each topic:

wt[i] =
ew̃t[i]∑l
j=1 e

w̃t[j]
.

The matrix P can be regarded as a projection matrix which spans in the topic state semantic space. After
the projection on P, the information in rt that is irrelevant to the topic will be eliminated. The topic is
represented by the combination coefficients of topics instead of a simple vector. Afterwards, the topic
representation is obtained by the weighted sum of each topic representation with the probability vector
wt:

ũt = Qwt,

in which ũt is the local topic representation. It should be noted that here we use another matrix Q to
get the final topic representation. The reason is that P and Q are the representation of topics in different
semantic spaces. Specifically, P represents topics in the topic state space for the state tracker while Q
represents topics in the topic representation space for the generation process.

3.2.4 Topic Memory
Since ũt is calculated only by the current decoder state, it may lack some historical information. For
some words that have no obvious topic information such as “the”, “have”, it is necessary to refer to the
topic of the last step. Therefore, we design a topic memory component to help keep the state of the
history topic and it can be used to help build the current topic information. We use a simple RNN to help
memorize the history information. The topic memory can be expressed as:

ut, h̃t = RNN(ũt, h̃t−1),

in which ut is the dynamic topic state vector and h̃t is the hidden state of the RNN. The history topic
information is stored in h̃t and will be passed to help the next step’s generation.

4 Experiments

4.1 Dataset
We evaluate our framework on the release v2 of KB-to-text generation dataset WebNLG (Gardent et
al., 2017a) 1. WebNLG dataset contains KB triples and their associated sentences. The KB triples are
sampled from DBPedia, while the corresponding text is written by crowdsourcing. Each sentence is also
given a domain tag (e.g. Building, City and etc.). The statistics of the dataset is shown in Table 1.

Train Dev Test
Size 34,352 4,316 4,224

Table 1: Statistics of WebNLG dataset.

4.2 Comparison Models
We compare our DTT with several topic based models. Our main focus will be on those models that can
detect topic information (e.g., LDA-S2S and T2S) and consider dynamic topics such as DLDA-S2S. We
also compare with models that use additional given topic information (e.g., TopicTag and TopicFeature).

1https://gitlab.com/shimorina/webnlg-dataset
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BLEU ROUGEL NIST METEOR CIDEr
S2S 0.5444(1.2e-2) 0.6608(9.9e-3) 10.04(2.0e-1) 0.3990(7.0e-3) 3.525(9.4e-2)
TopicTag 0.5558(1.0e-2) 0.6732(8.1e-3) 10.18(1.6e-1) 0.4021(5.8e-3) 3.579(1.0e-1)
TopicFeature 0.5501(4.9e-3) 0.6667(6.5e-3) 10.09(6.8e-2) 0.3989(2.9e-3) 3.527(6.6e-2)
LDA-S2S 0.5591(1.3e-2) 0.6689(1.2e-2) 10.22(2.1e-1) 0.4046(8.2e-3) 3.571(1.3e-1)
DLDA-S2S 0.5650(9.2e-3) 0.6809(5.3e-3) 10.20(1.2e-1) 0.3998(4.6e-3) 3.556(7.9e-2)
T2S 0.5592(8.8e-3) 0.6710(9.2e-3) 10.19(1.1e-1) 0.4034(4.8e-3) 3.552(7.1e-2)
DTT 0.5704(5.9e-3) 0.6823(3.5e-3) 10.39(7.6e-2) 0.4116(2.2e-3) 3.703(3.3e-2)
DTT w/o memory 0.5680(7.3e-3) 0.6801(4.6e-3) 10.35(9.0e-2) 0.4099(3.9e-3) 3.672(7.3e-2)

Table 2: Main results. The parentheses give the standard deviations. The best score and the smallest
variance are marked in bold font.

We implement all the baseline models to make them more comparable with each other. The comparison
models are as follows:

S2S follows the model proposed by Shimorina and Gardent (2018) which uses a standard sequence-
to-sequence model with attention.

TopicTag: follows the model proposed by Johnson et al. (2017; Tars and Fishel (2018). It utilizes
additional information namely the domain tag provided by the dataset for each sentence to serve as the
topic information. Precisely, the domain tag of each sentence is added as a new word at the end of each
sentence similar to Johnson et al. (2017; Tars and Fishel (2018). The modified sentences are then fed
into the S2S model.

TopicFeature follows the model proposed by (Chen et al., 2016; Ou et al., 2018), this model learns
a vector representation for each domain tag rather than just adding it as an additional word. For each
domain, we denote it as a one-hot vector and the one-hot vector is fed into a feedforward layer to get the
topic membership vector, which is then used as the extra feature to predict the decoder output.

LDA-S2S follows the model proposed by Zhang et al. (2016; Xing et al. (2017), we first train an LDA
model on the source sentences of the training dataset. Then, the sentence topic is calculated by averaging
the topic distribution on each word and it is used as an extra context feature in the decoder similar to the
TopicFeature model.

DLDA-S2S follows the model proposed by Mikolov and Zweig (2012; Dziri et al. (2018), we dynam-
ically calculate the topic distribution for each word by summing the source word vectors weighted by the
attention. The word topic distribution is calculated similarly to LDA-S2S.

T2S follows the model proposed by Choudhary et al. (2017; Ou et al. (2018). The topic distribution
is predicted based on the input sentence hidden vector hc. hc is fed into several linear layers to get the
fixed topic representation. Then the fixed topic representation is used as a new context feature in each
step of the decoder.

4.3 Experiment Setup

We implement our model based on OpenNMT-py2, a Python port of OpenNMT (Klein et al., 2017). All
the hyper-parameters are tuned on the dev set with grid search. We follow the baseline model’s default
settings (Gardent et al., 2017a; Gardent et al., 2017b), in which the word embedding size is 500. The
size of LSTM hidden vector states is set to 500. We use two layers of LSTMs for both encoder and
decoder. For the last layer of the stacked LSTM, we add a dropout layer with a ratio of 0.3. We use
SGD as our optimizer with the initial learning rate of 1.0 and the decay rate of 0.5. The commonly-
used attention (Luong et al., 2015) is added to all models. When generating a new sentence, we use
beam search with beam size 5 which is a traditional setting for generation tasks. We tune the number of
topics of our model and comparison models using the dev set. In the TopicFeature model, the number
of topics is set to 20. In LDA-S2S, we train the LDA model with the Python based LDA package3 and

2https://github.com/OpenNMT/OpenNMT-py
3https://pypi.org/project/lda/
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Figure 3: Topic distribution at each step. White stands for higher probability while black stands for
lower.

the number of topics is set to 100. In the T2S model, we set the number of topics to 200. In the DTT
model, we set the number of topics to 500. We evaluate all the models with the same evaluation script
4. Several metrics are evaluated, including BLEU (Papineni et al., 2002), ROUGEL (Lin, 2004), NIST
(Doddington, 2002), METEOR (Banerjee and Lavie, 2005) and CIDEr (Vedantam et al., 2015). Since
some metrics are sensitive to randomness, we run each model for 5 times and report the median score
with the standard deviation.

4.4 Results

The experimental results are shown in Table 2. We can observe that our DTT model outperforms all
comparison models significantly and consistently. It illustrates that the DTT model can capture the
dynamic topic information to mitigate the off-topic problem and thus improves the overall generation
performance. Besides, our DTT model not only improves performance but also improves the stability of
the performance. It can be observed that the standard deviation is almost reduced to half of that in the
S2S model and is the smallest in most of the metrics. These results show that our proposed DTT model
is more robust against the randomness when generating sentences by incorporating the dynamic topic
information.

The T2S model’s results show that simply using several linear layers to learn topic information per-
forms no worse than models with annotated tags or pre-trained topic allocation. It illustrates that pure
neural models can learn reasonable topic representation. The T2S model performs not as good as our
DTT model. The main reason is that it predicts the topic directly by the input sequence and the topic
is fixed during the whole generating process. The result of DLDA-S2S with dynamic topic vectors is
also better than its counterpart with static topics, i.e. LDA-S2S. All these results show that capturing the
dynamic topic can provide more suitable information for text generation.

The TopicTag model and the TopicFeature model outperform the S2S model. However, they fail
exceeding other models since the domain tags only give very general and insufficient topic information
for each sentence. Therefore, even learning topic information from scratch outperforms these models
using domain tags.

We conduct an ablation experiment by investigating our model without the previous topic information
(denoted as DTT w/o memory). The performance decreases slightly. It indicates that the topic memory
can utilize the historical topic information for learning a better representation for the current topic. With-
out the topic memory, for those words without explicit topic information, the decoder loses the record of
what the current topic is. Besides, the standard deviation increases slightly in all metrics showing that
the topic memory also makes the model more robust.

4https://github.com/tuetschek/e2e-metrics
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Input Triple S2S Output DTT Output
〈Sumatra, ethnicGroup, Malays

( ethnic group )〉
Asam pedas is from the

Sumatra .
The Minangkabau people are an

ethnic group of Sumatra .
〈109 Felicitas, discoverer,

Christian Heinrich Friedrich
Peters〉

Aleksandra Kovač ’ s
musical genre is the House

musician .

The celestial body known as 109
Felicitas was discovered by

Christian Burns .
〈Live Nation Entertainment,

location, Beverly Hills
California〉

The owner of the
government of Aarhus is The

location of government .

The 3Arena is located in North
Wall , California and it is owned by

Live Nation Entertainment .
〈Castle novel, language, English

language〉
The novel Owen Glendower

is a notable team .
The official language in Poland is

the English language .

Table 3: Case study.

4.5 Topic Evolving Analysis

To show that our DTT model does capture the evolving of the topics, we sample two sets of similar
triples and generate the corresponding text to illustrate the evolving procedure. We set the topic number
to 10 and retrain the model for the sake of easier illustration. We record the topic distribution for each
generation step and observe how the topic distribution is changing. The result is shown in Figure 3. At
each step, our DTT model predicts one of the topics with a very high probability while other topics only
have relatively low probability. This observation complies with our intuition of topics. When we talk
about some facts within one sentence, the sentence may contain several topics, but at one time, only one
topic is dominating. The dominating topic changes during the generation procedure which illustrates
that our model captures the changes of the hidden topics when generating from one triple to another.
There are some major topics in each group of triples. For example, the sentences generated in the figure
mainly talk about a person. The main topic for both of them is Topic 9. It can also be observed that some
topics are allocated to the same place in the two sentences. For example, Topic 6 captures the education
background while Topic 9 captures the discovery event.

4.6 Case Study

In order to give an intuitive illustration of the off-topic problem and show how this problem is alleviated
by our model, we sampled some challenging cases handled by the S2S model together with the result
produced by our DTT model. These challenging cases perform not well in both models. Nevertheless,
the sentences generated by the DTT model seem much better. The result is shown in Table 3. All these
triples are very challenging to handle. Therefore, both models cannot generate the sentence perfectly.
However, since the DTT model are guided by the topic information, all the topics of the generated
sentences are reasonable, though some generated terms are not quite correct. The S2S model is prone
to be misled by some keywords and generates unrelated sentences. For example, consider the triple 〈
Sumatra, ethnicGroup, Malays ( ethnic group ) 〉, the S2S model is misled by the beginning tag “Sumatra”
and generates a sentence that is totally unrelated to the triple. This result may be caused by the fact that
the training set contains many examples related to “Sumatra” and “Asam pedas”. In contrast, our DTT
model is guided by the detected topic information of each decoding step making it more likely to predict
the correct sentence. Such topic information also makes it more robust thus the decoder is less likely to
generate sentences randomly. This observation to some extent explains why the performance of the DTT
model only has half of the standard deviation of that in the S2S model.

5 Conclusions and Future Work

In this paper, we recognize the off-topic problem in the KB-to-text problem. We consider to utilize
the dynamic topic information to alleviate this problem and improve the generation performance. To
achieve this, we propose a DTT model which can learn the hidden representation of the topic information.
During the sentence generating process, it can utilize the learned topic information in the sequence-to-
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sequence framework for enhancing the generation process. More importantly, the topic information is
dynamic for each step in the generation process, and thus enables stronger capability than existing works.
Experimental results on a benchmark dataset show that our model can effectively capture the dynamic
topic information at each step in the decoder.

Despite the promising result our model has achieved, there are some remaining challenges: (1) The
model stacks too many LSTM layers which leads the gradient hard to back-propagate if more layers are
going to be added. Some new technologies such as the Transformer or gated CNN can be used to tackle
this problem. (2) The topic representation only contains information from our training set. Nevertheless,
the novel architecture makes it possible to use any set of the topic vectors which can be pre-trained on a
larger unannotated dataset.
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